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ABSTRACT 

This paper considers a variant of the Reve’s puzzle with n (1) discs and an evildoer, which can be 

placed directly on top of a smaller disc any number of times. Denoting by E(n) the minimum number 

of moves required to solve the new variant, we give a scheme to find the optimality equation satisfied 

by E(n). We then find an explicit form of E(n). 
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INTRODUCTION 

The classical Tower of Hanoi problem, 

introduced by the famous French number 

theorist Lucas (1883), in general form, is as 

follows : Given are n (1) discs of different 

sizes, labeled from the smallest to the largest as 

D1, D2, …, Dn, and three pegs, S, P and D. At the 

start of the game, the discs rest on the source 

peg, S, in a tower in increasing order, from top 

to bottom. The objective is to shift the tower 

(from the peg S) to the destination peg, D, in 

minimum number of moves, where each move 

can shift only the topmost disc from one peg to 

another, under the “divine rule” that no disc can 

ever be placed on a smaller one at any stage of 

the transfer process. It is well-known that the 

total number of moves required to solve the 

classical Tower of Hanoi problem with n(1) 

discs is 2n –1. 

Over the past decades, the classical Tower of 

Hanoi problem has seen many variants, some of 

which have been reviewed by Majumdar (2012, 

2013) and Hinz, Klavzar and Petr (2018). Chen, 

Tian and Wang (2007) have introduced a new 

variant of the Tower of Hanoi problem which 

allows r (1) violations of the “divine rule”. In 

the new variant, the problem is to shift the tower 

of n discs from the peg S to the peg D in 

minimum number of moves, where for (at most) 

r moves, some disc may be placed directly on 

top of a smaller one.  

Denoting by S3(n, r) the minimum number of 

moves required to solve the new variant, S3(n, r) 

is given in the following lemma, due to Chen, 

Tian and Wang (2007). 

Theorem 1.1 :For any n1, r1, 
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Chen, Tian and Wang (2007) have posed a new 

variant of the classical Tower of Hanoi problem 

with n (1) discs, r (1) of which are evildoers, 

where each evildoer can be placed on top of a 

smaller one any number of times. Thus, in the 

new variant, the problem is to shift the tower of 

n discs from the peg S to the peg D in minimum 

number of moves, where any of the r evildoers 

may be placed directly on top of a smaller one 

any number of times (thereby violating the 

“divine rule”). The problem was taken up by 

Majumdar and Islam (2019). Denoting by E3(n) 

the minimum number of moves required to solve 
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the classical Tower of Hanoi problem with one 

evildoer disc, the explicit form is given as 

follows. 

Proposition 1.1 : For n≥8, 
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with 

E3(n)=S3(n, 1) for 1≤n≤7. 

Moreover, the disc Dn–2 is the (unique) evildoer. 

Corollary 1.1 : For n≥8, 

E3(n+1) – E3(n)=2n–3 +2m–1, 

where 

n=2m+j,  

for some integers m and j, j{0, 1}. 

Corollary 1.1 above has the consequence below. 

Corollary 1.2 :For n≥1, E3(n) is strictly convex 

in n in the sense that 

E3(n+2) – E3(n+1)>E3(n+1) – E(n). 

The Reve’s puzzle, due to Dudeney (1958), is 

the Tower of Hanoi problem with four pegs. The 

initial state of the Reve’s puzzle is shown below, 

where the objective is to transfer the tower of n 

discs (from the source peg S) to the destination 

peg D, in minimum number of moves, where 

each move transfers only the topmost disc from 

one peg to another under the “divine rule” that 

no disc is ever placed on top of a smaller one. 

 

 

 

 

 

 

This paper considers the Reve’s puzzle with one 

evildoer disc, which can be placed on top of a 

smaller disc any number of times. Denoting by 

E(n) the minimum number of moves required to 

solve this variant of the Reve’s puzzle, we find 

an expression of E(n). This is done in 

Proposition 3.3 in the third Section. The next 

Section gives some background materials. Some 

remarks are made in the final section. 

 

BACKGROUND MATERIAL 

This section gives some background materials 

that would be required later. 

Let M(n) denote the minimum number of moves 

required to solve the Reve’s puzzle with n (1) 

discs. Then, M(n) satisfies the dynamic 

programming equation below for n (4) (see, for 

example, Chapter 3 in Majumdar (2012) : 

 
1 1

( )       min      2 ( ) 2 1
            

n k

k n
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   (1.1a) 

with 

M(0)=0; M(n)=2n–1 for 1≤n≤3.(1.1b) 

The optimal value function M(n) satisfies the 

local-value relationships given in Lemma 2.1 

below. The solution of the dynamic 

programming equation (1.1) is given in Theorem 

2.1. For proofs of these results, we refer the 

reader to Majumdar (2012). 

Lemma 2.1 : Exactly one of the following two 

relationships hold : 

(a) M(n+2) – M(n+1)=M(n+1) – M(n), 

(b) M(n+2) – M(n+1)=2[M(n+1) – M(n)]. 

Theorem 2.1 : The solution of (1.1) is as 

follows. 
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Corollary 2.1 : For 3n6, M(n)=4n – 7. 

Proof : From Theorem 2.1, we see that 

M(3)=5, M(4)=9, M(5)=13, M(6)=17. 

This establishes the desired result. 

Over the past decades, the Reve’s puzzle has 

seen several generalizations, some of which 

have been reviewed by Majumdar (2013). 

Recently, Majumdar (2019) has considered a 

variant of the Reve’s puzzle which allows one 

violation of the “divine rule”. Denoting by S(n) 

the minimum number of moves required to solve 

the Reve’s puzzle with single relaxation of the 

“divine rule”, an explicit form of S(n) is given 

below. 

Theorem 2.2 : For n1, 
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In view of Corollary 2.1, Theorem 2.2 has the 

following equivalent form. 

 

Theorem 2.3 : For n1, 
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THE  PROBLEM  AND  THE  SOLUTION 

The problem that we consider is as follows: 

There are four pegs, S, P1, P2 and D, and n (1) 

discs of varying sizes. Initially, the discs rest on 

the source peg S in a tower, in increasing order 

from top to bottom. Of the n discs, one disc is 

evildoer, which can be placed directly on top of 

a smaller one any number of times. The problem 

is to shift the tower from the peg S to the 

destination peg D, in minimum number of 

moves, such that each move shifts only the 

topmost disc from one peg to another. 

From Theorem 2.3, we see that  

S(n)=M(n–2)+6, n≥8, 

where the optimal scheme is as follows : 

Step 1 : Move the topmost K discs (from the peg 

S) to one of the two auxiliary pegs, say, P1, 

in M(K) moves, 

Step 2 : Shift the remaining n–K discs, now 

resting on the peg S, to the peg D, using the 

three pegs available, in S3(n–K,1) moves, 

Step 3 : Transfer the tower of K discs on the peg 

P1 to the peg D (again in M(K) moves) to 

complete the tower on the destination peg D. 

Therefore, 

S(n)=2M(K)+S3(n–K,1),                         (3.1) 

where the integer K is such that  

M(n–2)=2M(K)+2n – K – 2–1. 

Recall that, if n–2 is not a triangular number, 

then M(n–2) is attained at two values of k, say, at 

k=K, K+1. In such a case, 
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S(n)=2M(K+1)+S3(n–K–1,1).    (3.2) 

Therefore, if n–2 is not a triangular number, then 

from (3.1) and (3.2), we get  

2[M(K+ 1) – M(K)]=S3(n–K,1) 

–S3(n–K–1,1)= 2n – K – 3.               (3.3) 

Let the minimum number of moves required to 

solve the above problem be E(n). Clearly,  

E(n)=S(n) for all 1≤n≤7. 

When 8≤n≤17, so that 6≤n–2≤15, it can easily 

be verified, using Theorem 2.1, that  

 

n–K=n–kmin(n–2)≤7. 

Thus,  

E3(n–K)=S3(n–K,1).  

Therefore, by (3.1), 

E(n)=S(n), if 8≤n≤17. 

The optimality equation satisfied by E(n) is 

given below. 

Proposition 3.1 : For n≥18, 

 
8            1

( )      min       2 ( ) ( )3

k n
E n M k E n k .

  
    

Proof : To find E(n) for n≥18, we follow the 

scheme below : 

Step 1 : Move the topmost k (≥1) smallest discs 

(from the peg S) to some auxiliary peg, say, 

P1, in M(k) number of moves, 

Step 2 : Transfer the remaining n–k discs (from 

the peg S) to the peg D, using the evildoer, in 

E3(n–k) number of moves, 

Step 3 : Shift the k discs (from the peg P1) to the 

peg D, in M(k) number of moves, to 

complete the tower on the peg D. 

The total number of moves involved in the 

above three steps is  

2M(k)+E3(n–k), 

where k(1≤k≤n–8) is to be determined such that 

the above expression is minimum. This 

establishes the proposition. 

In Proposition 3.1 above, we require that      

k≤n–8 to guarantee that  

E3(n–k)<S3(n–k,1). 

For any n≥1 fixed, let the function F(n, k) be 

defined as follows : 

F(n, k)=2M(k)+E3(n–k), 0≤k≤n. (3.4) 

Then, we have the following result which states 

that (for fixed n), F(n, k) is strictly convex in k, 

in the sense of the inequality stated therein. 

Lemma 3.1 : For any n≥2 fixed,   

F(n,k+2) – F(n,k+1)>F(n,k+1) – F(n ,k). 

Proof : By (3.4), 

F(n,k+2) – F(n,k+1) 

=2[M(k+2) – M(k+1)] –  

[E3(n–k–1)–E3(n–k–2)]. 

Using Lemma 2.1 and Corollary 1.2, we get the 

following chain of inequalities: 

F(n,k+2) – F(n,k+1) 

=2[M(k+2) – M(k+1)] – 

 [E3(n–k–1)–E3(n–k–2)] 

>2[M(k+1) – M(k)] –  

[E3(n–k)–E3(n–k–1)]. 

=F(n,k+1) – F(n, k). 

Thus, the lemma is established.     

An explicit form of E(n) is given in Proposition 

3.2 below. 
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Proposition 3.2 : If 1≤n≤17, 

E(n)=S(n), 

and for n≥18, 

E(n)=2M(K)+E3(n–K), 

where 

K=kmin(n–2), 

(kmin(n–2) being the minimum of the two values 

of k at which M(n–2) is attained), and Dn–2 is the 

evildoer. 

Proof: When 18≤n≤23, by Theorem 2.1, n–K=8. 

Then, we have  

2M(K)+E3(n–K) 

<2M(K)+S3(n–K,1) 

≤2M(K+1)+S3(n–K–1,1)           (3.5) 

=2M(K+1)+E3(n–K–1) 

where the last equality holds by virtue of 

Proposition 1.1 (since n–K–1=7), and in (3.5), 

the strict equality sign holds by (3.3) if M(n–2) 

is not a triangular number, and strict inequality 

sign otherwise. Also, 

2M(K)+E3(n–K) 

<2M(K)+S3(n–K,1)=S(n). 

By Proposition 1.1, the disc Dn–2 is the evildoer. 

When n≥24, n–K≥9. In this case, we show that  

2M(K)+E3(n–K) 

<2M(K+1)+E3(n–K–1)             (3.6) 

that is, 

2[M(K+1) – M(K)] 

>E3(n–K,1)–E3(n–K–1). 

Now, if n–K is even, say, n–K=2m for some 

integer m>2, then by virtue of Proposition 1.1, 

E3(n–K) – E3(n–K–1)=22m–4+2m–2, 

and by (3.3), 

2[M(K+1) – M(K)]=22m–3. 

On the other hand, if n–K=2m+1 for some 

integer m>2, then  

E3(n–K) – E3(n–K–1)=22m–3 +2m–1, 

and 

2[M(K+1) – M(K)]=22m–2. 

Thus, in either case, the inequality (3.6) is 

satisfied. 

Next, we show that  

2M(K)+E3(n–K) 

<2M(K–1)+E3(n–K+1). (3.7) 

The proof is by contradiction. So, let  

2M(K)+E3(n–K) 

≥2M(K–1)+E3(n–K+1). 

Then, 

2[M(K)–M(K–1)] 

≥E3(n–K+1)–E3(n–K)>2n–K–3,     (1) 

where the last inequality follows by virtue of 

Corollary 1.1. 

Now, since  

S(n)≡2M(K)+S3(n–K,1) 

<2M(K–1)+S3(n–K+1,1), 

we get the following inequality : 

2[M(K)–M(K–1)]<S3(n–K+1,1)– 

S3(n–K,1)=2n–K–2.  (2) 

Since (by Lemma 2.2 in Majumdar (2012)), 
 

2[M(K)–M(K–1)]=2s for some integer s≥1, 
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the inequalities in (1) and (2) together give the 

following chain of inequalities : 

2n–K–3<2s <2n–K–2, 

and we are led to a contradiction. This 

establishes the inequality (3.7). 

It now follows from Lemma 3.1 that     

2M(k)+E3(n–k) is minimized at the unique point 

k=K. 

 

CONCLUDING REMARKS 

This paper deals with a variant of the Reve’s 

puzzle, when there is an evildoer disc which can 

be placed on a smaller disc any number of times. 

Denoting by E(n) the minimum number of 

moves required to solve this problem, E(n) is 

given explicitly in Proposition 3.2. It is 

interesting to note that E(n) has a simple form, 

and further that E(n) is given in terms of the 

optimal value function satisfied for the Reve’s 

puzzle. Then, using Theorem 2.1, E(n) may be 

calculated. For example, for n=18, we get from 

Theorem 2.1 that kmin(16)=10. Therefore, by 

Proposition 3.2, 

E(18)=2M(10)+E3(8). 

Now, by Theorem 2.1, M(10)=49, and by 

Proposition 1.1, E3(8)=57. Therefore, 

E(18)=135. 

This number may be compared with M(18)=225, 

which is the number of moves required to solve 

the Reve’s puzzle with 18 discs. 
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