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ABSTRACT 
 

The 4-peg Tower of Hanoi problem, commonly known as the Reve’s puzzle, is well-known. 

Motivated by the optimality equation satisfied by the optimal value function M(n) satisfied in case of 

the Reve’s puzzle, (Matsuura et al. 2008) posed the following generalized recurrence relation 
  

  

 

where n ≥ 1 and  ≥ 2 are integers, and S(t,
 
3)

 
=

 
2

t 
–

 
1 is the solution of the 3-peg Tower of Hanoi 

problem with t discs. Some local-value relationships are satisfied by T(n, ) (Majumdar et al. 2016). 

This paper studies the properties of  T(n+1,
 ) – T(n, ) more closely for the case when  is an 

integer not of the form 2
i
 for any integer i ≥ 2. 
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INTRODUCTION 

The Reve’s puzzle is a generalization of the 

Tower of Hanoi problem, where there are four 

pegs (instead of three). Briefly, the problem is as 

follows : There are four pegs and n (
 
 1) discs 

of different sizes. Initially, the discs rest on one 

of the four pegs in a tower in small-on-large 

ordering. The problem is to shift the tower to 

another peg in minimum number of moves, 

where each move can transfer only one 

(topmost) disc from one peg to another such that 

no disc is ever placed on top of a smaller one. 

Denoting by M(n) the minimum number of 

moves required to solve the Reve’s puzzle, M(n) 

satisfies the dynamic programming equation  
 

 M ( n )      min         2M ( k ) S( n k , 3 ) ;  n 1,
            0 k n 1

   
  

 

where S(k,
 
3)

 
=

 
2

k 
–

 
1 is the number of moves 

required to solve the 3-peg Tower of Hanoi 

problem with k 
 


 
1 number of discs. For details 

on the Reve’s puzzle, one can consult Roth et al.
 

(1974); Hinz et al. (1989); Stockmeyer et al. 

(1994) and Majumdar et al. (1994 & 2012). 
 

Motivated by the above recurrence relation for 

M(n), Matsuura et al. (2008) introduced the 

following recurrence relation 

 T( n, )       min         T( k , ) S( n k , 3 ) ;  n 1,
               0 k n 1

     
  

            (1.1) 

which is equivalent to the one  below : 

 T( n, )    min      T( n t , ) S( t , 3 ) ;  n 1,
               1 t n

     
 

           (1.2) 

T(0, ) =  0,                                           (1.3)                                                                                                                                            

where 
 
≥

 
2 is an integer. 

 

In a recent paper,  Matsuura et al. (2016) studied 

the above recurrence relation, and derived some 

new results, including some local-value 

relationships satisfied by the optimal value 

function T(n,). The main results are reproduced 

below for reference later. 

Lemma 1.1 : T(n +1, ) – T(n,  )
  2 for all n

 


 
1, 

 


 
3. 
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Lemma 1.2 : For any  ≥ 3 fixed, for all n ≥ 1, 

T(n+1, ) – T(n, )
  

T(n +2, ) – T(n+1, )      

2[T(n+1, ) – T(n, )]. 

Lemma 1.3 : For any  ≥ 3 fixed, let T(n, ) be 

attained at the point k
 
=

 
k1 and T(n

 
+

 
1,         

) be attained at the point k
 
=

 
k2. Then, 

k1 ≤ k2 ≤ k1 +1. 
 

In Lemma 1.3 above, if T(n, ) is attained at 

more than one value of k, then k1 is the 

minimum of such values of k, and k2 is the 

minimum of the values of k at which T(n
 
+

 
1,

 ) 

is attained. Alternatively, k1 may be taken as the 

maximum of the values of k at which T(n,
 ) is 

attained, and in such a case, k2 is the maximum 

of the values of k at which T(n
 
+1,

 ) is attained. 

Lemma 1.4 : If   
2

i
 (for any integer i

 


 
2), then 

T(n,
 ) is attained at a unique k. 

It may be mentioned here that, if 
 
=

 
2

i
 for some 

integer i
 


 
1, then the result of Lemma 1.4 does 

not hold true.  It may be recalled that, for the 

Reve’s puzzle, the corresponding optimal value 

function M(n) is attained at exactly two values of 

k if and only if n is a triangular number; in other 

cases, M(n) is attained at a unique k. Again, 

though each of T(1,
 
4) and T(2,

 
4) is attained at a 

unique point, T(3,
 
4) is attained at two values of 

k, namely, at k
 
=

 
0, 1. 

Lemma 1.5 : For any  ≥ 3 fixed, let T(n, ) and 

T(n
 
+1,) both be attained at k

 
=

 
K. Then, 

T(n+1, ) – T(n , )
 
= 2

n – K
. 

Moreover, if  is an integer not of the form 2
i
 

for any integer i
 


 
2, then neither T(n

 
–

 
1,

 ) nor 

T(n
 
+

 
2,

 ) is attained at k
 
=

 
K.  

Lemma 1.6 : Let   
2

i
 for any integer i

 


 
2. Then  

T(n +1, ) – T(n, )
 
=

 
2

s
 (for some integer s

  
1) 

if and only if T(n +1, ) and T(n ,  ) both are 

attained at the same k. 

Lemma 1.6 differentiates between the cases 

when  
=

 
2

i
 (for any integer i

 


 
1) or not. It may 

be noted that, for all n
 


 
1, M(n

 
+1) – M(n)

 
=

 
2

s
 

for some integer s
 


 
1. In fact, it can be shown 

that, if 
 
=

 
2

i
 (for any integer i

 


 
1), then for all n

 


 

1, T(n+1,
 ) – T(n,

 )
 
=

 
2

s
 for some integer s

 


 
1. 

Lemma 1.7 :  For any n
 


 
3 and 

 


 
3 fixed, 

T(n, k) is convex in k in the sense that 

T(n,
 
k

 
+

 
2) – T(n,

 
k

 
+

 
1)

  
T(n,

 
k

 
+

 
1) – T(n,

 
k) 

for all 0
  

k
  

n
 
–

 
3. 

where  T(n,
 
k) = T(k,

 )
 
+

 
S(n

 
–

 
k,

 
3). 

Corollary 1.1: T(n
 
+

 
1,

 ) is attained at k
 
=

 
0 (for 

some integers n and ) if and only if  
>

 
2

n
. 

It is also noted that, the case 
 
=

 
2 corresponds to 

the Reve’s puzzle, which has been studied in detail 

Matsuura et al. (1994).  Also, that some of the 

results above are valid for 
 
=

 
2 as well. More 

specifically, each of Lemma 1.1, Lemma 1.2, 

Lemma 1.3 and Corollary 1.1 holds true when  
 
=

 

2. This paper gives some local-value relationships 

involving T(n+1,) – T(n, ), when   
2

i
  for any 

integer i
 


 
2. They are given in Section 2. These 

local-value relationships reveal the combinatorial 

properties inherent in the recurrence relation (1.2). 

In Section 3, the main result of the paper is 

estalished. Let an =
 
T(n,

 ) – T(n
 
–

 
1,

 ), n
  

1. 

Let  
n 1

n b



 be the sequence of integers 

       bn =
 
2

i m
; i

  
0, m

  
0, 

arranged in (strictly) increasing order. It can be 

proved that an =
 
bn by showing that they satisfy 

the same recursion formulas. This shows that the 

recurrence relation satisfied by the sequence of 

numbers  
n 1

n a



 can be derived independently, 

without making use of the properties of 

sequence  
n 1

n b



. The paper can be considered 

as concluded, however with some remarks in 

section 4. 
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PRELIMINARY RESULTS 

In this section, some preliminary results are 

derived that would be required in proving the 

main result in Section 3. Some local-value 

relationships satisfied by T(n,
 ), when 

 


 
3 is 

an integer, not of the form 2
i
 for any integer i

 


 
2 

are also solved below.  

Lemma 2.1 : Let 2
i 
<  < 2

i + 1
 for some integer i ≥ 1. Then,  

(a) T(i
 
+

 
1,

 ) is attained at k = 0, 

(b)  each of T(i
 
+

 
2,

 ) and T(i
 
+

 
3,

 ) is attained 

at k = 1, 

(c) T(i
 
+

 
4,

 ) is attained at k = 2. 

Proof : Part (a) follows from Corollary 1.1. 

                    (b) The first to note is: 

T(n, 1)  T(1,
 ) + S(n – 1, 3) < S(n, 3)  T(n, 0) 

if and only if  < 2
n  – 1

, and 

T(n, 2)  T(2,
 ) + S(n – 2, 3) > T(1,

 ) + S(n – 

1, 3)  T(n, 1)  

if and only if  > 2
n  –  3

.  

Thus, by Corollary 1.1, T(n,
 ) is attained at       

k
 
=

 
1 if and only if 2

n  –  3 
<  < 2

n  –  1
. 

In particular, T(i
 
+

 
2,

 ) and T(i
 
+

 
3,

 ) both are 

attained at k = 1. 

               (c) T(i
 
+

 
4,

 ) is not attained at k
 
=

 
1, 

for otherwise 

T(i
 
+

 
4,

 )
 
=

 T(1,
 )

 
+

 
2

i + 3 
–

 
1

 
<

 T(2,
 )

 
+

 
2

i + 2 
–

 
1, 

so that  
>

 
2

i + 1
. But this inequality contradicts 

the assumption. 

Corollary 2.1 : Let 2
i 
< < 2

i + 1
 for some integer 

i ≥ 2. Then, each of T(i
 
–

 
1,

 ) and T(i,
 ) is 

attained at k = 0. 

Proof : From part (a) of Lemma 2.2, together 

with Lemma 1.3, it is seen that T(i,
 ) is attained 

at   k = 0. This, in turn, proves that T(i
 
–

 
1,

 ) is 

attained at k = 0. 

Corollary 2.1 above is valid for i
 
=

 
1 as well if the 

convention that T(0,
 ) is attained at the point k

 
=

 
0. 

 

Lemma 2.2 : Let 2
i 
<  < 2

i + 1
 for some integer i 

≥ 1. Let, for some integer n (
 


 
1), both T(n,

 ) 

and T(n
 
+

 
1,

 ) be attained at the point k
 
=

 
i. 

Then, T(n
 
+

 
2,

 ) is attained at the point k
 
=

 
i
 
+

 
1. 

Proof : Let T(n,
 ) and T(n

 
+

 
1,

 ) both be 

attained at k
 
=

 
i. Then, by Lemma 1.5, T(n

 
+

 
2,

 ) 

is not attained at k
 
=

 
i. Hence, by Lemma 1.3, 

T(n
 
+

 
2,

 ) must be attained at k
 
=

 
i
 
+

 
1, which 

was intended to be proved. 

Lemma 2.3 : Let 2
i 
<

  
<

 
2

i + 1
 for some integer i

 


 
1. Let, for some integer n

 


 
1, T(n,

 ) be 

attained at k
 
=

 
i
 
–

 
1 and T(n

 
+

 
1,

 ) be attained at 

k
 
=

 
i. Then, T(n

 
+

 
2,

 ) is not attained at k
 
=

 
i
 
+

 
1. 

Proof : Since T(n,
 ) is attained k

 
=

 
i
 
–

 
1, 

T(n,
 )

 
=

 T(i
 
–

 
1,

 )
 
+

 
2

n  –  i  + 1 
–

 
1

 
<

 T(i,
 )+2

n –  i 
–

 
1, 

which gives  

[T(i,
 ) – T(i

 
–

 
1,

 )]
 
>

 
2

n – i 
. 

Now, by Corollary 2.1, 

T(i,
 ) – T(i

 
–

 
1,

 )
 
=

 
2

i – 1
,  

and hence,
  

>
 
2

n – 2i + 1
.  

Again, since 

T(n
 
+

 
1,

 )
 
=

 T(i,
 )

 
+

 
2

n  –   i  + 1 
–

 
1

 
<

 T(i
 
–

 
1,

 

)+2
n –  i +  2 

–
 
1, 

we get 

[T(i,
 ) – T(i

 
–

 
1,

 )]
 
<

 
2

n – i 
 

so that, 

 
<

 
2

n – 2i + 2
.  

Then, T(n
 
+

 
2,

 ) is not attained at k
 
=

 
i
 
+

 
1, for 

otherwise, 

T(n
 
+

 
2,

 )
 
=

 T(i
 
+

 
1,

 )
 
+

 
2

n  –   i  + 1 
–

 
1

 
<

 T(i,
 )

 
+

 
2

n – i + 2 
–

 
1, 

so that, [T(i
 
+

 
1,

 ) – T(i,
 )]

 
<

 
2

n–i
.
 
 

Now, by Lemma 2.1 and Corollary 2.1, T(i+1,
 

) and T(i,
 ) both are attained at the point k

 
=

 
0. 

Therefore, 

T(i+1,
 ) – T(i,

 )
 
=

 
2

i
. 

Thus, 

 
<2

n – 2i + 1
, 
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and a contradiction is reached. Hence, T(n
 
+2,

 ) 

is not attained at k
 
=

 
i
 
+

 
1, and consequently, by 

Lemma 1.3, T(n+2,) is attained at the point k
 
=

 
i. 

 

Let 2
i 
< < 2

i + 1
 for some integer i ≥ 1. Then, by 

Lemma 2.1 and Corollary 2.1, T(i
 
–

 
1,

 ),  T(i,
 ) 

and T(i
 
+

 
1,

 ) each is attained at the point k = 0. 

When 
 
=

 
3, both T(1,

 
3) and T(2,

 
3) are attained 

at the point k
 
=

 
0 (and by Lemma 2.2, T(3,

 
3) and 

T(4,
 
3) are attained at the point k

 
=

 
1), for 5

 


 


 


 

7, each of T(1,
 
), T(2,

 
) and T(3,

 
) is attained 

at the point k = 0 (and by Lemma 2.1, each of 

T(4,
 
) and T(5,

 
) is attained at the point k

 
=

 
1), 

and for 9
 


 


 


 
15, each of T(2,

 
),     T(3,

 
) and 

T(4,
 
) is attained at the point k = 0 (and by 

Lemma 2.1, each of T(5,
 
) and T(6,

 
) is 

attained at the point k
 
=

 
1). 

The lemma below which states that the sequence 

n 1{T( n 1, ) T( n, )}  
  isstrictly increasing 

in n for any  (
 


 
3) fixed is to be proved. 

Lemma 2.4 : When   2i (for any integer i ≥ 2), 
 

T(n +2, ) – T(n
 
+1, )

 
>T(n+1, ) – T(n,  ). 

Proof : When T(n+2, ) = S(n +2, 3), then    

T(n+1, ) = S(n+1, 3), T(n, ) = S(n, 3), so that 

T(n+2, ) – T(n+1, ) =
 
2

n+1
 =2[T(n+1, ) – T(n,  )], 

and so the result holds. Now, let T(n+ 2, )  

S(n +2, 3) but T(n+1, ) = S(n+1, 3). Let    

T(n+2, ) be attained at t  =  T. Then, since 

(n+2, ) = T(n +2 – T,  )+ S(T,
 
3)

 
<

 
S(n

 
+

 
2,

 
3), 

Then, by Lemma 1.1 and Corollary 1.1, 

T(n +2,  ) – T(n +1, )  [T(n+2 –T, ) – 

T(n+1 – T, )] >>
 
2

n 
=

 
T(n+1, ) – T(n, ). 

So, let T(n+2,  )  S(n+2, 3) and T(n+1, )  

S(n+1, 3). Let T(n +2, ), T(n +1, ) and T(n,  

) be attained at the points k
 
=

 
k1, k

 
=

 
k2 and       

k
 
=

 
k3 respectively. Then, by Lemma 1.3, there 

are four possibilities that we consider separately 

below. 

Case (A) : When 
 
k1 =

 
k2 =

 
k3 =

 
K, say. In this case,  

T(n+2, ) – T(n+1, )
 
=

 
2

n –K + 1 
=

 
2[T(n+1, ) – T(n, )]. 

 

Case (B) : When 
 
k1 =

 
k2 =

 
K,

 
k3 =

 
K

 
+

 
1. Here, 

T(n+2, ) –T(n +1, )
 
>

 
2

n  – K 
=

 
T(n+1, ) – T(n, ). 

Case (C) : When 
 
k1 =

 
K,

 
k2 =

 
k3 =

 
K

 
+

 
1. In this case, 

T(n+2, ) – T(n+1, )
 
=

 
2

n –K 
>

 
T(n+1, ) – T(n ,). 

The result is true in any of the above three cases. 

Case (D) : When 
 
k1 =

 
K = K11, say,

 
k2 =

 
K11

 
+

 
1, 

k3 =
 
K11

 
+

 
2. Here, 

T(n+2, ) –T(n+1 )
 
=

 [T(K11+2, ) – T(K11 +1 ,  )], 

T(n+1,)–T(n, )=[T(K11+1, ) – T(K11 ,  )].  

Let T(K11, ), T(K11+1, ) and T(K11+2, ) be 

attained at k
 

=
 

K21, k
 

=
 

K22 and k
 

=
 

K23 

respectively. The result is true if K21, K22 and 

K23 satisfy one of the three conditions of Case 

(A), Case (B) and Case (C). In Case (D), we get 
 

T(n+2,)–T(n+1, )
 
=

 2
[T(K21+2, )– T(K21+1 ,)], 

T(n+1, ) – T(n, )
 
=

 2
[T(K21+1, ) – T(K21 ,  )]. 

If T(Km1+2, ), T(Km1+1, ) and T(Km1, ) are 

attained at the values of k satisfying one of Case 

(A), Case (B) and Case (C), then the proof is 

complete. Otherwise, Case (D) occurs, and need 

for continuation. Continuing the argument 

whenever Case (D) occurs, it follows: 

T(n+1, )–T(n,)
 
=

 m
[T(Km1+1,)– T(Km1, )], 

for some integer m
 
≥

 
2. The analyses of Lemma 

2.2 and Lemma 2.3 show that, ultimately, a 

situation is reached where T(Km1, ), T(Km1+1,     

) and T(Km1+2, ) are attained at the values of 

k satisfying one of the three cases, namely, Case 

(A), Case (B) and Case (C). In such a case, the 

result clearly holds true. 
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Lemma 2.4 proves that, for 
 


 
3 not of the form 

2
i
 (i

 


 
2), T(n+1,

 )
 
–

 
T(n,

 ) is strictly increasing 

in n. However, the situation is different if 
 
=

 
2

i
 

for any integer i
 


 
1. For example, 

M(2) – M(1)
 
=

 
2

 
=

 
M(3) – M(2), 

T(3,
 
3) – T(2,

 
3)

 
=

 
4

 
=

 
T(4,

 
3) – T(3,

 
3). 

Lemma 2.5 : Let   
2

i
 (for any integer i ≥ 2). 

Then, there is an infinite number of integers n
 
≥

 

1 such that T(n +1, ) – T(n ,) is of the form 2
s
 

for some integer s
 


 
1. 

Proof : Clearly, such an n exists for any  ≥ 3 

(see Corollary 2.1 – Corollary 2.5 in Majumdar 

(2016) . Now, let T(N
 
–

 
1,

 
) and T(N, ) both 

be attained at k
 
=

 
K, so that  

T(N,
 ) – T(N

 
–

 
1,

 )
 
=

 
2

N  –   K  –  1
.
  

By Lemma 1.5, together with Lemma 1.3, T(N
 
+

 

1,
 ) is attained at the point k

 
=

 
K

 
+

 
1. Let, for 

some integer m
 
>

 
1, T(N

 
+

 
1,

 ), T(N
 
+

 
2,

 ), ..., 

T(N
 
+

 
m

 
–

 
1,

 ) be attained at the distinct points   

k
 
=

 
K

 
+

 
1, K

 
+

 
2, ..., K

 
+

 
m

 
–

 
1 respectively. Then, 

for ℓ
 
=

 
0, 1, ..., m

 


 
1, 

T(N
 
+

 
ℓ,

 
α)

 
=

 
αT(K

 
+

 
ℓ, α)

 
+

 
S(N

 
–

 
K,

 
3) 

< αT(K + ℓ – 1,
 
α)

 
+

 
S(N

 
–

 
K

 
+

 
1,

 
3). 

Therefore,  

T(N
 
+

 
ℓ,

 
α)

 
–

 
T(N

 
+

 
ℓ

 
–

 
1,

 
α)=

 
α[T(K

 
+

 
ℓ,

 
α)

 
– T(K 

+ ℓ –1,α)]; ℓ =1,2, ...,m – 1,                              (1) 

and  

2
N –K  –1 

<
 [T(K

 
+

 
ℓ

 
–

 
1,

 ) – T(K
 
+

 
ℓ

 
–

 
2,

 )]
 
<

 
2

N   

–K
; ℓ

 
=

 
1, 2, ..., m.                                              (2) 

Now, since the sequence of numbers 

1{T( K 1, ) T( K 2, }        ll l  is 

strictly increasing in ℓ (by Lemma 2.4), there is 

an integer m
 
≥

 
2 such that 

[T(K
 
+

 
m,

 ) – T(K
 
+

 
m

 
–

 
1,

 )]
 
≥

 
2

N  –  K
.     (3)                                                                                    

For the minimum such m, if m
 
=

 
M, T(N

 
+

 
M,

 
α) 

is not attained at the point k
 
=

 
K

 
+

 
M, for 

otherwise, 

T(N
 
+

 
M,   )

 
=

 T(K
 
+

 
M,

 )
 
+

 
S(N

 
–

 
K,

 
3)  

T(K
 
+

 
M

 
–

 
1,

 )
 
+

 
S(N

 
–

 
K

 
+

 
1,

 
3), so that 

[T(K
 
+

 
M,

 ) – T(K
 
+

 
M

 
–

 
1,

 )]
 
<

 
2

N  – K
,
  

which violates (3). Therefore, T(N
 
+

 
M,

 
α) is 

attained at k
 
=

 
K

 
+

 
M

 
–

 
1 (by Lemma 1.3) with 

T(N
 
+

 
M,

 ) – T(N
 
+

 
M

 
– 1,

 )
 
=

 
2

N  –  K
. 

Corollary 2.2 : Let   
2

i
 (for any integer i ≥ 2). 

Let T(N
 
–

 
1,

 ) and T(N,
 
 ) both be attained at 

the point k
 
=

 
K, so that 

T(N, α)  T(N  1, α) = 2
N       K   1

.
 

Let M and L be such that 

T(N
 
+

 
M,

 
α)

  
T(N

 
+

 
M

  
1,

 
α) = 2

N      K
, T(L, α)  

T(L  1, α) = 2
N       K          2

. 

Then, 

(a) T(N + m, α) is attained at the point k = K + m 

for all m = 0, 1, ..., M  1, 

(b)  T(N
 
+

 
M,

 
α) is attained at the point k = K + M  1, 

(c) (N + m, α)  T(N + m  1, α) is divisible by α 

for all m
 
=

 
1, 2, ..., M

 


 
1, 

Proof : is evident from the proof of Lemma 2.5. 

Since for  = 3, 

α[T(N,
 
α)

  
T(N

  
1,

 
α)]

 
>

 
2

N         K 
> α[T(K

 
+

 
M

  

1,
 
α)

  
T(K

 
+

 
M

  
2,

 
α)], and 

α[T(L,
 
α)

  
T(L

  
1,

 
α)]

 
<

 
2

N         K 
< α[T(K

 
+

 
M,

 

α)
  

T(K
 
+

 
M

  
1,

 
α)], 

it follows that N
 
>

 
K

 
+

 
M

 
–

 
1, K

 
+

 
M

 
>

 
L. On the 

other hand, if α ≥ 5, K + M  L, for otherwise, 

T(K + M  1, α)  T(K + M  2, α) > T(L, α)  T(L 

 1, α) = 2
N      K  2

, 

which gives 

α[T(K
 
+

 
M

  
1,

 
α)

  
T(K

 
+

 
M

  
2,

 
α)]

 
>

 
2

N     K
. 

But the above result violates the condition  (2). 

MAIN RESULTS 

In this section, an expression of T(n,
 
α) when α

 

2
i
 for any integer i ≥ 2 is presented. 

For any α
 
≥

 
3, let 

an= T(n,) – T(n–1, ), n≥1. ....................... (3.1) 

Clearly, 

a1 = 1, a2 = 2 for all  ≥ 3. 
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Now the statement can be made and the 

following lemma can be proved. 

Lemma 3.1 : For all n ≥ 1, an is of the form 2
m ℓ

 

for some integers m ≥ 0, ℓ ≥ 0. 

Proof : is by induction on. Cleary, the result is 

true when n = 1 and n
 
=

 
2. So, it can be assumed 

that the result is true for all i
 
≤

 
n. 

To prove the result for n
 
+

 
1, by Lemma 1.3, the 

two possibilities that may occur can be 

considered: If T(n, ) and T(n + 1, ) both are 

attained at k
 
=

 
K, then 

an + 1 =
 
2

N  –  K
; 

on the other hand, if T(n, ) is attained at k = K 

and T(n + 1, ) is attained at k = K + 1, then 

       an + 1 =
 [T(K + 1, ) –

 
T(K,

 )], 

so that, by the induction hypothesis, an + 1 is of 

the form 2
m ℓ

.                        

Lemma 3.2 : Let α
  

2
i
 for any integer i

 
≥

 
2. For j

 

≥0,let kj be such that
j

k
j

a 2 . ....................(3.2) 

Then, the following results hold. 

(a) When kj  n  kj  +  1 – 1, T(n, α) is attained at 

the point k = n – j – 1, 

(b) T(kj + 1, α) is attained at the point k = kj    + 1 – j – 2. 

Proof : The proof is by induction on j. Since 

k0 = 1, k1 =
 
2, 

and since T(k0, α) = T(1, α) is attained at the point 

k = 0, and T(k1, α) = T(2, α) is attained at k = 0, 

the result is true for j = 0. So, assume it can be 

that the result is true for some j. Then, in the 

notation of Corollary 2.2, 

N = kj, N  K  1 = j, N + M = kj + 1. 

(a) From part (a) of Corollary 2.2, for all m 

satisfying kj  N + m  kj+1  1, T(N + m, α) is 

attained at k = K + m = N + m  j  1. 
 

(b) By part (b) of Corollary 2.2, T(kj+1, α) is 

attained at k = K + M  1 = kj+1  j  2. 

Thus, the result is true for j + 1, completing 

induction.                                                           

Corollary 3.1 : Let α
 


 
2

i
 for any integer i

 
≥

 
2. 

For j
 

≥0, let kj be such that
j

k
j

a 2 .                                                                                                                                

Then, for m with 1  m  kj  + 1  kj  1,  

T(kj +
 
m,

 
α)  T(kj + m  1, α) = [T(kj + m  j  1,

 

α)   T(kj + m  j  2, α)]. 

Proof : follows from the proof of part (a) of 

Lemma 3.2, using the fact that T(kj +
 
m,

 
α) is 

attained at k
 
=

 
kj + m  j  1, and T(kj + m  1, α)] 

is attained at k
 
=

 
kj + m  j  2.  Let n n 1{b }  be 

the sequence of numbers, defined as follows : 

bn =
 
2

m 
α

ℓ
; m,

 
ℓ

 
≥

 
0, 

arranged in ascending order, where α
 
≥

 
3 is an 

integer. Clearly, 

b1 = 1, b2 =
 
2. 

It is noted that the sequence n n 1{b }  is strictly 

increasing if 
 


 
2

i
 (for any integer  i ≥ 2). 

When  = 3, the first few terms of the sequence 

n n 1{b }  are 

1, 2, 3, 4, 6,8,9,12,16,18,,  ………................(3.3)                                                                

when  = 5, the first few terms are 

1, 2, 4, 5, 8, 10, 16, 20, 25, 32,…................. (3.4)                                                            

and when  = 6, the first few terms are 

1, 2, 4, 6, 8, 12, 16, 24, 32, 36,…................. (3.5)                                                 

The sequence n n 1{b }  has been studied by 

Matsuura et al. (2008) to some extent, who gives 

a recurrence relation satisfied by the terms of the 

sequence n n 1{b } . 

Given any 
 


 
2

i
 for any integer i ≥ 2, and any 

integer j ≥ 0, a related problem of interest is to 

find the number of elements of the sequence 

n n 1{b }  such that 


j
   <

 
2

m     


ℓ 
< 

j+1
. ....................................... (3.6)  

Now, since (3.6) is equivalent to 


j   ℓ

   <
 
2

m 
< 

j     ℓ +  1
, we see that m must satisfy 

the following inequality:  

(jℓ) ln
ln2
 <m<(jℓ+1) ln

ln2
 .......................... (3.7) 
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Let N(j) denote the number of elements of the 

sequence  
n 1n b



 satisfying the inequality 

(3.6), that is, let 

 

Then, the following lemma, giving the 

recurrence relation satisfied by N(j) is obtained. 

Lemma 3.3 : For any integer j ≥ 0, 

 

 

Proof : The second term on the right-hand side 

above corresponds to the case with j + 1 and ℓ
 
=

 

0 in (3.7); also, from (3.7), the case for j
 
+

 
1 with 

ℓ = 1 corresponds to the case j with ℓ = 0, the 

case for j
 
+

 
1 with ℓ = 2 corresponds to the case j 

with ℓ = 1, and so on. Hence, the result follows. 

Lemma 3.4 : For any integer j
 
≥

 
0, 

 

Proof : Let 2
i 
<

 


 
<

 
2

i+1
 for some integer i

 


 
1. 

Then, when j = 0, m = i. Thus, the result is true 

for   j
 
=

 
0. To proceed by induction on j, we 

assume that the result is true for j. Then, the 

validity of the result for j
 
+

 
1 follows from 

Lemma 3.3. 

Corollary 3.2 : For any integer j ≥ 1,  

 

where  x  is the floor of the real number x > 0. 

Proof : is immediate from Lemma 3.4. 

The following result, due to Matsuura et al. 

(2008), gives the recurrence relation satisfied by 

the sequence  
n 1n b



.  

Lemma 3.5 : Let α
  

2
i
 for any integer i ≥ 2. 

Then, for any n with 2
j 
< bn < 2

j  + 1
, 

bn =  bn – (j  + 1). 

The result below has been established (Matsuura 

at al. 2008), who used induction on n to prove it, 

making use of the properties of the sequence 

 
n 1n b



. An alternative proof can be proveded. 

Theorem 3.1 : For all n ≥ 1, an = bn. 

Proof : When α
 


 
2

i
 for any integer i ≥ 2, by 

Corollary 3.2, for n satisfying kj <
 
n

 
<

 
kj   +  1, 

j j

;  
k m k m j 1 

a  a
   

1 ≤ m ≤ kj + 1 – kj – 1.  

This, together with Lemma 3.5, shows that the 

sequences  
n 1n b



 and  

n 1n a



 satisfy the same 

recurrence formulas. Hence, an = bn. 

 

By virtue of Theorem 3.1, it can be expressed as 

the solution of the recurrence relation (1.2) in 

terms of the sequence  
n 1n b



. This is as 

below. 
 

Theorem 3.2 : Let α
  

2
i
 for any integer i ≥ 2. 

Then, 

n

j
j 1

T( n, ) b .


  

Moreover, for any integer j
 


 
0, T(kj, α) is 

attained at the point k = kj – j – 1, and for n 

satisfying    kj  n  kj  + 1 – 1, T(n, α) is attained at 

the point k = n – j – 1, where kj is given by (3.2). 

Proof : Writing T(n, ) as follows : 

 
n

j 1

T( n, ) T( j, ) T( j 1, ) ,  


    

and then making use of Theorem 3.1,  the 

desired expression for T(n, ) is obtained. The 

remaining part follows from Lemma 3.2. 

 

DISCUSSION 

This paper derives some new results in connection 

with the difference T(n+1,α) 
T(n,

 
α), which plays a 

vital role in solving the recurrence relation (1.2). 

   j j   1 j m j   1
n n nN ( j )   b : b    b : 2   .           l

 j   1 m j   2N ( j 1) N ( j )   m :   2  .        

   j j   1 m j   1
n nN ( j )   b :   b  max  m : 2  .        

 j j   1
n n

ln
ln2

N ( j )   b :   b  ( j 1)  ,
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These results help  understand the combinatorial 

properties inherent in the function T(n,
 ), when 

α
 


 
2

i
 for any integer i ≥ 2. For example, results 

similar to those in Lemma 3.2 appears in 

Matsuura et al. (2008) as well, but the proof 

there is by induction, making use of the 

properties of the sequence  
n 1n b



, while the 

present  analysis shows that they can, in fact, be 

derived independently from the properties of the 

function T(n, ) alone. Again, the result given in 

Lemma 3.4 has been established by Matsuura et 

al. (2008), but a simplified proof through 

Lemma 3.3, is now obtained which gives the 

recurrence relation satisfied by N(j). 

From Theorem 3.2, it is seen   that, in order to 

find T(n,
 ), one has to keep track of the 

sequence  
n 1n b



. For small values of n, T(n,

 

) can be calculated. For example, adding the 

first eight terms of the sequence of numbers in 

(3.3), T(8,
 
3)

 
=

 
45 is obtained. Again, adding the 

first six terms of the sequence of numbers in 

(3.4), T(6, 5) = 30, and adding the first five terms 

of the sequence of numbers in (3.5),  T(5,
 
6)

 
=

 
21 

are obtained. However, for large values of n, to 

find   T(n,
 
) (for any 

 


 
3 fixed) one has to find 

bn using the recurrence relation given in Lemma 

3.5. To do so, the value of kj = kj(), given by 

(3.2) need to be considered. Thus, for example, 

to find T(14,
 
3), all the values from b1 through 

b14 (corresponding to 
 
=

 
3) to be considered. To 

find b14 using Lemma 3.5, one has find j such 

that 2
j 
<

 
b14 <2

j+1
. To know j (and kj) such that 

j
k

j
a 2 .  But in the current literature, no such 

result is available. Therefore, from the 

computational point of view, Theorem 3.2 is not 

of much use. However, Lemma 1.3 can be 

exploited to find T(n,
 ) as well as the value of k 

where T(n,
 ) is attained, recursively in n. Thus, 

assuming that T(n,
 ) is attained at k

 
=

 
K, the 

problem of finding T(n
 
+

 
1,

 ) reduces to T(n
 
+1,

 

)
 
=

 
min

 
{T(K,

 )
 
+

 
S(n

 
–

 
K

 
+

 
1,

 
3), T(K

 
+

 
1,

 

)
 
+

 
S(n

 
–

 
K,

 
3)}. 

Using the above algorithm, the values of T(n,
 ) 

may be calculated recursively in n. One such 

recursive algorithm is presented by Ziauddin and 

Majumdar et al. (2017). 

When 
 
=

 
2, exactly one of the following two 

alternatives holds true : 

Case (1) : T(n+2, ) – T(n+1, )=  2[T(n+ 1, 

) – T(n,  )], ..............................................(4)                                                    

Case (2) : T(n+2,) – T(n + 1,)  = T(n+ 1,  ) 

– T(n, ). .....................................................(5)                                                                      

When 
 


 
2

i
 for any integer i

 


 
2, by Lemma 2.4, it 

is seen that the relationship (5) cannot hold true. 

The relationship (4) clearly holds true when T(n
 
+

 

2,
 )

 
=

 
S(n

 
+

 
2,

 
3). To see whether (4) holds in other 

cases as well, it is necessary to study in more detail 

the values of k at which T(n+2, ),  T(n+1, ) and 

T(n, ) are attained. In this context, the following 

two results can be proved. 

Lemma 4.1 : Let 2
i 
<

  
<

 
2

i+1
 for some integer i

 


 
1. Let T(n,

 ) be attained at the point k
 
=

 
0. 

Then, T(n
 
+

 
2,

 ) is not attained at k
 
=

 
2. 

Proof : Let T(n,
 ) be attained at k

 
=

 
0, so that, 

by Corollary 1.1,  
>

 
2

n–1
. Now, if T(n

 
+

 
2,

 ) is 

attained at k
 
=

 
2, then 

T(n
 
+

 
2,

 )
 
=

 T(2
 )+S(n,

 
3)

 
<

 T(1,
 )+

 
S(n+1,

 
3), 

giving  
<2

n–1
, and  to a contradiction is 

reasched. 

Lemma 4.2 : Let 2
i 
<

  
<

 
2

i+1
 for some integer i

 


 
1. 

Let T(n,
 ) be attained at the point k

 
=

 
1. Then, 

T(n+2,
 ) is not attained at k

 
=

 
3. 

Proof : Let T(n,
 ) be attained at k

 
=

 
1, so that,  

2
n–3

<<2
n–. .................................................................................. 

(6)                                                                                                    

(see the proof of Lemma 2.1). Then, T(n
 
+

 
2,

 ) 

is not attained at k
 
=

 
3, for otherwise
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T(n
 
+

 
2,

 )
 
=

 T(3,
 )

 
+

 
S(n – 1,

 
3)

 
<

 T(2,
 )

      

+
 
S(n,

 
3), .........................................................(7) 

which gives <2
n–3

, if 
 


 
5. And a contradiction is 

reached.  If  =3, from (7) it is, 9<2
n–1

. ....................... (8)                                                                                                       

On the other hand, corresponding to 
 
=

 
3, the 

only values of n satisfying (6) are n
 
=

 
3, 4, and in 

either case, (8) is violated. 

A close analysis shows that, there are four 

possibilities such that T(Km1,
 ), T(Km2+1,

 ) and 

T(Km1 +2, ) (in the proof of Lemma 2.4) are 

attained : 

(1) T(Km1,
 ) and T(Km2 +

 
1,

 ) are attained at k
 

=
 
0, T(Km2 +2,

 ) is attained at k
 
=

 
1, 

(2) T(Km1,
 ) is attained at k

 
=

 
0, T(Km2 +1,

 ) 

and T(Km2 +2,
 ) are attained at k

 
=

 
1, 

(3) T(Km1,
 ) and T(Km2 +

 
1,

 
) are attained at k

 

=
 
1, T(Km2 +

 
2,

 ) is attained at k
 
=

 
2, 

(4) T(Km1,
 
) is attained at k

 
=

 
1, T(Km2 +

 
1,

 ) 

and T(Km2 +
 
2,

 ) are attained at k
 
=

 
2. 

In any of the above four cases, the relationship 

(4) does not hold. This observation leads us to 

conjecture that (4) holds only when T(n
 
+

 
2,

 )
 
=

 

S(n+2,
 
3). 
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