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 The performance of Brillouin optical time domain analysis (BOTDA) sensors is 

largely deteriorated due to the poor signal-to-noise ratio (SNR) of Brillouin gain 

spectra (BGSs) collected from the BOTDA experiment. The fast monitoring of 

distributed temperature using BOTDA sensors is also vital for many long-

distant applications. To cope with these requirements, this paper proposes total 

variation denoising (TVD) and Euclidean distance-based pattern recognition 

(TEPR) for high-performance BOTDA sensors. The performances of TEPR are 

analyzed explicitly, and rigorous comparisons have been made with traditional 

nonlinear least squares fitting (NLSF). The experimentally demonstrated results 

signify that the proposed TEPR can improve the measurement uncertainty by up 

to ~55% compared to NLSF without worsening the experimental spatial 

resolution. The signal processing for using TEPR is also ~4 times faster than 

that for using NLSF. Hence, the proposed technique is an efficient and reliable 

alternative for the fast and accurate monitoring of distributed temperature in 

BOTDA sensors. 
 

Introduction 
 
 

In recent decades, stimulated Brillouin scattering 

(SBS) based BOTDA sensors have exhibited 

enormous capabilities in the distributed monitoring 

of temperature and strain (Motil et al, 2016; Azad et 

al., 2017; Ba et al., 2016). Such sensors offer high 

accuracy, good spatial resolution and long-distant 

monitoring even in hazardous environments (Azad et 

al., 2017; Wang et al., 2020). For the distributed 

monitoring of temperature, BOTDA sensors exploit 

an amplified probe wave which becomes amplified 

as a result of interaction with the oppositely-directed 

pump wave through a single piece of optical fiber 

cable (OFC). The gain in this amplification process is 

recorded as local Brillouin gain spectrum (BGS) 

along the OFC. The difference in pump-probe 

frequency (fd) for which peak gain is attained in a 

local BGS is termed in literature as the local 

Brillouin frequency shift (BFS) (Motil et al, 2016; 

Zhao et al., 2022). The BFS of a local BGS alters 

linearly with the surrounding temperature of OFC. In 

the BOTDA experiment, the local BGSs along the 

OFC are assembled with BOTDA traces collected by 

varying fd step-by-step within a suitable frequency 

range. In temperature monitoring applications, 

BFSs of the local BGSs are first determined, which 

are then mapped to temperature according to the 

linear BFS-temperature relationship (Azad et al., 

2017). To determine such BFSs, NLSF is a widely-

used technique (Azad et al., 2017; Haneef et al., 

2018).  

A single BOTDA trace collected from the 

conventional BOTDA sensor at a particular fd is 

very noisy. The SNR of BGSs formed with such 

noisy traces is thus very low. The performance of 
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BOTDA sensors also deteriorates for such low 

SNR. The SNR of BGSs along OFC can effectively 

be improved to an acceptable level by adopting a 

trace-averaging approach. Such an approach 

requires the gathering a large number of traces (e.g., 

several thousand) at a particular fd, which are then 

averaged to attain one averaged trace at that fd to be 

used for constructing BGSs. This averaging 

approach is time-intensive and thus lengthens the 

collection of BGSs, especially for long OFC if the 

number of traces (TN) averaged is quite large.  
 

For the fast collection of BGSs with improved SNR, 

several alternative schemes have been combined with 

conventional BOTDA sensors. The studies (Jia et al., 

2010; Angulo-Vinuesa et al., 2012) combined Raman 

amplification with BOTDA sensors to enhance the 

sensing performance. Alternatively, the realizations 

of long-distant sensing using pulse coding techniques 

have been reported in Ref. (Iribas et al., 2017; 

Mariñelarena et al., 2018). The combination of 

Raman amplification and pulse coding technique has 

also been reported to attain high-performance 

sensing with improved accuracy and resolution (Soto 

et al., 2012). However, the combination of such 

additional schemes to conventional BOTDA sensors 

makes the BOTDA setup complex and costly due to 

the use of additional hardware components.  

Other than employing the complex, costly and 

modified BOTDA setup, a viable alternative is to 

collect much noisy BGSs along the OFC, adopting a 

small number of trace averaging (i.e., smaller TN) 

with conventional BOTDA setup and then using an 

effective and time-efficient denoising algorithm for 

denoising such noisy BGSs. To explore this, several 

signal denoising techniques, such as wavelet 

transform (Soto et al., 2016; Azad, 2020), Wiener 

filter (Azad, 2022), non-local means filter (Qian et 

al., 2017; Soto et al., 2017) and anisotropic 

diffusion filter (Luo et al., 2020; Zhang et al., 2022) 

have been proposed and demonstrated to enhance 

the SNR of the BGSs along the OFC. The study Liu 

et al.(2022) shows significant improvement in 

measurement uncertainty by using one-dimensional 

denoising convolutional neural network (1D-

DnCNN) for a 6 km OFC in Raman scattering-based 

distributed optical fiber sensor. In addition, the use of 

general regression neural network (GRNN) has 

proven superior for accurate temperature extraction 

in BOTDA sensors (Zhou et al., 2021). A 

comprehensive review of recent research works 

presented in (Venketeswaran et al., 2021) also 

reports the advantages of using signal-denoising 

algorithms to enhance measurement accuracy of 

fiber optic sensors. However, such a denoising 

technique includes extra runtime in processing 

BGSs. Moreover, the determination of BFSs from 

local BGSs is usually performed by applying 

NLSF. The operating principle of NLSF is based 

on the process of iterative optimization, which 

entails substantial time to determine BFSs if a 

great number of BGSs is required to be processed 

for the distributed monitoring of temperature 

throughout a long OFC. Consequently, high-speed 

signal processing techniques are essential for fast 

monitoring of distributed temperature in BOTDA 

sensors. 

Within this framework, we have proposed using 

total variation denoising (TVD) to improve the SNR 

of BGSs collected from BOTDA experiment. The 

SNR improvements due to the use of TVD have 

been analyzed explicitly for the BGSs collected 

with ten different TN. We have also proposed TVD 

and Euclidean distance-based pattern recognition 

(TEPR) for distributed temperature monitoring over 

38.2 km OFC. The performances of TEPR have 

been evaluated rigorously in terms of measurement 

uncertainty, spatial resolution and signal processing 

speed. 

Experimental Setup 

The collection of BGSs along the OFC has been 

accomplished via the conventional BOTDA setup 

(Azad et al., 2017) shown in Fig. 1. 
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Fig. 1. Setup of BOTDA sensor 

As shown in Fig. 1, the beam of light outputted by a 

CW-laser at 1550 nm is divided by the coupler to 

launch through the setup. The split beams pass 

through polarization controllers PC1 and PC2 to 

control the polarization state of light beams. To form 

double-sideband suppressed-carrier probe signal in 

the upper branch, the output of a radio frequency 

generator (RFG) is inputted to the electro-optic 

modulator (EOM1). The power of the probe light is 

tuned with the variable optical attenuator (VOA). 

Afterward, the isolator restricts the propagation of 

pump pulses from the reverse path but assists the 

probe signal to be passed through it in the forward 

direction to the far end of the OFC. 

To generate pump pulses in the lower branch, the 

second electro-optic modulator (EOM2) is used. This 

EOM2 is assisted by the pulse-pattern generator 

(PPG). The pump pulses are next amplified by the 

erbium-doped fiber amplifier (EDFA). In this 

amplification process, the spontaneous emission 

noise also becomes amplified, which is eliminated by 

the band-pass filter (BPF). The polarization 

scrambler (PS) in the lower branch helps to diminish 

fading of Brillouin gain. These pump pulses are then 

directed from port 1 to port 2 of the optical circulator 

(OC1) to be launched through the near end of the 

OFC. 

Two oppositely directed signals (i.e., pump and 

probe) interact inside the OFC via SBS, and both the 

lower and upper sidebands of the probe signal get 

amplified. The upper sideband is next nullified by the 

fiber Bragg grating (FBG) filter connected at port 2 

of optical the circulator (OC2) and the photodetector 

then detects the desired lower sideband. The data 

acquisition system (DAS) acquires BOTDA traces. 

These traces are stored in the computer and used to 

form local BGSs along the OFC. These BGSs are 

finally processed to monitor the distributed 

temperature along the OFC. 

Operating Principle 

In our work, the experimental noisy BGSs collected 

throughout the OFC have been denoised first by 

utilizing total variation denoising (TVD). Then, a 

database comprising relevant ideal BGSs was 

constructed. Finally, Euclidean distance based 

pattern recognition has been applied among the 

denoised BGSs along the OFC and the ideal BGSs in 

the database to determine the temperature 

distribution from the experimental BGSs. 

Total variation denoising (TVD) is a widely-used 

technique for reducing the total variation of an image 

and eliminating undesirable information while 

maintaining important details, such as edges (Rudin 

et al., 1992; Tang and Fang, 2016; Kamalaveni et al., 

2018; Jin and Luan, 2020). This study considers the 

combined noisy BGSs along the OFC as a 2D image 

B. Such noisy image comprising experimental BGSs 

can be modeled as follows: 

( , ) ( , ) ( , )B p q D p q n p q 
 

(1) 

Where D(p,q) is the original image corrupted by the 

noise n(p,q) and (p,q) is the pixel position in image 

B(p,q). Due to the random nature of n(p,q), the total 

variation (TV) in D(p,q) is much smaller than that in 

B(p,q). Consequently, the denoising of B(p,q) is to 

find an estimate of D(p,q) having smaller TV than 

that of B(p,q) (Rudin et al., 1992). In such a process 

of TVD, the estimated image should also be well-

matched with B(p,q). This can be accomplished using 

TVD by minimizing the energy function given by 

(Liao et al., 2015; Kamalaveni et al., 2018)   
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2

min ( )
B

E D Ddpdq D B dpdq
 

      (2) 

where Ω is the total number of pixels in B(p,q), 

|∇D(p,q)| is the gradient magnitude at position (p,q), 

and λ is the regularization parameter (Kamalaveni 

et al., 2018). The proper choice of λ controls the 

balance between the denoising level of B(p,q) and 

the matching of the denoised image with D(p,q) 

(Liao et al., 2015).  

The denoised image D obtained after applying TVD 

consists of a denoised version of experimental noisy 

BGSs in B. The denoised BGSs in D are next 

processed using Euclidean distance-based pattern 

recognition to monitor the distributed temperature 

along the OFC. Such process (i.e., TEPR) is depicted 

in Fig. 2. 

 

Fig. 2. The process of temperature monitoring 

using TEPR 

As illustrated in Fig. 2, the temperature monitoring 

using the proposed technique of TEPR uses a 

database S comprising numerous ideal BGSs 

associated with known temperature. The process of 

constructing such a database will be analyzed in 

detail later in the results and discussion section. To 

apply TEPR, the experimental noisy BGSs along the 

OFC are first denoised by TVD. The denoised BGSs 

in D are then matched with the ideal BGSs in S, as 

shown in Fig. 2. For each BGS in D, we determine 

its best match with the ideal BGSs in S. This best 

match is defined in terms of minimum Euclidean 

distance. If the BGSs in S and D are represented by 

vectors s and d, respectively each having m data 

points, the Euclidean distance (l) between s and d is 

then given by (Azad et al., 2017)  

 
2

1

( , )
m

i i

i

l s d s d


   (3) 

The known temperature associated with the best-

matched ideal BGS in S is designated as the 

temperature associated with the experimental noisy 

BGS. The process is repeated for all the experimental 

BGSs along the OFC for the distributed temperature 

monitoring throughout the 38.2 km OFC. 

To compare the performance of TEPR, we also 

determine the temperature distributions directly from 

the experimentally noisy BGSs by applying NLSF. 

Since the BOTDA-measured BGSs are ideally 

modeled by the Lorentzian function (Azad et al., 

2017; Haneef et al., 2018), we have utilized this 

function in NLSF. Such function is given by 

 
2

( )
1 4 ( ) / ( )

B

B B

g
g 

  


  
 

(4) 

where gB, υB and ΔυB are termed as the peak gain, 

BFS and linewidth of the BGS, respectively. In 

NLSF, the parameters gB, νB and ΔνB of function 

given by Eq. (4) are updated iteratively to find the 

best-fit between this function and the BGS in term 

of least-squares error. The updated υB is estimated 

to be the BFS of the BGS used in NLSF. It is worth 

to mention that the SNR of experimental noisy BGS 

as well that of denoised BGS obtained after 

applying TVD has been calculated (Azad et al., 

2017) in this study by 

2

10 2
SNR(dB) 10log Bg



 
  

 
 (5) 

where σ2 is the variance of residuals (i.e., differences 

between the fitted and observed BGSs) in NLSF. 

Results and Discussion 

In our experiment, we used a 38.2 km long OFC in 

the BOTDA sensor shown in Fig. 1. We put ~600 m 
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fiber from the last part of the OFC into an oven and 

the temperature of the oven was set at 70°C. To 

collect local BGSs at every 0.4 m along the OFC, 

BOTDA-traces have been collected at a sampling 

rate of 250 MHz. The BGSs have been collected for 

the frequency range from 10.76 GHz to 11.01 GHz 

with 1 MHz spacing. The width of pump pulses has 

been fixed to 20 ns to realize a 2 m spatial 

resolution. The BGSs along the OFC have been 

collected by adopting ten TN (i.e., TN =100 to 1000 

with a step of 100). The experimental BGSs along the 

OFC obtained for TN = 100 and their corresponding 

denoised BGSs obtained after applying TVD are 

shown in Fig. 3 (a) and (b), respectively.  

 

Fig. 3. Distributions of (a) experimental noisy 

BGSs and (b) denoised BGSs 

It is observed that the level of noise in BGSs shown 

in Fig. 3(a) is much higher, which has been improved 

radically due to the use of TVD, as shown in Fig. 

3(b). To observe the SNRs of noisy and denoised 

BGSs, we have next computed the SNRs of BGSs 

along the OFC shown in Fig. 3 by applying Eq. (5). 

Such SNRs for TN = 100 are shown in Fig. 4. 

 

Fig. 4. SNRs of BGSs along the optical fiber 

The results in Fig. 4 indicate that the SNRs of 

experimental noisy BGSs vary along the 38.2 km 

OFC, notably mainly due to fiber attenuation (Azad, 

2022). However, the use of TVD on the noisy BGSs 

manifests a significant improvement in SNR, 

especially at the end of OFC, where the SNRs of 

noisy BGSs are the lowest. To quantify the variation 

of SNRs with TN, we have also computed the average 

SNR of the BGSs along the last 500 m OFC. The 

results are shown in Fig. 5.   

 

Fig. 5. Average SNR of BGSs along the last 500 m 

optical fiber 

It can be observed in Fig. 5 that the SNRs of 

experimental BGSs increase if a larger TN is 
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adopted to collect BGSs. For instance, the average 

SNR of experimental noisy BGSs in Fig. 5 varies 

from its lowest value of 12.21 dB to its highest 

value of 22.27 dB for adopting TN = 100 and TN = 

1000, respectively. However, TVD-based NLSF 

can provide many improved SNRs of 24.48 dB and 

28.37 dB for the same TN of 100 and 1000, 

respectively. Consequently, TVD can improve the 

SNR by 12.27 dB and 6.10 dB for the BGSs 

collected with TN of 100 and 1000, respectively. 

Notably, the improvement of SNR at smaller TN in 

Fig. 5 is much larger than that at larger TN. This is 

because the average SNR of BGSs at higher TN is 

already much better as compared to that at lower 

TN. For the BGSs having such higher SNR, TVD 

has a little to improve. The results in Fig. 5 signify 

that TVD can offer significantly improved SNR, 

which also helps to improve the measurement 

uncertainty of the BOTDA sensors.  

As mentioned earlier, the operating principle of 

TEPR is based on the database comprising ideal 

BGSs. The BGSs in such a database should ideally 

mimic the BGSs obtained from the BOTDA 

experiment under various experimental conditions 

(e.g., fiber length, temperature, and pump-pulse 

width). In this study, the ideal BGSs in the database 

are constructed with the Lorentzian function given by 

Eq. (4). For using Eq. (4), the peak gain of the ideal 

BGSs is normalized to be gB = 1. To monitor 

temperature within the range from 0 ºC to 100 ºC 

using the BOTDA sensor, υB (BFS) of each BGS in 

the database has been varied within the range from 

10.834 GHz to 10.932 GHz (with the BFS spacing 

of 0.2 MHz) depending on the characteristics (i.e., 

intercept of ~10.83415 GHz and slope of ~0.97497 

MHz/ºC) of the OFC (Azad et al., 2017; Azad, 

2022). The linewidth (ΔυB) to be used in Eq. (4) has 

been decided based on the linewidths of the 

experimental BGSs. To decide so, we have first 

denoised the experimental noisy BGSs by applying 

TVD. The linewidths of the denoised BGSs are then 

determined by utilizing NLSF. For adopting 20 ns 

pump-pulse during the BOTDA experiment, the 

linewidths of such denoised BGSs for TN =1000 (the 

highest TN used in this study) are shown in Fig. 6. 

The average linewidth within every 1 km OFC are 

also plotted in Fig. 6. 

 

Fig. 6. Variation of the linewidth of BGSs along the 

optical fiber 

It is noticed in Fig. 6 that the average linewidths 

within every 1 km OFC are ~53 MHz. Consequently, 

we have set ΔυB = 53 MHz in Eq. (4) for constructing 

the database. For monitoring temperatures from 0 ºC 

to 100 ºC, the database thus contains a total of k = 

491 ideal BGSs.  

Next, we have evaluated the suitability of using 

TEPR and the constructed database for monitoring 

temperature distributions from the local BGSs along 

the OFC collected by adopting different TN. The 

process of such a monitoring system is depicted in 

Fig. 2, in which the experimental noisy BGSs along 

the OFC are first denoised by applying TVD. Then, 

we have found the best match between each denoised 

BGS along the OFC and ideal BGSs in the database 

based on minimum Euclidean distance. The 

temperature distribution provided by TEPR for local 

BGSs collected at TN = 100 is shown in Fig. 7. The 
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temperature distribution obtained for applying NLSF 

on experimental noisy BGSs at TN = 100 are also 

shown in Fig. 7 for comparison. 

 

Fig. 7. Temperature distributions along the 

optical fiber 

It is clear from Fig. 7 that the temperature 

fluctuations provided by TEPR are much smaller 

than that provided by NLSF. The smaller fluctuations 

in the temperature distribution due to the use of 

TEPR offer much reduced uncertainties in 

monitoring distributed temperature.  

The denoising algorithm operation relies on 

eliminating the signals’ high-frequency components 

(Azad, 2022). For such algorithm in BOTDA 

sensors, the BGSs along the OFC can be over-

smoothed which can also deteriorate the 

experimental spatial resolution. To examine this, the 

distributions of temperature provided by NLSF and 

TEPR are plotted in Fig. 8 along the section of the 

OFC at which the distributions rise sharply from 

room temperature to 70 ºC. Such temperature 

distributions confirm that TEPR can maintain the 

experimental spatial resolution, which is 2 m in our 

study for adopting 20 ns pump-pulse. 

 

 
Fig. 8. Spatial resolution of the sensor 

The results presented in Figs. 4 and 5 specify that 

the use of TVD can notably improve the SNR of the 

experimental BGSs. As a result, the fluctuations in 

the temperature distributions also reduce 

significantly as can be seen in Fig. 7.  To quantify 

the reduction of such fluctuations, we have 

computed the uncertainties in monitoring 

temperature distributions. The uncertainty for each 

TN is defined as the standard deviation of 

temperatures along the last 500 m OFC heated 

inside the oven. The results are plotted in Fig. 9. 

 

Fig. 9. Uncertainty in temperature monitoring 
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The results in Fig. 9 confirm that using TEPR 

provides significantly reduced measurement 

uncertainties compared to NLSF for each TN adopted 

in this study. For instance, the uncertainty provided 

by NLSF for TN = 100 is 1.58 ºC for the BGSs along 

the last 500 m fiber having SNR of 12.21 dB as 

shown in Fig. 5. For the same TN, TEPR can provide 

much-reduced uncertainty of 0.71 ºC. Consequently, 

using TEPR can improve the measurement 

uncertainty by 55.06% at TN = 100, the lowest TN 

(i.e., lowest SNR of 12.21 dB) adopted in this study. 

This improvement in measurement uncertainty is 

much better than ~44.60% as reported  by Zhoua et 

al.(2021), in which the use of GRNN and curve 

fitting method (i.e., NLSF) can provide root-mean-

square errors of ~0.36 ºC and ~0.65 ºC, respectively, 

for the BGSs having similar SNR of 12 dB. 

However, the improvement of uncertainties for 

adopting higher TN, such as TN of 400, 700, and 1000 

are 54.61%, 48.68% and 37.36%, respectively. These 

results suggest that the improvement of uncertainties 

decreases if a larger TN is adopted to collect the 

BGSs from the BOTDA experiment. This is because 

the SNRs of the local BGSs collected at larger TN is 

also larger. In such cases, the denoising of BGSs 

using TVD can improve the SNRs a little, as the 

noise level in the experimental BGSs is already much 

smaller. 

Finally, we have compared the speed of NLSF and 

TEPR in monitoring the temperature distributions 

along the OFC. To do so, we have computed the 

runtimes taken by NLSF and TEPR to monitor 

temperature distributions from the local BGSs 

collected at different TN. In the calculation of 

runtimes of TEPR, we have included the runtime 

taken by TVD and that taken by Euclidean distance-

based pattern recognition. The speed of TEPR is 

calculated in terms of relative runtimes, which are 

the ratios of runtimes taken by NLSF to that taken by 

TEPR for each TN. The results are shown in Fig. 10. 

 

 

Fig. 10. Relative runtime of TEPR 

It is clear from Fig. 10 that the relative runtimes of 

TEPR for different TN are almost the same. The 

results in Fig. 10 signify that the monitoring of 

distributed temperature using TEPR is ~4 times 

faster than that of NLSF. It is worth mentioning 

that the use of GRNN (Zhou et al., 2021) can 

provide ~7 times faster processing speed over 

NLSF but can offer a 44.60% improvement of 

measurement uncertainty which is much lower 

than that of 55.06% achieved in this study. 

Conclusion 

This paper represents a rigorous study using TVD 

and Euclidean distance-based pattern recognition 

(TEPR) for the distributed temperature monitoring 

in BOTDA sensors. The TVD is first used to 

denoise the experimental BGSs. Then, a custom-

made database comprising ideal BGSs is 

constructed and used by the Euclidean distance- 

based pattern recognition technique to monitor the 

distributed temperature along a 38.2 km optical 

fiber cable. The results show that the use of TVD 

can significantly improve the SNR of experimental 

BGSs up to 12.27 dB. Consequently, TEPR can 

improve the measurement uncertainty by up to 

55.06% compared to NLSF without worsening the 

spatial resolution of BOTDA sensors. In addition, 

the signal processing speed of the proposed TEPR is 

~4 times faster than that of NLSF. Therefore, the 

proposed TEPR can serve as a potential tool for 
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high-performance monitoring of distributed 

temperature using BOTDA sensors. 
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