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ABSTRACT 

The unified Krylov-Bogoliubov-Mitropolskii (KBM) method is used for determining the 
analytical approximate solution of a fourth order weakly nonlinear differential system with strong 
damping and slowly varying coefficients  when  a pair of eigen-values of the unperturbed equation 
is a multiple (approximately or perfectly) of the other pair or pairs. In a damped case, one of the 
natural frequencies of the linearized equation may be a multiple of the other.  The analytical first 
order approximate solution for different initial conditions shows a good coincidence with those 
obtained by the numerical procedure. The method is illustrated by an example. 
 
Key words: Perturbation method, Weak nonlinearity, Oscillatory process, Strong damping, 

Varying coefficients 
 
INTRODUCTION 

The method of KBM is convenient and one of the widely used techniques to obtain 
the analytical approximate solutions of nonlinear differential systems. It is perhaps 
noteworthy that because of importance of physical process involving damping, Popov 
(1956) extended this method to damped oscillatory systems. Murty et al. (1971) used 
Popov’s method to obtain over-damped solutions of nonlinear differential equations, 
which were the basis of unified theory of Murty (1969). Later this method has been 
extended to damped oscillatory and purely non oscillatory systems with slowly varying 
coefficients by Bojadziev and Edwards (1981). Arya and Bojadziev (1981) have studied a 
time-dependent nonlinear oscillatory system with damping, slowly varying coefficients 
and delay. Feshchenko et al. (1966) have presented a brief way to determine KBM 
(Krylov et al.1947, Bogoliubov et al. 1961)) solution (first order) of a second or third 
order nonlinear differential system. Arya and Bojadziev (1980) have also studied a 
system of second order nonlinear hyperbolic partial differential equation with slowly 
varying coefficients. Alam (1997) has investigated a unified KBM method for solving 
nonlinear system of order 2≥n . Further, Alam (2002) has investigated a unified KBM 
method for solving of second and third nonlinear systems with constant coefficients. In 
another paper, Alam (2003) has also investigated a unified KBM method for solving 
nonlinear system of order 3≥n  with slowly varying coefficients. Recently Alam and 
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Sattar (2004) have also presented an asymptotic method for third order nonlinear system 
with slowly varying coefficients. Recently Akbar et al. (2006) have studied a fourth order 
nonlinear differential equation with constant coefficients. Most of the authors have 
studied the second and third order nonlinear differential systems for both constant and 
varying coefficients to obtain the analytical first order approximate solutions. The 
complicated and no less important case of a fourth order nonlinear differential equation 
with strong damping and slowly varying coefficients has remained almost untouched.  
The main goal of this paper is to fill this gap.  
 
METHOD 

Let us consider a fourth order weakly nonlinear ordinary differential equation with 
slowly varying coefficients in the following form: 
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where the over dots represent the time derivatives, ε  is a small positive parameter which 
measures the strength of the nonlinearity, tετ =  is the slowly varying time, ,0)( ≥τjc  

4,3,2,1=j  are slowly varying coefficients and f is a given nonlinear function. The 
coefficients are slowly varying in the sense that their time derivatives are proportional to 
ε  (Alam 2003). 

By setting === 0,0 ττε constant in Eq. (1), we obtain the solution of the 
unperturbed equation. We assume that the unperturbed equation of Eq. (1) has four 
eigenvalues 4,3,2,1),( 0 =jj τλ ; where )( 0j τλ  are constants, but if 0≠ε  then )(j τλ  
are varying slowly with time t . The solution of the linearized equation of Eq. (1) has the 
following form: 
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where 4,3,2,1,0, =ja j  are arbitrary constants. 

Now we are going to choose a solution of Eq. (1) that reduces to Eq. (2) as a limit 
0→ε  in the following form according to the KBM (Krylov et al. 1947, Bogoliubov et 

al. 1961) method: 
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where 1u  is a function of 4,3,2,1, =ja j  and each ja  satisfies the following first order 
differential equation: 
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Confining only to the first few terms, 1, 2, 3… in the series expansions of  Eq. (3) and 
Eq. (4), we evaluate the functions L,, 21 uu and 4,3,2,1,,, =jBA jj L such that 
each )(ta j  appearing in Eq. (3) and Eq. (4) satisfies the given differential equation (1) 
with  an accuracy of 1+mε  (Alam 2003). In order to determine these functions it is 
assumed that the functions L,, 21 uu do not contain the fundamental terms (Alam et al. 
1997, Alam 2003, Bojadziev et al. 1981, Murty 1971) which are included in the series 
expansions (3) at order 0ε . Now differentiating Eq. (3) four-times with respect to time t  
and using the relations Eq. (4) and by substituting the values of xxxx &&&&&& ,,,)4(  and x  
into the original Eq. (1) with the slowly varying coefficients  

)),()()()(()( 43211 τλτλτλτλτ +++−=c  

),()()()()()()()()()()()()( 4342324131212 τλτλτλτλτλτλτλτλτλτλτλτλτ +++++=c
))()()()()()()()()()()()(()(c 4324314213213 τλτλτλτλτλτλτλτλτλτλτλτλτ +++−=  

and )()()()()(c 43214 τλτλτλτλτ =  and by expanding the right hand side of Eq. (1) by 
Taylor series and by equating the coefficients of ε  on both sides, we obtain the 
following equation: 
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We have already assumed that 1u  does not contain the fundamental terms and for 
this reason the solution will be free from secular terms, namely tttt sin,cos  and 

.tet −  Under these restrictions, we are able to solve Eq. (5) by separating this into five 
individual equations for the unknown functions 1u   and .jA  In general, the functions 

)0(f  and 1u  are expanded in Taylor’s series in the following forms: 
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The eigen-values of the unperturbed equation can be written as ),()( 00 τωτμ ll i±−  
where 2,1=l . For the above restrictions, it guaranties that 1u  must exclude all terms 
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with ll m
l

m
l aa 212

212
−

−  of )0(f , where 1212 ±=−− ll mm . Since according to the linear 
approximation )0..( →εei , ll m

l
m

l aa 212
212

−
−  becomes tleω  when 1212 =−− ll mm or 

tle ω−  when 1212 −=−− ll mm . It is noticed that tle ω±  are known as the fundamental 
terms (Alam et al. 1997, Alam 2003, Bojdziev et al. 1981, Murty 1971). Usually these 
are included in equations jA . Also, it is restricted (by Krylov et al. 1947, Bogoliubov et 
al. 1961) that the functions jA  are independent of the fundamental terms.  

Then the equations for 1u  and 4,3,2,1, =jAj  are written as   
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To determine the particular solutions of Eqs. (8) - (10), we have replaced the operator Ω  

by∑
=
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determination of the analytical first order approximate solution of Eq. (1) is clear to us. 
We notice that the solution Eq. (3) is not a standard form of KBM method and is 
presented in terms of some unusual variables. Therefore, the solution obtained by formula 
of Eq. (1) is transformed to the formal form by replacing the unusual variables by 
amplitudes and phases variables in the forms:    
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Thus the determination of the first order approximate solution of Eq. (1) is clear. The 
method can be carried out to higher order approximations in a similar way. However, 
owing to the rapidly growing algebraic complexity for the derivation of the formulae, the 
solution is in general confined to a low order, usually the first order (Krylov et al. 1947, 
Bogoliubov et al. 1961, Alam 2003, Akbar et al. 2006). 
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EXAMPLE 
To obtain the practical working of the above method, we consider the following 

fourth order weakly nonlinear differential equation with slowly varying coefficients in 
the following form: 
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where 3),,,,( xxxxxf =τ&&&&&& and 43210 aaaax +++= . 
Now 
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Substituting the values of  )0(f  in Eq. (5) and according to the above restrictions, we 
obtain five equations for 4321 ,,, AAAA  and 1u  whose solutions are respectively given by 
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and  
,3
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Now by substituting the values of  321 ,, AAA  and 4A  from Eq. (14) into Eq. (4), 
we get 
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For a damped solution of Eq. (12), we may substitute ),(i)( 112,1 τωτμλ ±−=  
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and the first correction term 1u  is obtained as 
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and 

,
))3()3)(()3()3)((4)((16

)3(18)9)3)((2(
2

21
2

21
2

21
2

21
2

1
2
1

2
1

2
1

21
2
11

2
2

2
1

2
21

2
1

2
1

1 ωωμμωωμμωμωμ
μμωμωωμμωμ

++−−+−++
−−+−−−

=c  

,
))3()3)(()3()3)((4)((16

))2)(3(2)9)3(((3
2

21
2

21
2

21
2

21
2

1
2

1
2

1
2
1

2
1

2
121

2
2

2
1

2
2111

1 ωωμμωωμμωμωμ
ωμμμωωμμμω

++−−+−++
−−++−−

−=d
 

,
))3()3)(()3()3)((4)((16

)3(18)9)3)((2(
2

21
2

21
2

21
2

21
2
2

2
2

2
2

2
2

21
2
22

2
2

2
1

2
21

2
2

2
2

2 ωωμμωωμμωμωμ
μμωμωωμμωμ

++−−+−++
−+−+−−

=c  

.
))3()3)(()3()3)((4)((16

))2)(3(2)9)3(((3
2

21
2

21
2

21
2

21
2
2

2
2

2
2

2
2

2
2

2
221

2
2

2
1

2
2122

2 ωωμμωωμμωμωμ
ωμμμωωμμμω

++−−+−++
−−−−+−

−=d    (21) 

Thus the analytical first order approximate solution (improved) of Eq. (12) is 
obtained by ,coscos),( 121 ubatx εϕϕε ++=              (22) 

where the amplitudes ba, and phases 21, ϕϕ  are the solutions of Eq. (18) and 1u  is 
given by Eq. (19). 
 
RESULTS AND DISCUSSION  

A standard form of KBM method is presented to obtain the analytical approximate 
solution of a fourth order nonlinear differential equation with strong damping and slowly 
varying coefficients with small nonlinearity. The KBM method was originally developed 
for obtaining the periodic solutions of second-order nonlinear systems by Krylov and 
Bogoliubov (1947) and later it was amplified and justified by Bogoliubov and 
Mitropolskii (1961).  The method is not only limited to second-order nonlinear problems, 
but also useful in third-order (Alam 2002, 2003) and fourth order (Akbar 2006) nonlinear 
systems. A general solution has been found for the damped nonlinear differential 
equation with slowly varying coefficients based on the unified KBM (Alam et al. 1997, 
Alam 2002, 2003, Bogoliubov et al. 1961, Krylov et al. 1947) method. 
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We have solved four simultaneous differential equations for amplitude(s) and 
phase(s) variables and a partial differential equation for 1u  involving four independent 
variables of amplitudes and phases. Also we are able to solve all the equations of 

4,3,2,1, =jAj  and 1u  by a unified formula. In a particular case, we are forced to 
assume that 2,1),( =ll τμ   are constants, )(2)( 21 τωτω =  and τωτω he−= 02 )(  are 
varying slowly with time t, where 0ω  and h are constants. Figures are drawn to compare 
between the analytical first order approximate solutions obtained by the perturbation 
method and those obtained by the numerical procedure (fourth-order Runge-Kutta 
method) for several damping effects. Moreover, this method is able to give the required 
results when the coefficients of the given nonlinear differential equation become 
constants )0( =h . From the Figs. (1)- (2), it is seen that the new analytical approximate 
solution shows a good agreement with the corresponding numerical solution (considered 
to be exact).   
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Fig. 1. First approximate solution (denoted by −•− ) of Eq. (13), with the initial conditions  [x(0) 

= 1.49992, x& (0) = – 1.43242, x&& (0) = –1.43652, x&&& (0) = 8.767772] or a0 = 1.5, ϕ1 = 0, b = 
1.0 ϕ2 = 0, with μ1 = 1.5, μ2 = 0.75, ω0 = 1.0, h = 0.5, ε = 0.1, ω1 = 2ω2, ω2 = ω0e-hr, τ = εt  
and ƒ = x3. Corresponding numerical solution is denoted by – (solid line). 
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Fig. 2: First approximate solution (denoted by – • –) of Eq. (13), with the initial conditions [x(0) = 

1.5000, x& (0) – 1.55988, x&& (0) = –1.01827, x&&& (0) = 9.2714] or a0 = 0.5, ϕ1 = 0, b = 1.0, ϕ2 
= 0, with μ1 = 1.75, μ2 = 0.75, ω0 = 1.0, h = 0.5, ε = 0.1, ω1 = 2ω2, ω2 = ω0e-hr, τ = εt  and ƒ 
= x3.Corresponding numerical solution is denoted by — (solid line). 

 
CONCLUSION 

A unified KBM (Alam 2002, 2003, Bogoliubov et al. 1961, Krylov et al. 1947) 
method is presented to obtain the analytical approximate solution of a fourth order 
nonlinear differential system with strong damping and slowly varying coefficients with 
small nonlinearity. The later form of the solution of Eq. (12) is presented in terms of 
amplitudes and phases variables. This form is very important in physical problems, since 
amplitudes and phases characterize the oscillating processes. Moreover the variational 
equations of amplitudes and phases are important to investigate the stability of a 
differential system.  In general, the variational equations for the amplitudes and phases, 
namely Eq. (18) is solved numerically. In this case, the perturbation method facilitates the 
numerical method. The variables ba ,, 1ϕ  and 2ϕ  change slowly with time t . So it 
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requires the numerical calculation of a few numbers of points. On the contrary, a direct 
attempt to solve Eq. (12) dealing with some harmonic terms in the solution Eq. (22), 
requires the numerical calculation of a great number of points.  
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