
Journal of Bangladesh Academy of Sciences, Vol. 34, No. 2, 103-114, 2010 

ON A SIMPLE METHOD OF DETERMINING THE HOMOLOGY AND 
THE COHOMOLOGY OF FINITELY PRESENTED GROUPS 
 
SUBRATA MAJUMDAR1 AND NASIMA AKHTER 
 
Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh 
 
ABSTRACT 

In this paper the authors obtained a method of constructing free resolutions of Z for finitely 
presented groups directly from their presentations by extending Lyndon’s 3-term partial resolution 
to a full-length resolution. Authors resolutions and the method of their construction are such that 
free generators of the modules and the boundary homomorphisms are directly and explicitly 
obtained by solving of linear equations over the corresponding integral group rings, and hence 
these are immediately applicable for computing homology and cohomology of the groups for 
arbitrary coefficient modules. Authors have also described a general situation where their method is 
valid. The method has been used for a number of classes of group including Fuchsian groups, a few 
Euclidean crystallographic groups, NEC groups, the fundamental groups of a few interesting 
manifolds, groups of isometries of the hyperbolic plane and a few nilpotent groups of class 2. 
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INTRODUCTION 

One of the ways of determining the homology and cohomology of groups with 
arbitrary coefficient modules is to construct a suitable projection ZG-resolution of Z. The 
standard resolution, the bar resolution and the Gruenberg resolution are very well-known, 
but these are more useful for development of theory than for computation of homology 
for specific groups. 

For computational purpose the free resolution of Eilenberg and MacLane (1954) for 
cyclic groups had been the starting point. This was generalised on one hand for single-
relator group by Lyndon (1950) using a vital group theoretic tool ‘the identity theorem’ 
proved by himself. His ideas were further developed by Swan (1969) and Gildenhuys 
(1976). Using the solution of the identity Huebschmann (1993) obtained the cohomology 
of aspherical groups. Another approch on generalisation from cyclic groups was to 
construct free resolutions for finitely generated abelian groups i.e., groups which are 
finite direct products of cyclic groups. This approach uses that fact that  
( ) ( ) ( )2Z121 GZGZGGZ ⊗≅×  and utilises the Kunneth Formula for the tensor product of  

complexes. Huebschmann (1989) generalised this method to obtain the cohomology of 
the class of nilpotent groups of class 2 by developing a perturbation technique which, in 
essence, perturbs the tensor product structure in )M(NM(Q)⊗   for an extension. 
                                                 
1 Corresponding author: <prof.subrata.majumdar@gmail.com>. 
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1QG/NGN1:E →=→→→  (N, Q non-abelian). Here M(N) and M(Q) are 
algebra models for the unreduced bar construction. ZGM(Q)⊗  is an augmented 
differential graded commutative algebra. G may be regarded as the direct product Q×N 
with a perturbation, and a free ZG-resolution is constructed by perturbing the tensor 
product structure in )M(NM(Q)⊗ . The basic underlying idea was latent in Wall (1961). 

If a group G is given an extension 1G/NGN1 →→→→ , the relationship of the 
homology and cohomology of G with those of N and G/N is provided by Lyndon’s work 
(1950) using spectral sequences - a sophisticated machinery of homological algebra. A 
corresponding result for fiber spaces is due to Leray-Serre, theorem (MacLane 1963). 

A recent method of construction of resolutions uses a technique called ‘a rewriting 
system’. It was developed and applied for monoids by Anick (1986) and Squire (1987) 
for extensions of groups by Groves (1989) and Carbone (1996). 

In this paper authors shall describe an entirely new method of constructing a free 
ZG-resolution of Z for groups G from their presentations. Lyndon’s work (1950) contains 
the essential ingredients. 

Authors shall also describe a general situation where this method is valid. Through a 
series of papers of Majumdar and Akhter (2002, 2003, 2008) the method has been applied 
to many classes of groups including the class of non Euclidean groups with non-
orientable quotient spaces and no reflexions, a metacyclic groups, a factor group of the 
Heisenberg group, an infinite group related to Fibonacci groups, the trefoil kont group, 
the fundamental group of the geometrical limit of a sequence of quasi-fuchsian 
manifolds, a few groups of isometry of the hyperbolic plane. Previously, such method 
was tacitly applied by Majumdar (1970, 1971, 1983, 1984, 1987) to compute the 
homology and the cohomolgy of a few classes of groups including the fuchsian groups 
and a number of Euclidean crystallographic groups. 

The importance and the significance of the method lies in its simplicity of 
construction and its ability to yield the homology and the cohomology groups without 
any simplification or reduction of the resolution. No sophisticated or elaborate 
homological or group-theoretic tools are needed. The technique lies in extending 
Lyndon’s partial resolution to a full-length resolution through step-by-step solutions of 
system of linear equations over the integral group ring. The consideration whether the 
group is given as an extension, or it is abelian or almost abelian, such as nilpotent of class 
2, or it satisfies small cancellation properties, are not at all important. The method works 
so long as the systems of equations are soluble with the help of the relations. For groups 
whose homology and cohomology have been already determined, this method appears to 
provide an easier way of computation. 
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Lyndon’s Partial Resolution 

Lyndon obtained a partial resolution for a group from its presentation.  The authors 
describe it below. 

Theorem 2.1 [(1950), (1965), (1960)] 

Let G = F/R, where F is the free group freely generated by x1,...,xm and R is the 
normal subgroup generated by r1,..., rn in F. Then there is a ZG-free partial resolution of 
Z given by 

(A1)      00
0

1
1 →⎯→⎯⎯→⎯⎯→⎯ ZZGdYdY ε  

where Y0, Y1 are ZG-modules free on {α1,...,αm} and {β1,...,βn}respectively, and ε , d0, d1 
are ZG-homomorphisms given by 

ε (g) = 1, for all  Gg ∈ , )1()(0 −= ii xd πα , for each i, and 
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j
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1 παβ , for each j. 

 
Method of Extension of (A1) to a Full Resolution 

The authors shall develop a method of extending (A1) to a full free ZG-resolution (A) 
of Z: 

0...... 0
0

1
1

2
2

1
1 →⎯→⎯⎯→⎯⎯→⎯⎯→⎯→⎯→⎯⎯⎯ →⎯→ +
+ ZZGdYdYdYdYdY q

q
q

q
ε To 

extend (A1) authors first find a free ZG-module Y2 and ZG-homomorphism d2: Y2→Y1 
such that  

Ker d1= Im d2. An element ∑
=

n

j
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1
γβ belongs to Ker d1 if and only if 
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1
1 =⎟
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∂
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j

x
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γπ , for each i, since Y0 is free on s'iα . The kernel of d1 

will be known if the authors know all the s'jγ satisfying the system of linear equations. 

(1)  ...       0
1

=∑ ⎟⎟
⎠
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⎜⎜
⎝

⎛
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j

x
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γπ , for i=1, 2, ...., m. 

If authors can solve the system of linear equations (1) and obtain the solutions of the 
systems in the form 

(1’)  ....      ∑ ′=
=

u

k
kjkj

1
γλγ  
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where ZG,jk ∈′γλ and each jkλ is known and kγ ′ are arbitrary, then Imd2   is  the right ZG-
module consisting of all 

( )∑ ∑ ′=∑ ⎟
⎠
⎞⎜

⎝
⎛ ′∑=

= == =

u

k

n

j
kjkj

n

j
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u

k
jkj

1 11 1
γλβγλβγ  

where jkλ ’s are given by (1’) and kγ ′ are arbitrary. This suggests that we take Y2 to be the 
right ZG-module free on, say, { }u...,, δδ1  in 1-1 correspondence with { }u...,, γγ ′′1 , and 
define the ZG-homomorphism d2: Y2→ Y1 by 

( ) ,d
n

j
jkjk ∑=

=1
2 λβδ  

These definitions ensure that the kernel of d1 is contained in the image of d2. 

The reverse inclusion follows from the following: 

For each ∑ ′
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γδ  in Y2 
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since ∑
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1
γλ is a solution of 0
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In this way, the solution of the system of equations (1) leads to extension of the 
partial resolution (A1) by one more term Y2 to yield 

(A2) ...        00
0

1
1

2
2 →⎯→⎯⎯→⎯⎯→⎯⎯→⎯ ZZGdYdYdY ε  

To extend (A2) by one more term we turn our attention to Ker d2. We proceed almost 
similarly. 

Let 2
1

dKer
u

k
kk ∈∑

=
γδ ,  

then 0
1

=∑
=

u

k
kjkγλ  since Y1 is free on jβ ’s 

for each j = 1, ..., n. 

As before, to find the kernel of d2 authors solve the system of linear equations. 
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(2) ...       0
1

=∑
=

u

k
kjkγλ ,     (j = 1, ..., n) 

If authors can get the solutions of the system of linear equations (2) and the solutions 
are in the form 

(2’)...     ∑ ′=
=

v

j
lklk

1
γμγ  

where ZG, lkl ∈′γμ and klμ  are known and lγ ′  are arbitrary, then authors obtain the 
next term Y3 and the next homomorphism d3, so that the corresponding extension of (A2) 
is exact at Y2, by defining Y3 as a right ZG-module free on { }v,...,ρρ1 in 1-1 
correspondence with { }v,..., γγ ′′1  and defining the ZG homomorphism d3: Y3 → Y2 by  

( ) ,d
u

k
klk∑=

=1
13 μδρ  

As before, it may be verified that the sequence (A2) has been extended by the term Y3 
to yield the exact sequence 

(A3) ....       00
0

1
1

2
2

3
3 →⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯ ZZGdYdYdYdY ε  

Authors now suppose that (A3) has been extended to an exact sequence of right ZG-
modules and ZG-homomorphisms 

(As)...        0... 0
0

1
1
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s
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s
ε  

s > 3, where Ys and Ys-1 are free on { }s
sm
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1

1
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− s
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1
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the 1−s
j

s
i ,αα  and  ds having been obtained as in (A2) and (A3). 

From here, if we consider Kre ds and fine out the solutions of the system of linear 

equations ,  
sm

i

s
i
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ji 0

1
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iγ over ZG, and if solutions are of the form 

∑=
+

=

++1

1

11sm

j

s
j

s
ij

s
i γλγ with 1+s
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1
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and define ZG-homomorphism sss YY:d →++ 11 by ( ) ∑=
=
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+
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j
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s
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s
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1
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1 λαα . 

Then Im ds+1= Ker ds and authors obtain an exact sequence of ZG-modules and ZG-
homomorphisms  

(As+1) ...    0... 0
0

1
1

1
1 →⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯⎯ →⎯ +
+ ZZGdYdYdYdY s

s
s

s
ε   
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which is an extension of (As). 

Thus authors obtain a full free ZG-resolution of Z. 

Authors have thus proved 
 
Theorem 2.2 

Let Y;XG =  be a free presentation of G, where X = {x1, ... xm}, Y = {r1, ... rn}. 
Let F be a free group freely generated by {x1, ... xm}and R the normal subgroup generated 
by {r1, ... rn}in F. Then the following is a free ZG-resolution of Z: 

(A)...      0... 0
0

1
1

1
1 →⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯⎯ →⎯→ +
+ ZZGdYdYdYdY q

q
q

q
ε  

Here, Y0 is a right ZG-module free on { }0
0

0
1 m...,, αα , where m0 = m 

Y1 is a right ZG-module free on { }1
1

1
1 m...,, αα , where m1 = n 

Y2 is a right ZG-module free on { }2
2

2
1 m...,, αα ,  

where m2 is the number of 2
jγ ’s, the latter being given by the solutions ∑

=

2

1
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j
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system of linear equations 11
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11 0 i
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=
’s and the ZG-homomorphisms 10 d,d,ε  and 

2d are given by ( ) ,Ggallforg ∈= 1ε ( ) ( )10
0 −= ii xd πα , i = 1, .., m, where π  is the 

ring homomorphism ZF→ZG induced by the canonical homomorphism F→F/R=G. 
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iγ ’s. We assume d3, ..., dq and Y3, ...,Yq have been defined as 

follows: 

Yu is right ZG- module free on  { } ,qu,..., u
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u ≤≤31 αα  and du: Yu→Yu-1 is a ZG-

homomorphism given by ( ) ∑=
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u
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u
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1
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+ αα where mq+1 is the number of 1+q
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Remark  

Authors see that the ZG-homomorphism dq: Yq →Yq+1 for 2≥q in (A) is given by 
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11111111 −−

++++= . 

 
Determination of Homology and Cohomology 

For any left ZG-module A the homology group Hn (G, A) are giver by the homology 
of the complex of abelian groups: 

(P)... 011...1 0
0

1
11 →⊗⎯⎯⎯ →⎯⊗⎯⎯⎯ →⎯⊗→⊗⎯⎯⎯ →⎯⊗→ ⊗⊗⊗

+ AZGdAYdAYAYdAY AA
q

Aq
q  

The isomorphisms ( )∑ ⊗≅⊗∑≅⊗
a RaRa

aR
BABAandBBR  imply that the homology 

of (P) is isomorphic to the homology of the complex: 

(P′ )... 0... 012211 →⎯→⎯⎯→⎯⎯→⎯→→⎯⎯ →⎯→ ++ AdAdAdAAdA mnmqmqqm  

in each dimension, where Aq denotes the direct sum of q copies of A qd are induced 
by Aqd 1⊗ and are given by 

)P( ...     ( ) ( )
qmqmqmqmqm

q
qm

q
qmq aaaaaad ,111,111111 ......,,......,,

−−
λ++λλ++λ= , q = 1, 2, 3, ... 

Then  the q-th homology group of G with coefficient  in A is  

(P") ...    ( ) ( ) 001 1 dIm/AA,GH,q,dIm/dKerA,GH qqq =≥= −                  

For any right ZG-module A, the cohomology group Hn (G, A) are given by the 
homology of the complex: 

0),(),(),(....),(
*
0

0

*
1

1 ←⎯⎯←⎯⎯←←⎯⎯⎯←
∗

AZGHomdAYHomdAYHomdAYHom q
q  

where )1,(*
Aqq dHomd = . 

The natural isomorphisms HomR(R, B)≅  B and  
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∑≅⎟
⎠
⎞⎜

⎝
⎛ ∑

==

l

R

l

R )B,B(HomB,BHom
11 α

α
α

α  

so that the homology of the above complex is isomorphic to the complex: 

(Q)...  ... 0...
**

0
**

1
**

22
**

3
****

1 ←⎯⎯ ⎯←⎯⎯ ⎯←⎯⎯ ⎯←⎯⎯ ⎯←⎯⎯ ⎯←⎯⎯ ⎯← + AdAdAdAddAd mnmqqmq     

in each dimension, where Aq is the direct sum of q copies of A and **
id  are induced by *

id  
and are given by  

(Q*)  ... )...,,(
11

**
−qmq aad   

( )
112211111221111 −−−−

++++++=
qmqm,qm

q
qm,

q
qm,qm

q
,qm

qq a...aa,...,a...aa λλλλλλ      

  q = 1, 2, 3, ... . 

Then the q-th cohomology group of G with coefficients in A, 

(Q**)... **
**

q

**
qq dKer)A,G(H,q,

dIm
dKer

)A,G(H 0
0

1

1 ≅≥≅
−

              

Thus the knowledge of the q
ijλ ’s enables us to know Hq (G, A) and Hq (G, A) 

immediately from ( P ) and (P’’) and (Q*) and (Q**), respectively. 
 
Integral Homology Groups of G 

The expression of the above homology groups and cohomology groups can be 
simplified when A is abelien group regarded as a trivial ZG-module. By the Universal 
coefficient theorems for homology of groups and for cohomology of groups (Majumdar 
1970), it is sufficient to determined the homology groups Hn (G, Z) and to determine the 
cohomology groups Hn (G, Z), where Z is regarded as a trivial ZG-module. 

The effectiveness of this method depends on the possibility and the ability of solving 
the systems of the linear equations arising at different steps. Sometimes it may not be 
possible to solve the system at each step. In the possible situations the resolutions is nice 
in the sense that each dimension the homology and the cohomology of the group can be 
obtained explicitly by a finite process. It is possible that we may have a trivial solution 
after finite number of steps. Also it is possible that, after a finite number of steps, the 
solution repeat with a finite period of step- numbers. In the first situation the resolution is 
finite and the group has a finite homological dimension. In the latter case, the homology 
becomes periodic after a finite number of steps. In these cases the resolutions are nicer in 
the sense that a single finite process displays explicitly the homology and the 
cohomology in all dimensions. If impossibility appears after a finite number of steps, we 
obtain an effective partial resolution which immediately yields the lower dimensional 
homology and the cohomology.   
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Authors shall now describe a general situation in which the full resolution (A) exists 
and is obtainable. 

For this authors start with the following definition.  

Definition 2.1 

Let R be a ring with 1 and A = (aij) an nn ′×  ( nn ′≤ ) matrix over R with the 
properties 

(i) )(,....,,1,,0 nrrijiaij ≤=≠=  

(ii) rskkrjorkja jkr ≤=+≠≠=+ ...,,1,,0,  

(iii) )(
2
1,...,,1,0, srnuuma jmsr −−===++  

(iv) musrjormsrja jmusr +++≠++≠=+++ ,0, . 

(v) .,0, nja ji ≥=  

(vi) iiiibLiiiiR aRAnnRbaAnn == ,  iirii aandb ,+ commute with each other and  

kkkrkr ba =++ , , for each i and k. 

(vii) msrmusra +++++ ,  has a left annihilator msrmusrRc +++++ ,  such that 

msrmusrmsrmusr canda ++++++++++ ,,  commute with musrmusra ++++++ , , the latter has 
trivial right annihilator and RacAnn msrmusrmsrmusrR ++++++++++ = ,, . 

Such a matrix will be called a standard matrix and the form of the matrix will be the 
standard form. 

Now, if ( )ijaA =  is an nn ′×  ( nn ′≤ ) standard matrix over R, Then the system of 
linear equations  

AX = 0, where 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

nx

x
X M

1

,  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0

0
0 M  is given by the following: 

(I) 0,...,0111 == rrr xaxa  

(II) 011,111,1 =+ ++++ rrrr xaxa  

 ... ... ... 

 0,, =+ ++++ srsrsrsssr xaxa  

(III) 011,111,1 =+ ++++++++++++++++ usrusrusrsrsrusr xaxa  
 ... ... ... 
 022,21,2 =+ ++++++++++++ usrusrusrusrsrusr xaxa  
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The solution of the above system of equations are given by 

(IV) ,bx...,,bx rrrr αα == 1111  for some ,R...,, r ∈αα1  where biiR is the right 
annihilator of aii. Also, 

(V) .Rsomefors...,,k,aax kr,kkrkkkk,krkr ∈=+−= ++++ αααα 1  

(VI) .Rsomefor,u...,,m,ax musrmusrmusr,musrmusr ∈== +++++++++++++++ αα 1  

(VII) Rsomeforacx msrmusrmusr,musrmsrmsr,musrmsr ∈−= ++++++++++++++++++++ ααα . 

(VIII) usrjx j 2, ++> , are free variables. 

The following operations 

iiji cRRiiRRi →↔ )(;)( (c is a unit in R); (iii) jii cRRR +→  

on the rows of A = (aij) are elementary row operations. 

A matrix A is equivalent to a matrix B, written A~B if there exists a finite sequence 
of elementary row operations transforming A into B. If A~B, AX = 0 and BX = 0 have the 
same solution-sets. 

A matrix A over R is called perfect if there exits a sequence {An} of standard 
matrices over R such that 

(i) A1~A, 

(ii) For each 1,1 +≥ nAn ~Bn, where Bn is the matrix determined by the solutions of 
the system of linear equations AnX = 0, i.e., if the solutions of AnX = 0 are given 

by uiybx
v

j
jiji ...,,1,

1
=∑=

=
. 

Then ( )ijn bB =  

{An} is called the sequence of standard matrices associated with A, and for each n, Bn 
is called associate of An. 

The above discussion proves the validity of the following Theorem: 
 

Theorem 2.3 

Let G be a group as in Theorem 2.2 and such that ( )( )ij xrA ∂∂= /π  is a perfect 
matrix with an associated sequence of standard matrices {An}. Then the following is a 
free ZG-resolution of Z 

 0...... 0
0

1
1

2
2

1 →⎯→⎯⎯→⎯⎯→⎯⎯→⎯→⎯→⎯⎯⎯ →⎯ + ZZGdYdYdYdYd q
q

q ε  

where 

Y0 is a free right ZG-module on { }0
0

0
1 m...,, αα , 
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Y1 is a free right ZG-module on { }1
1

1
1 m...,, αα , 

...  ...  ... 
Yq is a free right ZG-module on { }q

qm
q ...,, αα1 . 

For .2≥q The ZG-homomorphisms are 10 d,d,ε as in Theorem 2.2 and for each 

2≥q  ( ) ∑=
−

=

−
1

1

1
qm

i

q
ij

q
i

q
lqd λαα where ( ) ( ) ( )tq

q
ij

q
ij Bb ==λ  the transpose of the associate Bq of 

Aq. 
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