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the sequel. Through this paper, X will be a 

nonempty set, I = [0,1], I0 = (0,1] and FP stands 

for fuzzy pairwise. The class of all fuzzy sets 

on a universe X will be denoted by IX and fuzzy 

sets on X will be denoted by u, v, w, etc. A crisp 

subset of X will be denoted by capital letters 

𝑈, 𝑉, 𝑊 etc. In this paper, (𝑋, 𝑡) and (𝑋, 𝑠, 𝑡) 

will be denoted fuzzy topological space and 

fuzzy bitopological space, respectively. 𝑥𝑟𝑞𝑢 

denotes 𝑥𝑟 is quasi-coincident with 𝑢 and 𝑥𝑟�̅�𝑢 

denotes that  𝑥𝑟 is not quasi-coincident with 𝑢 

throughout this paper. 

Definition:  A fuzzy set 𝜇 in a set 𝑋 is a 

function from 𝑋 into the closed unit interval 

𝐼 = [0, 1]. For every 𝑥 ∈ 𝑋, 𝜇(𝑥) ∈ 𝐼 is called 

the grade of membership of 𝑥. Throughout this 

paper, 𝐼𝑋 will denote the set of all fuzzy sets 

from 𝑋 into the closed unit interval 𝐼. A 

member of 𝐼𝑋 may also be a called fuzzy subset 

of  𝑋 (Zadeh, 1965). 

Definition:  A fuzzy set 𝜇 in 𝑋 is called a fuzzy 

singleton iff 𝜇(𝑥) = 𝑟, (0 < 𝑟 ≤ 1) for a 

certain 𝑥 ∈ 𝑋 and 𝜇(𝑦) = 0 for all points 𝑦 of 

𝑋 except 𝑥.  The fuzzy singleton is denoted by 

𝑥𝑟 and 𝑥 is its support. We call 𝑥𝑟 is a fuzzy 

point if 0 < 𝑟 < 1. The class of all fuzzy 

singletons in 𝑋 will be denoted by 𝑆(𝑋),  

(Wong, 1974). 

Definition: A fuzzy singleton 𝑥𝑟 is said to be 

quasi-coincident with a fuzzy set 𝜇, denoted by 

𝑥𝑟𝑞𝜇 iff 𝑟 + 𝜇(𝑥) > 1. If 𝑥𝑟 is not quasi-

coincident with 𝜇, we write 𝑥𝑟�̅�𝜇. (Kandil         

et al., 1995). 

Definition:  A fuzzy topology 𝑡 on 𝑋 is a 

collection of members of 𝐼𝑋 which is closed 

under arbitrary suprema and finite infima and 

which contains constant fuzzy sets 1 and 0. The 

pair ( X, t ) is called a fuzzy topological space 

(fts, in short) and members of 𝑡 are called 𝑡-

open (or simply open) fuzzy sets. A fuzzy set 𝜇 

is called a 𝑡- closed (or simply closed) fuzzy set 

if 1 − 𝜇 ∈ 𝑡 (Chang, 1968).  

Definition:  Let 𝑓 be a real valued function on 

a topological space.  If {𝑥: 𝑓(𝑥) > 𝛼}  is open 

for every real ∈ 𝐼1, then 𝑓 is called lower 

semi-continuous function (Rudin, 1974). 

Definition:  Let 𝑋 be a nonempty set and 𝑇 be 

a topology on 𝑋. Let 𝑡 = 𝜔(𝑇) be the set of all 

lower semi-continuous (lsc, in short) functions 

from (X, T) to 𝐼 (with usual topology). Thus 

𝜔(𝑇) = {𝜇 ∈ 𝐼𝑋: 𝜇−1(𝛼, 1] ∈ 𝑇} for each 𝛼 ∈

𝐼1. It can be shown that 𝜔(𝑇) is a fuzzy 

topology on 𝑋. (Ali et al., 1990) 

Let 𝑃 be a property of topological spaces and 

𝐹𝑃 be its fuzzy topology analog. Then  𝐹𝑃 is 

called a ‘good extension’ of 𝑃 “iff the 

statement (𝑋, 𝑇) has 𝑃 iff (𝑋, 𝜔(𝑇)) has 𝐹𝑃” 

holds suitable for every topological space (𝑋,

𝑇) (Ali, 1990).   

Definition: A fuzzy bitopological space (fbts, 

in short) is a triple  (𝑋, 𝑠, 𝑡) where 𝑠  and 𝑡  are 

arbitrary fuzzy topologies on 𝑋 (Kandil et al., 

1995). 

Definition: A bitopological space (𝑋, 𝑆, 𝑇) is 

called pairwise regular (in short, 𝑃𝑅) if, for 

each point 𝑥 in 𝑋 and each  𝑆-closed set 𝑃 with 

𝑥 ∉ 𝑃, there exist 𝑈 ∈ 𝑆, 𝑉 ∈ 𝑇 such that 𝑥 ∈

𝑉, 𝑃 ⊆ 𝑉 and 𝑈 ∩ 𝑉 = ∅ (Kelly, 1963). 

Definition: A bitopological space (𝑋, 𝑆, 𝑇) is 

called pairwise normal (in short, 𝑃𝑁) if, given 

𝑆-closed set 𝐴 and a 𝑇-closed set 𝐵 with 𝐴 ∩

𝐵 = ∅, there exist 𝑈 ∈ 𝑆, 𝑉 ∈ 𝑇 such that 𝐴 ⊆

𝑉, 𝐵 ⊆ 𝑈 and 𝑈 ∩ 𝑉 = ∅ (Kelly, 1963). 



Amin et al./J. Bangladesh Acad. Sci. 44(2); 139-143: December 2020 

 

141 

 

Fuzzy Pairwise Regular Bitopological Spaces 

 Definition:  A fuzzy bitopological space 

(𝑋, 𝑠, 𝑡) is called 

(a) 𝐹𝑃𝑅(𝑖) iff 𝑥𝑟 ∉ 𝑤, 𝑤 is an 𝑠-closed fuzzy 

set, there exist  𝑢 ∈ 𝑠 and 𝑣 ∈ 𝑡 such that  𝑥𝑟 ∈

𝑢, 𝑤 ⊆ 𝑣  and 𝑢�̅�𝑣.  

(b) 𝐹𝑃𝑅(𝑖𝑖) iff 𝑥𝑟 ∉ 𝑤, 𝑤 is an 𝑠-closed fuzzy 

set, there exist  𝑢 ∈ 𝑠 and 𝑣 ∈ 𝑡 such that  𝑥𝑟 ∈

𝑢, 𝑤 ⊆ 𝑣  and 𝑢 ∩ 𝑣 = 0.  

(c) 𝐹𝑃𝑅(𝑖𝑖𝑖) iff 𝑥𝑟�̅�𝑤, 𝑤 is an 𝑠-closed fuzzy 

set, there exist  𝑢 ∈ 𝑁(𝑥𝑟 , 𝑠) and 𝑣 ∈ 𝑁(𝑤, 𝑡) 

such that 𝑢�̅�𝑣. (Safiya et al., 1994). 

(d) 𝐹𝑃𝑅(𝑖𝑣) iff 𝑥𝑟�̅�𝑤, 𝑤 is an 𝑠-closed fuzzy 

set, there exist  𝑢 ∈ 𝑁(𝑥𝑟 , 𝑠) and 𝑣 ∈ 𝑁(𝑤, 𝑡) 

such that 𝑢 ∩ 𝑣 = 0.  

Theorem: Let (𝑋, 𝑠, 𝑡) be a fuzzy bitopological 

space. Then we have the following 

implications: (b)⇒ (𝑎), (d)⇒ (𝑐). 

Proof: (b)⇒ (𝑎), (d)⇒ (𝑐) are obvious since 

𝑢 ∩ 𝑣 = 0 implies that 𝑢�̅�𝑣. 

  The following counter example shows that 

(a) ⇏(b) as well as (c) ⇏(d) in general. 

Example: Let 𝑋 = {𝑥, 𝑦} and 𝑠 be a fuzzy 

topology on 𝑋 generated by{𝑢} ∪ {𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠}, 

where 𝑢(𝑥) = 1, 𝑢(𝑦) = 0.3. Let 𝑡 be a fuzzy 

topology on 𝑋 generated by {𝑣} ∪ {𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠}, 

where 𝑣(𝑥) = 0, 𝑣(𝑦) = 0.7. Then we see that 

(𝑋, 𝑠, 𝑡) is 𝐹𝑃𝑅(𝑖) but not 𝐹𝑃𝑅(𝑖𝑖). It is also 

clear that (𝑋, 𝑠, 𝑡) is 𝐹𝑃𝑅(𝑖𝑖𝑖) but not 𝐹𝑃𝑅(𝑖𝑣). 

Hence (a) ⇏(b), (c) ⇏(d).  

Theorem: Let (𝑋, 𝑠, 𝑡) be a fuzzy bitopological 

space, 𝐴 ⊆ 𝑋 and  𝑠𝐴 = {𝑢/𝐴 ∶ 𝑢 ∈ 𝑠},  𝑡𝐴 =

{𝑣/𝐴 ∶ 𝑣 ∈ 𝑡}, then 

(a) (𝑋, 𝑠, 𝑡) is 𝐹𝑃𝑅(𝑖)  ⇒   (𝐴, 𝑠𝐴, 𝑡𝐴) is  

𝐹𝑃𝑅(𝑖); 

(b) (𝑋, 𝑠, 𝑡) is 𝐹𝑃𝑅(𝑖𝑖)  ⇒   (𝐴, 𝑠𝐴, 𝑡𝐴) is  

𝐹𝑃𝑅(𝑖𝑖); 

(c) (𝑋, 𝑠, 𝑡) is 𝐹𝑃𝑅(𝑖𝑖𝑖)  ⇒   (𝐴, 𝑠𝐴, 𝑡𝐴) is 

𝐹𝑃𝑅(𝑖𝑖𝑖); 

(d) (𝑋, 𝑠, 𝑡) is 𝐹𝑃𝑅(𝑖𝑣)  ⇒   (𝐴, 𝑠𝐴, 𝑡𝐴) is  

𝐹𝑃𝑅(𝑖𝑣). 

Proof: Suppose (𝑋, 𝑠, 𝑡) is 𝐹𝑃𝑅(𝑖). We have to 

show that  (𝐴, 𝑠𝐴, 𝑡𝐴) is 𝐹𝑃𝑅(𝑖). Let  𝑤 be a 

𝑠𝐴-closed fuzzy set and 𝑥𝑟 ∈ 𝑆(𝐴) such that 

𝑤(𝑥) < 𝑟. This implies that 𝑤𝑐 ∈ 𝑠𝐴 and 

𝑤𝑐(𝑥) > 1 − 𝑟. So there exists an 𝑢 ∈ 𝑠 such 

that 𝑢/𝑎 = 𝑤𝑐 and clearly 𝑢𝑐 is closed in 𝑠. 

Now 

𝑢𝑐(𝑥) = (𝑢/𝐴)𝑐(𝑥) = 𝑤(𝑥) < 𝑟 since 𝑥 ∈ 𝐴. 

Since (𝑋, 𝑠, 𝑡) is 𝐹𝑃𝑅(𝑖), then there exists 𝑝 ∈

𝑠, 𝑣 ∈ 𝑡 such that  𝑥𝑟 ∈ 𝑝, 𝑢𝑐 ⊆ 𝑣  and 𝑝�̅�𝑣. 

Since 𝑝 ∈ 𝑠, 𝑣 ∈ 𝑡, then 𝑝/𝐴 ∈ 𝑠𝐴, 𝑣/𝐴 ∈ 𝑡𝐴. 

Now we have 

𝑥𝑟 ∈ 𝑝/A, (𝑢/𝐴)𝑐 ⊆ 𝑣/𝐴  and (𝑝/𝐴)�̅�(𝑣/𝐴). 

So 𝑥𝑟 ∈ 𝑝/A, 𝑤 ⊆ 𝑣/𝐴  and (𝑝/𝐴)�̅�(𝑣/𝐴). 

Therefore  (𝐴, 𝑠𝐴, 𝑡𝐴) is  𝐹𝑃𝑅(𝑖). 

Similarly, (b), (c) and (d) can be proved 

Theorem: Let (𝑋, 𝑠, 𝑡) and (𝑌, 𝑠1, 𝑡1)  be two 

fuzzy bitopological spaces and let 𝑓: 𝑋 ⟶ 𝑌 be 

bijective, FP-continuous and FP-open. Then  

(𝑋, 𝑠, 𝑡) is  𝐹𝑃𝑅(𝑗) ⇒ (𝑌, 𝑠1, 𝑡1) is  𝐹𝑃𝑅(𝑗), 

where 𝑗 = 𝑖, 𝑖𝑖, 𝑖𝑖𝑖, 𝑖𝑣.  

Proof: Suppose the fuzzy bitopological space 

(𝑋, 𝑠, 𝑡) is  𝐹𝑃𝑅(𝑖). We have to show that 

(𝑌, 𝑠1, 𝑡1) is 𝐹𝑃𝑅(𝑖).   Let 𝑤 be 𝑠1-closed and 

𝑦𝑟 ∈ 𝑆(𝑌) with 𝑤(𝑦) < 𝑟. Then 𝑓−1(𝑤) ∈ 𝑠𝑐 

as 𝑓 is FP-continuous. Since 𝑓 is bijective, then 

for 𝑦 ∈ 𝑌 there exits 𝑥 ∈ 𝑋 such that  𝑓(𝑥) =
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𝑦. Now  𝑓−1(𝑤)(𝑥) = 𝑤(𝑓) = 𝑤(𝑦) < 𝑟 . 

Since (𝑋, 𝑠, 𝑡) is  𝐹𝑃𝑅(𝑖), there are 𝑢 ∈ 𝑠, 𝑣 ∈

𝑡 such as 𝑥𝑟 ∈ 𝑢, 𝑓−1(𝑤) ⊆ 𝑣  and 𝑢�̅�𝑣. 

Now, we see that 𝑓(𝑢)(𝑦) =

{sup 𝑢(𝑥) : 𝑓(𝑥) = 𝑦} < 𝑟. So 𝑦𝑟 ∈ 𝑓(𝑢). 

Also, u�̅�𝑣 implies that u(𝑥) + 𝑣(𝑥) ≤ 1 for all 

 𝑥 ∈ 𝑋. 

 Now for all 𝑓(𝑥) ∈ 𝑌, we have f(u)f(𝑥) +

𝑓(𝑣)(𝑓(𝑥)) = u(𝑥) + 𝑣(𝑥) ≤ 1 as 𝑓 is 

bijective. So 𝑓(𝑢)�̅�𝑓(𝑣). 

  Again since 𝑓−1(𝑤) ⊆ 𝑣, then 𝑤 ⊆ 𝑓(𝑣). It 

is clear that  𝑓(𝑢) ∈ 𝑠1, 𝑓(𝑣) ∈  𝑡1 as 𝑓 is FP-

open. So 𝑓(𝑢) ∈ 𝑠1, 𝑓(𝑣) ∈  𝑡1 such that  𝑦𝑟 ∈

𝑓(𝑢), 𝑤 ⊆ 𝑓(𝑣) and 𝑓(𝑢)�̅�𝑓(𝑣). Hence 

(𝑌, 𝑠1, 𝑡1) is  𝐹𝑃𝑅(𝑖). 

The proofs are similar for 𝑗 = 𝑖𝑖, 𝑖𝑖𝑖, 𝑖𝑣.  

Theorem: Let (𝑋, 𝑠, 𝑡) and (𝑌, 𝑠1, 𝑡1)  be two 

fuzzy bitopological spaces and 𝑓: 𝑋 ⟶ 𝑌 be 

bijective, FP-continuous and FP-closed. Then  

(𝑌, 𝑠1, 𝑡1) is  𝐹𝑃𝑅(𝑗) ⇒ (𝑋, 𝑠, 𝑡) is  𝐹𝑃𝑅(𝑗), 

where 𝑗 = 𝑖, 𝑖𝑖, 𝑖𝑖𝑖, 𝑖𝑣, 𝑣. 

Proof: Suppose the fuzzy bitopological space 

(𝑌, 𝑠1, 𝑡1) is  𝐹𝑃𝑅(𝑖). We have to show that 

(𝑋, 𝑠, 𝑡) is 𝐹𝑃𝑅(𝑖).   Let 𝑤 be 𝑠-closed and 𝑥𝑟 ∈

𝑆(𝑋) with 𝑤(𝑥) < 𝑟. Then 𝑓(𝑤) ∈ 𝑠1
𝑐 as 𝑓 is 

FP-close and let 𝑓(𝑥) = 𝑦. Now, we have 

𝑓(𝑤)(𝑦) = {sup 𝑤(𝑥) : 𝑓(𝑥) = 𝑦} < 𝑟, since 

𝑓 is one-one 

Since (𝑌, 𝑠1, 𝑡1) is  𝐹𝑃𝑅(𝑖), then there exist 𝑢 ∈

𝑠1, 𝑣 ∈  𝑡1 such that 

𝑦𝑟 ∈ 𝑢, 𝑓(𝑤) ⊆ 𝑣 and 𝑢�̅�𝑣. 

Now, we see that 𝑓−1(𝑢)(𝑥) = 𝑢(𝑓(𝑥)) =

𝑢(𝑦) ≤ 𝑟. So 𝑥𝑟 ∈ 𝑓−1(𝑢).  

Also, it is clear that 𝑓(𝑤) ⊆ 𝑣 implies that 𝑤 ⊆

𝑓−1(𝑣) as 𝑓 is bijective. 

Again 𝑢�̅�𝑣 implies that 

 𝑢(𝑦) + 𝑣(𝑦) ≤ 1 for all 𝑦 ∈ 𝑌. 

Now for all 𝑥 ∈ 𝑋, we have 𝑓−1(𝑢)(𝑥) +

𝑓−1(𝑣)(𝑥) = 𝑢(𝑓(𝑥)) + 𝑣(𝑓(𝑥)) = 𝑢(𝑦) +

𝑣(𝑦) ≤ 1 . So 𝑓−1(𝑢)�̅�𝑓−1(𝑣). 

 Since 𝑓 is FP-continuous, then 𝑓−1(𝑢) ∈ 𝑠,

𝑓−1(𝑣) ∈ 𝑡. So 𝑓−1(𝑢) ∈ 𝑠, 𝑓−1(𝑢) ∈ 𝑡 such 

that 𝑥𝑟 ∈ 𝑓−1(𝑢), 𝑤 ⊆ 𝑓−1(𝑣) and 

𝑓−1(𝑢)�̅�𝑓−1(𝑣). Hence (𝑋, 𝑠, 𝑡) is 𝐹𝑃𝑅(𝑖). 

Similarly, we can prove for  𝑗 = 𝑖𝑖, 𝑖𝑖𝑖, 𝑖𝑣.  

 

Conclusion 

One of the main results of this paper is 

introducing some new definitions of fuzzy 

regular bitopological spaces in the sense of 

quasi-coincidence. We present their hereditary 

and order-preserving properties. We compare 

the results with other existing notions and their 

counterparts’ and show that one of our 

definitions is stronger than such one (Safiya     

et al., 1994). 
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