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 We study doubly nonlinear parabolic equation with sign changing 

solutions. We establish the Hölder regularity of the singular parabolic 

equations within a parabolic domain.  

 

 

Introduction 
 
 

Let      and for     define the cylindrical 

doamin              Consider the following 

doubly nonlinear parabolic equation  

                             

                         

where                     is the  -Laplacian. 

For the case     then this operator transforms to 

well known heat equation. In this manuscript, the 

weak solution   is unknown and assumed to be 

locally bounded, real function which depends on 

both the time and space variables namely   and   in 

the cylindrical domain. 

In our context, the term structural data indicates the 

parameters   and  . It is also    

assumed that the constant     , need to be 

evaluated quantitatively apriori in terms of the 

structural data. In addition, deno te           ̅  

    to be the parabolic boundary of the cylindrical 

domain   . For    , consider the follo wing 

backward cylinders of the form               

                                  

         

For the case    , we will call it as   .  

The conclusions to be derived from the discoveries 

presented in this article are summarized as follows.  

Theorem 1.1  

 Let’s consider a bounded domain with a smooth 

boundary, denoted as   . Given that   constitutes a 

local weak solution bounded by (1) in   , it follows 

that   exhibits local Hölder continuity within   . 

Precisely, there exist constants     and        , 

predetermined based on the data, such that for any 

compact subset     , the inequality  

                     

       
(
               

 

 

           
)

 

  

holds true for any pair of points                     

The following oscillation decay will be demonstrated 

as part of the proof of the  

aforementioned theorem:  

                 
                    

 (
 

 
)
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for any pair of cylinders                    

     . A typical covering    

argument can be used to draw the conclusion of 

Theorem 1.1 at the end. 

A weak solution is defined in Definition 3, and 

(Kuusi et al., 2021) examines the weak solution’s 

global existence.  

1.1  Originality and Importance 

 The standard equation (1) is referred to as 

Trudinger’s equation. Because of the nonlinear 

nature of the solution as well as the gradient in its 

spatial domain, the equation is sometimes known as a 

doubly nonlinear parabolic equation. Our choice of 

this particular type of equation for study is 

particularly intriguing because of its excellent 

mathematical  

structure, capable of producing mixed forms of 

degeneracy and/or singularity in partial differential 

equations. It also has connections to physical models, 

such as the dynamics of glaciers in (Mahaffy, 1976), 

shallow water flows in (Alanso et al., 2008; Feng and 

Molz, 1997; Hromadka et al., 1985), and friction-

dominated flow in a gas network in ( Leugering and 

Mophou, 2018). Another natural connection between 

the Trudinger equation and the non-linear eigenvalue 

issue               (Lindgren and Lindqvist, 

2022) is that it is crucial to nonlinear potential 

theory.V. B. Ogelein, F. Duzzar, and N. Liao 

examined the Hölder continuity of signed solutions 

for broader equations under structural constraints in 

(Bogelion et al., 2021). Through Moser’s iteration, 

Trudinger (Trudinger, 1968b) investigates the Hölder 

regularity of this equation and finds that, similar to 

the heat equation, it has a Harnack inequality for 

non-negative weak solutions. This Harnack 

inequality is used in (Kussi et al., 2012a; Kuusi et al., 

2012b) to prove the Hölder regularity of nonnegative 

weak solutions. Now, we have the opportunity to 

discuss our contribution. To ensure Hölder 

regularity, we remove the  constraint of non-

negativity from solutions and instead consider sign-

changing solutions. The Harnack inequality 

(Giannnaza and Vespri, 2006, Urbano, 2008) is not 

applicable in our scenario as it only applies to non-

negative solutions. Instead, we employ the positivity 

expansion to achieve our desired result. 

By comparing the oscillation with the 

supremum/infimum of the solution, our 

demonstration of interior Hölder regularity unfolds in 

two primary cases: when the  

solution approaches zero or when it significantly 

deviates from zero. Utilizing our equation’s 

scaling invariant property, we can derive the 

positivity expansion in the first case. Without the 

use of intrinsic scaling procedures, Proposition 3.1 

is analogous to the classical parabolic theory found 

in (Ladyzenskaja et al., 1968). On the other hand, 

the behavior of the solution in the latter case 

resembles that of the parabolic p-Laplacian 

equation, specifically      . Consequently, 

success in this second scenario depends on our 

ability to handle a degenerate case       or a 

singular case         equation, for which we 

utilize the theory that has already been developed 

in (DiBenedetto, 1993; DiBenedetto et al., 2012). 

The paper (Nakamura and Misawa, 2018) 

illustrates the presence of a weak solution to 

equation (1). Additionally, research into the 

Hölder regularity of doubly nonlinear equations 

has been explored in (Ivanov, 1994, 1995; Ivanov 

and Mkrtychyan, 1994; Kinnunen and Kuusi, 2007; 

Sarkar, 2022; Vespri, 1992; Vespri and Vestberg, 

2020). We want to implement the Theorem 1.1.  

Preliminaries 

We establish certain notations and tools for technical 

analysis that will be utilized subsequently. 

[cf.(Bogelion et al., 2021, DiBenedetto, 2016, 1993, 

1986, 1983, Evans, 1998, Ladyzenskaja et al., 1968, 

Leugering and Mophou, 2018, Trudinger, 1968b )].  

2.1  Notation 

2.1.1  Concept of Local Weak Solution 

Let   be a function belonging to  
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 It is considered a local weak sub(super)-solution to 

(1) if, for every compact subset   of   and each sub-

interval                

∫  
 

                 
   ∬  

         
            

                                                         (3)     

 holds for all non-negative test functions  

      
   

                
 

       
   

      

ensuring the convergence of all integrals in (3). A 

function   satisfying both the conditions of being a 

local weak subsolution and a local weak 

supersolution to (3) is termed a local weak solution. 

2.1.2  Function Spaces on a time-space area 

We define several function spaces that operate in space-

time domains. For        ,              
      

represents a collection of measurable real-valued 

functions defined on         , encompassing a 

finite-region in both space and time and characterized 

by a norm that may not be bounded:  

                     

 {
(∫  

  

  

           
 

   )

   

       

              
                

 

 where  

            

 {(∫  
 

            )

   

       

                       

 

 For simplicity, we use               

            
      when    . For       , the 

Sobolev Space         consists of weakly 

differentiable measurable real-valued functions 

whose weak derivatives are  -th integrable on  , 

with the norm  

            (∫  
 

             )

   

 

 where        
      

  indicates, in a 

distribution sense, the gradient of  , and let  

  
   

    denote the closure of   
     with the norm 

       . Additionally, we define              
   

     

as a function space of measurable real-valued 

functions on a space-time region with a bounded 

norm:  

                
   

     (∫  
  

  

      
       
 

   )

   

 

Consider      as a bounded domain. The 

truncation of a function   for a real number   can be 

expressed as  

                                 

                   

For a measurable function   in       and real 

numbers    , we introduce the sets  

{

                      
                      
                           

 

2.2 Technical tools 

Let’s begin by recalling De Giorgi’s inequality (refer 

to DiBenedetto, 1993). 

Proposition 2.1 (Inequality of De Giorgi)  

Consider           and real numbers     

      satisfying    . Then there exists a 

positive constant   dependent solely on    as well as 

  in a way that  

               

 
    

         
∫  
         

             

 Following the approach in (DiBenedetto, 1993), we 

introduce the auxiliary function  

{
 
 

 
                ∫  

 

 

               

          ∫  
 

 

               

            

 for      . In the special case of    , we 

simplify as                               

         

It’s evident that     . We introduce bold notation 

   to represent the signed  -exponent of  , as 

defined below 
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   {
             
      

 

 We present a known lemma; cf. (Acerbi and Fusco, 

1989, Sarkar, 2023: Lemma 2.2) and   (Giaquinta 

and Modica, 2006) for    . This lemma is utilized 

in the proof of the subsequent lemma: 

Lemma 2.2   

For each positive value of  , there exists a specific 

constant  , denoted as     , for which the inequality 

below holds for any pair of real numbers    :  

 

 
                                    

Building upon the aforementioned lemma, we 

establish the following result.  

Lemma 2.3 

There exists a constant        such that the 

following inequality holds for all       and   

 :  

 

 
                  

        

                    
  

We introduce a type of time mollification for the 

solution   to enhance its time regularity: 

          
    

 
∫  

 

 
 

   

                          

               

Lemma 2.4 (Properties of mollification) 

(Kinnunen and Lindqvist, 2006) 

1. If         , then 

                             and  
  

     
  

 
      

 
         

Moreover,        in        as       

2.  If, additionally,               componentwise,  

                           

  and          in        as      

3.  Furthermore, if      in       , then  

               
      

  
 

     
  

 

  in       . and          in        as      

4.  If        in       , then also              

in       . 

 5.  Similar results hold for weak convergence in 

      . 

6.  Lastly, if      ̅  , then           

  
 

               uniformly in    as    .  

Moving forward, we will employ the following 

energy estimate (as found in Sarkar, 2022).     

We briefly outline the estimate before proceeding 

with the main proof. 

Proposition 2.5  

Assume that   serves as a subsolution in a local 

sense for equation (1). In this context, there exists 

positive constant      in a way that for any cylinders  

                        , the subsequent 

inequality is satisfied for every non-negative 

piecewise smooth cutoff function   that vanishes 

along                 , as well as for any   

 :  

 

                ∫  
          

             

∬  
    

                   

  ∬  

    

                        
          

  ∫  
             

                 

Positivity expansion 

Consider      and a cylinder   
   

          

  . Throughout this section, we will utilize the 

following notations:  

                                           

We also assume that           for defining the 

forward cylinder  

                             

In this context, we present the proposition regarding 

the extension of positivity. The  

complete proof can be found in (Sarkar, 2023).  
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Proposition 3.1   

Given that   is locally limited and acts as a 

sub(super)solution on a local scale for equation (1) 

within the domain   , and for a specific point 

          , as well as for constants  ,  , and  , 

where    , and   belongs to the interval      , 

while     the ensuing conditions are met: (9) and 

                                  

Subsequently, constants    , and   all falling within 

the range of      , can be identified based solely on 

the provided information and the value of  . This 

leads to either  

        

  or  

             

                                      

   
 

 
             

    where  

  {
          
           

 

The proof of Proposition 3.1 follows directly from 

three lemmas presented in    

subsequent sections. Here, we provide the statements 

of these lemmas, which collectively form the 

foundation for proving the expansion of positivity. 

For detailed proofs, please refer to (Sarkar, 2022). 

3.1  Extension of Positivity in Measure 

Lemma 3.2  

Take any positive   and         into account. 

Consequently, there are   and   within the range of 

     , and their values are exclusively determined by 

the provided information and the value of  . In cases 

where   functions as a locally  

restricted sub(super)-solution to equation (1) within 

  , adhering to the condition  

                                  

 we have either  

        

 or  

|{ (         )    }        |  

 

 
|  |                                

3.2  Lemma of shrinking 

Lemma 3.3   

Given the assumptions in Lemma 3.2, the second 

option (10) is true. Let                      

denote the corresponding cylindrical domain, and let 

 ̃                        . A positive 

constant  , which is exclusively dependent on the 

given data and  , exists. This constant is such that for 

any positive integer   , when      , the 

following inequality is legitimate:  

|{        
  

   
}   ̃|  

 

  

   

 

  ̃   

 Similarly, if    , the same result holds when 

           .  

3.3  Lemma of the DeGiorgi type 

Within this section, we introduce a Lemma 

resembling DeGiorgi’s lemma, but it pertains to 

cylinders in the format of      . In the scope of its 

application, the value of the parameter   will be a 

constant universally determined by the provided data. 

Remarkably, this constant   remains unaffected by 

changes in the solution and remains consistent.  

Lemma 3.4  

 Examine a locally bounded function  , which serves 

as a local  

sub(super)-solution to equation     within   . 

Consider the set                

                     . A constant        , 

relying solely on the given data and  , is present. If 

the condition holds that 

|                         |            

  then either        , or 

        
 

 
                         

 
 
     

Main Theorem Proof  

 Proof. Let’s introduce the cylinder           

             . For simplicity, we’ll assume that 
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the origin and         coincide. We begin by noting 

that 

            
                  

       

        

  Our argument proceeds through two main 

scenarios, specifically, 

{
                                   

                                       
     

Notice that       is equivalent to the condition 

            . Consequently,    

       .  

4.1  A decrease in oscillation around zero 

Within this section, we consider the scenario where 

the requirement specified in (11) is valid for the 

initial scenario. It’s crucial to emphasize that one of 

the subsequent possibilities must hold:  

       
 

 
       

 

 
       

 

 
                   

or  

          
 

 
    

 

 
       

 

 
      

We confine ourselves to the case      as both cases 

can be handled similarly. Employing Proposition 3.1 

provides   within the range of       determined 

solely by the provided    information,in a way that  

                       
     

 
    

         
 

 
   

This results in a decrease in oscillation,i,e. we have  

         
              

 We can now proceed with the induction. Assume 

that up to              we have constructed  

{
   

 

 
                       

     
 
    

  
           

    
           

           
      

 

 We consider the situation where the initial condition 

in (11) is valid for all indices   

                  , i.e.,  

  
               

       

 This allows us to reiterate the initial argument, 

which we have done for all             

         
                 

 Thus, by repeating the aforementioned iterative 

inequality, we obtain the following for all values of   

ranging from   to  .  

         
             

  

 
               

        

   
       

 4.2  A decrease in oscillation away from zero 

Assuming that   is the smallest index in this section 

that satisfies the second condition in   (11), meaning 

either           
            

       we will 

consider the case where   
    , as the opposite case 

follows similarly. Given that   marks the initial index 

for this scenario, it implies that          . 

Additionally, an estimation is made: 

  
      

                       

 
   

   
    

 Consequently, we have:  

     
  

   

   
         

  Starting from index  , equation (1) exhibits 

resemblance to a parabolic  -Laplacian equation 

within   , as indicated by condition (14). Hence, the 

ability to solve the parabolic     -Laplacian equation 

plays a role in determining the possibility of reducing 

oscillation. For this purpose, we temporarily omit the 

subscript   from our symbol and define   
 

   across 

the region             . It can be readily 

confirmed that   fulfills:  

   
                                    

where        ,    , and       Additionally,  

                                        

  By leveraging the established regularity theory for 

the parabolic  -Laplacian (see      

DiBenedetto, 1993, DiBenedetto et al., 2012), the 

equation satisfied by         turns out to be more 

amenable, namely,  

                                              

where for        ,    , and       we use  

           (
 

   
)
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It is evident that   occupies the identical 

functional space (2) as   and   because of  (15), 

leading to          in  . Reapplying (15), it 

can be confirmed that there exist positive 

constants       and       such that  

                                          

                  

for almost every        , and any    , and any 

    . This implies that   serves as a regional weak 

solution to the equation resembling the parabolic  -

Laplacian.  

Proposition 4.1 

 For    , let   be a bounded, local, weak solution 

to (1) in      , and define  

 ̃             

 If for some constants   in      , the condition  

                ̃                       

 ̃                                                                                                             

then there exist constants          and     

dependent solely on  ,  ,  ̃ ,  ̃ , and  , such that for 

all         

                ̃ (
 

 
)
  

  

 To apply this proposition suitably for cases where 

     , we initially verify the fulfillment of the 

condition (18). In fact, recollect that   
 

  , 

      , and   

           , using (15) and invoking the mean 

value theorem results in  

                    ̃           

                 

 As           
 

  , this becomes  

         
 

  
  ̃       

 

  
  

 Considering (14), we have  

  
      

   
           ̃           

Since  ̃   , we have         , so the condition 

(18) in proposition 4.1 is fulfilled  for      This 

leads to the conclusion of Proposition 4.1. 

Furthermore, the set inclusion is actually obtained by 

the earlier bound on  ̃:  

                              

Utilizing this set inclusion and rewriting the 

oscillation decay in Proposition 4.1 in terms of  , we 

deduce that for any      ,  

                  
 

 
                         

For the case of      , appropriate rescaling 

produces the desired oscillation decay and finalizes 

the demonstration of Theorem 1.1. 
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