Short communication

VITAMIN C CONTENT IN TROPICAL FRUITS AND VEGETABLES AVAILABLE IN DIFFERENT DISTRICTS OF BANGLADESH

SHAMEEM ARA BEGUM, M. MAZEDUL HOSAIN, M. FAIAZ AHMED, M. A. MUTTAKIN, AND MD. MIZANUR RAHMAN * .

Department of Chemistry, Shah Jalal University of Science & Technology, Sylhet – 3114, Bangladesh.

(Received revised copy: August 2, 2009)

A wide variety of food exists that contains vitamin C. Tropical Bangladesh is rich in fruits and vegetables. Fruits and vegetables are rich sources of vitamin C and importance of these in human diet is universally recognised. Vitamin C content of some fruits and vegetables available in Bangladesh was reported Biswas et al.¹ Recently we reported the vitamin C content of some fruits and vegetables available at Sylhet area in Bangladesh. ^{2,3} There are many vegetables and fruits available at different district of Bangladesh. In our continuous study on the vitamin C content, we collected varieties of vegetables and fruits from different regions specially Chittagong, Comilla & Sylhet and estimated the amount of vitamin C in such samples.

The content of vitamin C in fruits and vegetables found in Chittagong and Comilla may be different because the properties of soil and climate of this region is different. Therefore, a comparative study of vitamin C content of selected fruits and vegetables at Sylhet and Comilla districts were also considered. Here a well established chemical method (2,4-dinitrophenyl hydrazine methods -DNPH)⁴ was used as a simplified method for the simultaneous determination of the total vitamin C.

Fruits such as orange, lemon etc contain high amount of vitamin C and vegetables such as Cabbage, Green pepper, Red pepper also have relatively high amount (7mg/100g to163mg/100g) vitamin C.⁵ In our study the samples were procured from Chittagong, Comilla and Sylhet and ascorbic acid content of these samples such as Gaab, Kacha Bel, Thankonipata, Metosh etc were determined. The content of vitamin C varied in fruits from 6.2 mg/100g to 495 mg/100 g and in vegetables 12 mg/100g to 70 mg/100g. The results are summarized in table 1.

^{*} Corresponding author: Department of Chemistry, Shahjalal University of Science & Technology, Sylhet–3114, Bangladesh. e-mail: mizan_sust@yahoo.com

BEGUM et al.

Table 1.

The total vitamin c content in vegetables and fruits

Entry	Local Name	Botanical	% of	Condition	Total vitamin-	Percent of standard
		name	edible part		C (mg/100g)	deviation(%S)
1	Ghema shak	Hydrocotyle rotundifolia Roxb	98	fresh	14.36±0.023	0.16
2	Pat Shak	Corchorus capsularis	85	fresh	24.469±0.244	0.997
3	Almise shak	-	98	fresh	29.61±0.075	0.25
4	Metosh (fruit)	-	40	fresh	54.474±0.411	0.754
5	Tetire dug shak	-	98	fresh	18.71±0.043	0.23
6	Shalgom	Brassica Campestris ver.turnip	80	fresh	18.963±0.199	1.049
7	Donkolosh	-	80	fresh	38.463±0.234	0.608
8	Nuinna shak	-	95	fresh	13.853±0.217	1.566
9	Kharashim	-	90	fresh	34.39±0.109	0.319
10	Thankunipata	Centella asiatica	95	fresh	13.286±0.236	1.780
11	Kattosh shak		95	fresh	12.902±0.07	0.548
12	Titbegun	Solanum anguivi	97	fresh	17.481±0.619	3.543
13	Puibichi	Besella rubra	97	fresh	45.298±0.909	2.008
14	Dhainna morich	Capsicum spp	98		24.52±0.229	0.934
15	Dhekishak	Pteris spp	95	fresh	14.439±0.112	0.777
16	Shial mutri shak	Vernonia patula	90	fresh	17.853±0.246	1.377
17	Banglakola	Musa spp.	90	fresh	104.11±0.963	0.925
18	Kacha-bel	Aegle marmelos	73	fresh	495.03±0.1.15	0.233
19	Kath-badam	Terminalia catappa	30	fresh	20.207±0.261	1.291
20	Arolshem	Cojanus cajan Linn	65	fresh	28.34±0.037	0.130
21	Lutkey	Melastoma malaba thricum Linn	75	fresh	237.52±0.023	0.010
22	Kache tal	Borassus flabellifer Linn	45	fresh	6.20±0.043	0.700
23	Vate ()	Nymphaea nouchali	75	fresh	37.11±0.049	0.132
24	Gaab	Diopyres peregrina Linn	70	fresh	229.27±0.023	0.010
25	Hingry	Castannopsis tribuloides	85	fresh	13.469±0.025	0.185

Effect of cooking and influence of storage time on vitamin C content of selected vegetable were analysed. The initial concentration of ascorbic acid was 37 mg/100 g in fresh vegetables and decreased by 82% during storage time at 5 °C and 53% at -10 °C. The effect of cooking and preservation are shown in table 2.

Table 2. Effect of preservation and cooking of mattos shak at different conditions

Local Name	Botanical name	% of edible part	Condition	Temperature (°C)	Day	Total vitamin-C (mg/100g)	Percent of standard deviation (%S)
Mattos shak	Chorchorus aestuans Linn	95	Fresh			37.82±0.380	1.010
			Preservation	5 °C	7	31.03±0.025	0.080
					15	26.53±0.091	0.340
					21	21.72±0.150	0.700
					30	19.38±0.640	3.300
					37	16.01±0.075	4.600
					45	13.22±0.070	0.520
					52	10.5±0.050	0.400
					60	6.90±0.400	5.700
				-10°C	7	34.01±0.052	0.150
					15	31.86±0.190	0.590
					21	30.22±0.395	1.300
					30	28.49±0.280	0.98
					37	26.285±0.090	0.390
					45	23.61±0.700	2.960
					52	22.15±0.140	0.630
					60	18.15±0.040	0.220
			Heat effect	Boil (in 80ml water for 20min)	40°C	22.011±0.050	0.227
					60°C	15.560±0.230	1.478
					80°C	7.290±0.090	1.234
				Fry (With soybean oil 1- table spoon)	10min	12.731±0.242	1.901
					20min	6.280±0.310	4.936
					30min	3.871±0.021	0.542

Vitamin C is the most important vitamin for human nutrition that is supplied by fruits and vegetables. The 2, 4-Dinitrophenyl hydrazine method is very simple and direct method for determination of vitamin C. The locally available citrous fruits and leafy green vegetables are important source of vitamin C. From the samples of fruits analysed for this work levels of vitamin C 6.2 mg/100g to 495 mg/100g were found in fruits and the content of vitamin C 12 mg/100g to 70 mg/100g were found in vegetables.

ACKNOWLEDGEMENTS

We are grateful to the Department of Chemistry, Shah Jalal University of Science & Technology, Sylhet-3114, Bangladesh for giving necessary facilities during research.

234 BEGUM et al.

REFERENCES

1. S. K. BISWAS AND M. A. MANNAN; Determination of vitamin C (ascorbic acid) in some fruits and vegetables *B. J. Sci. & Ind. Res.* 1, xxxi, 1996.

- 2. M. M. RAHMAN , M. M. RAHMAN KHAN, A. T. M. Murad and S. A. Begum; Bangladesh *J. Environ. Sci.*, **11**(1), 190-193, 2005.
- 3. M. M. RAHMAN et. al. *J. of Biological Sciences* **6**(2), 388-392, 2006.
- 4. R. RIEMSCHNEIDER., M. Z. ABEDIN AND R. P. Alimenta. 15, 171, 1976.
- 5. LIDIJA B. PFENDT, VESNA L.VUKASINOVIC, NADA Z. BLAGOJEVIC AND MIRJANA P. RADOJEVIC *Eur. Food Res Technol*, **217**, 269-272, 2003.