Journal of Bangladesh Academy of Sciences

Journal homepage: http://www.bas.org.bd/publications/jbas.html

Research Article

T_{0} Separation axioms in intuitionistic topological spaces

Rajandra Chadra Bhowmik ${ }^{*}$ and Md. Sahadat Hossain ${ }^{1}$
Department of Mathematics, Pabna University of Science and Technology, Pabna, Bangladesh

ARTICLE INFO
 Article History

Received: 19 September 2023
Revised: 19 December 2023
Accepted: 28 December 2023

Keywords: Intuitionistic Set, Intuitionistic topological space, T_{0} separation axioms, Hereditary, Productive, Projective.

ABSTRACT
In this paper, we aim to investigate T_{0} separation axioms in intuitionistic topological spaces. After presenting some characterizations of T_{0} separation axioms, we provide interrelationships among those and their non-implications in counterexamples. Furthermore, we show that our notions satisfy hereditary and topological properties. Moreover, we establish that some of these notions satisfy productive and projective properties. 2000 Mathematics Subject Classification. 54A99.

Introduction

After the grand introduction of the fuzzy Set by Zadeh (Zadeh, 1965) in 1965, Atanassov (Atanassov, 1984, 1986) proposed the notion of an intuitionistic fuzzy set as the generalization of fuzzy Set considering the degree of membership and nonmembership in 1983. Later, Coker (Coker, 1996, 1997) introduced the concept of an intuitionistic set, which is, in one way, the specialization of an intuitionistic fuzzy set and, in another way, the generalization of an ordinary set. Intuitionistic set theory, as a building framework for constructive mathematics, and its logic have influenced many later researchers in developing intuitionistic topology. It has many applications in various areas, particularly computer science, formal verification, and constructive mathematics. It was Coker (2000) who first applied the notion of topology to an intuitionistic set and investigated its various topological consequences. Bayhan and Coker (Bayhan and Coker, 2001) and Prova and Hossain (Prova and Hossain, 2020, 2022) dealt with separation axioms in intuitionistic topological spaces. Selvanayaki and Ilango (Selvanayaki and Ilango, 2016, 2017) studied homeomorphisms and generators in intuitionistic topological spaces.

Besides, Bayhan and Coker (Bayhan and Coker, 1996), Ahmed (Ahmed et al., 2014 a \& b), and Prova and Hossain (Prova and Hossain, 2022) studied separation axioms in intuitionistic fuzzy topological spaces. Islam (Islam et al., 2018b) studied intuitionistic $L-T_{0}$ spaces, and Islam (Islam et al., 2018a) studied level separation on intuitionistic fuzzy T_{1} spaces. Mahbub (Mahbub et al., 2019, 2021, 2022) studied a particular type of connectedness and compactness in intuitionistic fuzzy topological spaces.

In the literature on separation axioms and related outcomes in intuitionistic topological spaces, we studied and investigated as far as we didn't get T_{0} separation axioms in detail. However, it is offered well for T_{1}, T_{2}, and others. In this paper, we present the T_{0} separation axioms, following Bayhan and Coker (Bayhan and Coker, 2001) for T_{1} separation axioms, in possibly various and modified ways with investing their interrelationships and topological consequences.

We start with listing some basic concepts and results introduced by Coker (Coker, 1996), Bayhan and Coker (Bayhan and Coker, 2001), and

[^0]Selvanayaki and Ilango (Selvanayaki and Ilango, 2016,2017) to
construct the path for our principal purpose. Afterward, we give some new and modified notions for T_{0} separation axioms and find the relationships among those, revealing some counterexamples for non-implications too. Furthermore, we show that our defined notions satisfy hereditary and topological properties. Finally, we observe that two of these notions are productive and projective.

Preliminaries

In this section, we list some basic concepts of intuitionistic Set and intuitionistic topological space.

Definition (Coker, 1996): Let X be a nonempty set. An intuitionistic set (IS for short) A is an object having the form $A=\left\langle X, A_{1}, A_{2}\right\rangle A 2$, where A_{1} and A_{2} are subsets of X satisfying $A_{1} \cap A_{2}=\emptyset$. Set A_{1} is called the Set of members of A, while set A_{2} is called the Set of non-members of A.

Definition (Coker, 1996): Let X be a nonempty set and let the IS's A and B be $A=\left\langle X, A_{1}, A_{2}\right\rangle$ and $B=\left\langle X, B_{1}, B_{2}\right\rangle \quad$ respectively. Furthermore, let $\left\{A_{i}: i \in J\right\}$ be an arbitrary family of IS's in X, where $A_{i}=\left\langle X, A_{i}^{(1)}, A_{i}^{(2)}\right\rangle$. Then
(a) $A \subseteq B$ if and only if $A_{1} \subseteq B_{1}$ and $A_{2} \supseteq B_{2}$;
(b) $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$;
(c) $\bar{A}=\left\langle X, A_{2}, A_{1}\right\rangle$;
(d) $\cup A_{i}=\left\langle X, \cup A_{i}^{(1)}, \cap A_{i}^{(2)}\right\rangle$;
(e) $\cap A_{i}=\left\langle X, \cap A_{i}^{(1)}, \cup A_{i}^{(2)}\right\rangle$;
(f) []$A=\left\langle X, A_{1}, A_{1}^{C}\right\rangle$;
(g) () $A=\left\langle X, A_{2}^{c}, A_{2}\right\rangle$;
(h) $\underset{\sim}{\phi}=\langle X, \varnothing, X\rangle, \underset{\sim}{X}=\langle X, X, \varnothing\rangle$.

Definition (Coker, 1996): Let X be a nonempty set and $p \in X$ be a fixed element in X. Then IS's: $\underset{\sim}{p}=\left\langle X,\{p\},\{p\}^{c}\right\rangle$ and $\underset{\sim}{p}=\left\langle X, \emptyset,\{p\}^{c}\right\rangle$ are called an intuitionistic point (IP in short) and a vanishing intuitionistic point (VIP in short) respectively in X.
Definition (Coker, 1996): Let $\underset{\sim}{p}$ be an IP, $\underset{\sim}{p}$ be a VIP, and $A=\left\langle X, A_{1}, A_{2}\right\rangle$ be an IS in X. Then
(a) $\underset{\sim}{p} \in A$ if and only if $p \in A_{1}$;
(b) $\underset{\sim}{p} \in A$ if and only if $p \notin A_{2}$.

Definition (Coker, 1996): Let $A=\left\langle X, A_{1}, A_{2}\right\rangle$ and $B=\left\langle X, B_{1}, B_{2}\right\rangle$ are IS's in X and Y respectively, then
(a) the preimage of B under f is the IS in X, defined by $f^{-1}(B)=$ $\left\langle X, f^{-1}\left(B_{1}\right), f^{-1}\left(B_{2}\right)\right\rangle ;$
(b) the image of A under f, denoted by $f(A)$, is the IS in Y, defined by $f(A)=$ $\left\langle Y, f\left(A_{1}\right), f_{-}\left(A_{2}\right)\right\rangle \quad, \quad$ where $\quad f_{-}\left(A_{2}\right)=$ $\left(f\left(A_{2}^{c}\right)\right)^{c}$.
Corollary (Coker, 1996): Let $A, A_{i}(i \in J)$ be IS in $X, B, B_{j}(j \in K)$ be IS in Y, and $f: X \rightarrow Y$ is a function. Then
(a) $A_{1} \subseteq A_{2} \Rightarrow f\left(A_{1}\right) \subseteq f\left(A_{2}\right)$;
(b) $B_{1} \subseteq B_{2} \Rightarrow f^{-1}\left(B_{1}\right) \subseteq f^{-1}\left(B_{2}\right)$;
(c) $A \subseteq f^{-1}(f(A))$ and if f is one-one, then $A=f^{-1}(f(A)) ;$
(d) $f\left(f^{-1}(B)\right) \subseteq B$ and if f is onto, then $f\left(f^{-1}(B)\right)=B$.
Definition (Coker, 1997): An intuitionistic topology (IT for short) on a nonempty set X is a family τ of IS's in X satisfying the following axioms:
(a) $\underset{\sim}{\emptyset}, \underset{\sim}{X} \in \tau$,
(b) $G_{1} \cap G_{2} \in \tau$ for any $G_{1}, G_{2} \in \tau$,
(c) $\cup G_{i} \in \tau$ for any arbitrary family $\left\{G_{i}: i \in\right.$ $J\} \subseteq \tau$.
In this case, the pair (X, τ) is called an intuitionistic topological space (ITS for short), and any IS in τ is known as an intuitionistic open set (IOS for short) in X.
Definition (Selvanayaki and Ilango, 2017): Let X be a nonempty set and $A=\left\langle X, A_{1}, A_{2}\right\rangle$ be an IS in X. Then
the intuitionistic generator of A, denoted as $G(A)$, is defined as the collection of IS's of the form $\left\langle X, A_{1}, A_{2}\right\rangle,\left\langle X, A_{2}, A_{1}\right\rangle, \quad\left\langle X, \emptyset, A_{1} \cup A_{2}\right\rangle \quad$ and $\left\langle X, A_{1} \cup A_{2}, \emptyset\right\rangle ;$
(a) the intuitionistic prime generator of A, denoted as $G_{p}(A)$, is the collection of IS's of the form

$$
\begin{aligned}
& \left\langle X, A_{1}, \emptyset\right\rangle,\left\langle X, \emptyset, A_{2}\right\rangle, \quad\left\langle X, A_{1}, A_{2}\right\rangle, \\
& \left\langle X, \emptyset, A_{1} \cup A_{2}\right\rangle \text { and }\left\langle X, A_{1} \cup A_{2}, \emptyset\right\rangle .
\end{aligned}
$$

Definition (Selvanayaki and Ilangom, 2017): Let X be a nonempty set and A be any IS in X. Then
(a) the collection $G(A)$, along with $\underset{\sim}{\emptyset}, \mathrm{X}$, forms a topology, and it is called intuitionistic generator topology generated by A and is denoted by $\left(X, \tau_{G}\right)$;
(b) the collection $G_{p}(A)$ along with $\emptyset_{\sim} X$ forms a topology, and it is called intuitionistic prime generator topology generated by A and is denoted by $\left(X, \tau_{p G}\right)$.

Definition (Bayhan and Coker, 2001): Let A and B be two IS's in X and Y, respectively. Then the product intuitionistic Set (PIS for short) of A and B on $X \times Y$ is defined by $U \times V=\left\langle(X) Y,, A_{1} \times\right.$ $\left.B_{1},\left(A_{2}^{c} \times B_{2}^{c}\right)^{c}\right\rangle$, where $A=\left\langle X, A_{1}, A_{2}\right\rangle \quad$ and $B=\left\langle X, B_{1}, B_{2}\right\rangle$.

Definition (Selvanayaki and Ilangom, 2016): A bijection $f:(X, \tau) \rightarrow(Y, \sigma)$ is called intuitionistic homeomorphism if f is both intuitionistic continuous and intuitionistic open.

T_{0} Separation Axioms in ITS's

In this section, we define six notions for T_{0} separation axioms in ITSs and show some of their features and properties: hereditary, topological property, productive, and projective. We form the separation axioms for T_{0} from the separation axioms for T_{1} in Bayhan and Coker (Bayhan and Coker, 2001) with some necessary modifications.

Definition: Let (X, τ) be an ITS. Then (X, τ) is said to be
(a) $T_{0}(i)$ if for all $x, y \in X$, with $x \neq y$, there exist $U \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{x} \notin U$ or $\underset{\sim}{x} \in U, \underset{\sim}{x} \notin U$ (cf. Bayhan and Coker, 2001);
(b) T_{0} (ii) if for all $x, y \in X$, with $x \neq y$, there exist $U \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{y} \notin U$ or $\underset{\sim}{y} \in U, \underset{\sim}{x} \notin U$ (cf. Bayhan and Coker, 2001);
(c) T_{0} (iii) if for all $x, y \in X$, with $x \neq y$, there exist $U \in \tau$ such that $\underset{\sim}{x} \in U \subseteq \underset{\sim}{\bar{\sim}}$ or $\underset{\sim}{\gamma} \in U \subseteq \underset{\sim}{\bar{x}}$ (cf. Bayhan and Coker, 2001);
(d) $T_{0}(i v)$ if for all $x, y \in X$, with $x \neq y$, there exist $U \in \tau$ such that $\underset{\sim}{x} \in U \subseteq \underset{\sim}{\bar{y}}$ or $\underset{\sim}{y} \in U \subseteq \underset{\sim}{\bar{x}}$ (cf. Bayhan and Coker, 2001);
(e) $T_{0}(v)$ if for all $x, y \in X$, with $x \neq y$, there exists nonempty $U \in \tau$ such that $\underset{\sim}{y} \notin U$ or $\underset{\sim}{x} \notin U$ (cf. Bayhan and Coker, 2001).
[In this case, we use the non-emptiness of U as an external restriction];1
(f) $T_{0}(v i)$ if for all $x, y \in X$, with $x \neq y$, there exists nonempty $U \in \tau$ such that $\underset{\sim}{y} \notin U$ or $\underset{\sim}{x} \notin U$ (cf. Bayhan and Coker, 2001).
[In this case, we use the non-emptiness of U as an external restriction].

Remarks: In the first four T_{0} separation axioms [$T_{0}(i)$ to $\left.T_{0}(i v)\right]$ in the above definition, according to the characterization, $U \in \tau$ is nonempty by default because for any $x, y \in X$, to satisfy $T_{0}(i)$ to $T_{0}(i v)$, we have to satisfy either of these four: $\underset{\sim}{x}, \underset{\sim}{y}, \underset{\sim}{x}, \underset{\sim}{x} \in U$, which \emptyset as a U fails to do. But in the case of the last two T_{0} separation axioms $\left(T_{0}(v)\right.$ and $\left.T_{0}(v i)\right)$, we impose non-emptiness of U externally because, otherwise, every ITS become $T_{0}(v)$ and $T_{0}(v i)$ automatically for the character of $\underset{\sim}{\emptyset}$ as a $U]$

Theorem: Let (X, τ) be an ITS, then the following implications are valid:

Proof

(i) $T_{0}(i) \Rightarrow T_{0}(v)$ and (ii) $T_{0}(i i) \Rightarrow T_{0}(v i)$.

Proofs of (i) and (ii) are easy to obtain and can be done directly from the corresponding definitions.

Conversely, these are untrue [see counterexamples 4 and 5 in the examples section].
(iii) $T_{0}(i i) \Rightarrow T_{0}(i v)$

Let (X, τ) be an ITS satisfying $T_{0}(i i)$. We want to show that it is $T_{0}(i v)$ too, i.e., for all $x, y \in X$, with $x \neq y$, there exists $U \in \tau$ such that $\underset{\sim}{x} \in U \subseteq \underset{\sim}{y}$ or $\underset{\sim}{y} \in U \subseteq \underset{\sim}{\bar{x}}$.
Choose arbitrary $x \neq y$ in X, then by $T_{0}(i i)$, there exist $U=\left\langle X, U_{1}, U_{2}\right\rangle \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{y} \notin U$ or $\underset{\sim}{y} \in U, \underset{\sim}{x} \notin U$ is true, or, $\underset{\sim}{x} \in U, y \in U_{2}$ or $\underset{\sim}{y} \in U, x \in$ U_{2} is true, or, $\underset{\sim}{x} \in U, y \notin U_{1}$, or $\underset{\sim}{y} \in U, x \notin U_{1}$ is true, or, $\quad \underset{\sim}{x} \in U, y \notin U_{1} \subseteq\{y\}^{C} \quad$ (and obviously $U_{2} \supseteq \emptyset$), or $\underset{\sim}{y} \in U, x \notin U_{1} \subseteq\{x\}^{C}$ (and obviously $\left.U_{2} \supseteq \emptyset\right)$ is true, or, $\underset{\sim}{x} \in U \subseteq\left\langle X,\{y\}^{c}, \emptyset\right\rangle=\underset{\sim}{y}$ or $\underset{\sim}{y} \in U \subseteq\left\langle X,\{x\}^{c}, \emptyset\right\rangle=\underset{\sim}{\underset{x}{x}}$. Hence, it is T_{0} (iv).

Conversely, this is untrue [see counterexample 1 in the examples section].
(iv) $T_{0}(v i) \Rightarrow T_{0}(v)$

Let (X, τ) be an ITS satisfying $T_{0}(v i)$. We want to show that it is $T_{0}(v)$ too, i.e., for all $x, y \in X$, with $x \neq y$, there exist nonempty $U \in \tau$ such that ${\underset{\sim}{~}}_{\notin U}$ or $\underset{\sim}{x} \notin U$.

Choose arbitrary $x \neq y$ in X; then by $T_{0}(v i)$, there exist nonempty $U=\left\langle X, U_{1}, U_{2}\right\rangle \in \tau$ such that $\underset{\sim}{y} \notin U$ or $\underset{\sim}{x} \notin U$ is true, or, $y \in U_{2}$ or $x \in U_{2}$ is true, or, $y \notin U_{1}$ or $x \notin U_{1}$ is true, or, $\underset{\sim}{y} \notin U$ or $\underset{\sim}{x} \notin U$ is true. Hence, it is $T_{0}(v)$.
Conversely, this is untrue [see counterexample 5 in the examples section].
(v) $T_{0}(i i i) \Rightarrow T_{0}(i)+T_{0}(i i)$.

Let (X, τ) be an ITS satisfying T_{0} (iii). We want to show that it is simultaneously $T_{0}(i)$ and $T_{0}(i i)$.

To show $T_{0}(i)$, choose arbitrary $x \neq y$ in X, then by T_{0} (iii), there exist $U \in \tau$ such that $\underset{\sim}{x} \in U \subseteq \bar{y}$ or $\underset{\sim}{x} \in U \subseteq \underset{\sim}{\bar{x}} \quad$ is true, \quad or, $\underset{\sim}{x} \in U=\left\langle X, U_{1}, U_{2}\right\rangle \subseteq$ $\left\langle X,\{y\}^{c},\{y\}\right\rangle$ or $y \in U=\left\langle X, U_{1}, U_{2}\right\rangle \subseteq\left\langle X,\{x\}^{c},\{x\}\right\rangle$ is true, or, $\underset{\sim}{x} \in U$, with $U_{1} \subseteq\{y\}^{c}$ and $U_{2} \supseteq\{y\}$ or $\underset{\sim}{y} \in U$, with $U_{1} \subseteq\{x\}^{c}$ and $U_{2} \supseteq\{x\}$ is true, or, $\underset{\sim}{x} \in U$, with $y \notin U_{1}$ and $y \in U_{2}$ or $\underset{\sim}{y} \in U$, with $x \notin U_{1}$ and $x \in U_{2}$ is true, or, $\underset{\sim}{x} \in U$, with $y \notin U_{1}$ or $\underset{\sim}{y} \in U$, with $x \notin U_{1}$ is true, or, $\underset{\sim}{x} \in U$, with $\underset{\sim}{y} \notin U$ or $\underset{\sim}{y} \in$ U, with $\underset{\sim}{x} \notin U_{1}$ is true. Hence, it is $T_{0}(i)$.

To show $T_{0}(i i)$, choose arbitrary $x \neq y$ in X, then by T_{0} (iii) there exist $U \in \tau$ such that $\underset{\sim}{x} \in U \subseteq \overline{\mathcal{y}}$ or $\underset{\sim}{z} \in U \subseteq \underset{\sim}{\bar{x}} \quad$ is true, \quad or, $\quad \underset{\sim}{x} \in U=\left\langle X, U_{1}, U_{2}\right\rangle \subseteq$ $\left\langle X,\{y\}^{c},\{y\}\right\rangle$ or $\underset{\sim}{y} \in U=\left\langle X, U_{1}, U_{2}\right\rangle \subseteq\left\langle X,\{x\}^{c},\{x\}\right\rangle$ is true, or, $x \in U_{1}$, with $U_{1} \subseteq\{y\}^{c}$ and $U_{2} \supseteq\{y\}$, or $y \in U_{1}$, with $U_{1} \subseteq\{x\}^{c}$ and $U_{2} \supseteq\{x\}$ is true, or, $x \notin U_{2}$, with $y \notin U_{1}$ and $y \in U_{2}$ or $y \notin U_{2}$, with $x \notin$ U_{1} and $x \in U_{2}$ is true, or, $\underset{\sim}{x} \in U$, with $y \notin U_{1}$ and $y \in U_{2}$ or $\underset{\sim}{y} \in U$, with $x \notin U_{1}$ and $x \in U_{2}$ is true, ort, $\underset{\sim}{x} \in U$, with $y \notin U_{1}$ or $\underset{\sim}{y} \in U$, with $x \notin U_{1}$ is true, or, $\underset{\sim}{x} \in U$, with $\underset{\sim}{y} \notin U$ or $\underset{\sim}{y} \in U$, with $\underset{\sim}{x} \notin U$ is true. Hence, it is $T_{0}(i i)$.

Conversely, this is untrue [see counterexamples 1, 2 , and 3 in the examples section].

Examples

Counterexample 1:

Let $X=\{p, q\}$, and τ be a topology on X given by $\mathcal{T}=\{\underset{\sim}{X}, \underset{\sim}{\emptyset},\langle X,\{p\}, \varnothing\rangle,\langle X,\{q\}, \varnothing\rangle,\langle X, \emptyset, \emptyset\rangle\}$. We get IOS's containing $\underset{\sim}{p}$ as $\underset{\sim}{X}$ and $\langle X,\{p\}, \varnothing\rangle$ and IOS's containing $\underset{\sim}{q}$ as $\underset{\sim}{X}$ and $\langle X,\{q\}, \varnothing\rangle$. Thus choosing $U=$ $\langle X,\{p\}, \varnothing\rangle \in \tau$, we get $\underset{\sim}{p} \in U, \underset{\sim}{q} \notin U$. Therefore, it is $T_{0}(i)$. In addition, there does not exist open U to satisfy $\underset{\sim}{q} \in U \subseteq \underset{\sim}{\bar{p}}=\langle X,\{q\},\{p\}\rangle$ or $\underset{\sim}{p} \in U \subseteq \underset{\sim}{q}=$ $\langle X,\{p\},\{q\}\rangle$. Therefore, it is not $T_{0}(i i i)$.
On the other hand, we get, IOS's containing $\underset{\sim}{p}$ are $\underset{\sim}{X},\langle X,\{P\}\rangle\langle\{p, \emptyset, X, q\}, \varnothing\rangle$ and $\langle X, \emptyset, \emptyset\rangle$, and IOS's containing $\underset{\sim}{q}$ are $\underset{\sim}{X},\langle X,\{q\}\rangle\langle\{p, \emptyset, X, q\}, \varnothing\rangle$ and $\langle X, \varnothing, \varnothing\rangle$. Therefore, however, if we choose U, we
never get $\underset{\sim}{p} \in U, \underset{\sim}{q} \notin U$ or $\underset{\sim}{q} \in U, \underset{\sim}{p} \notin U$. Therefore, it is not $T_{0}(i i)$. Furthermore, choosing $U=\langle X,\{p\}, \varnothing\rangle$, we get $\underset{\sim}{p} \in U \subseteq \underset{\sim}{q}=\langle X,\{p\}, \emptyset\rangle$. Therefore, it is $T_{0}(i v)$. Moreover, for $p, q \in X$, nonempty open U does not exist to satisfy $\underset{\sim}{p} \notin U$ or $\underset{\sim}{q} \notin U$. Hence, it is not $T_{0}(v i)$.
Therefore, this is a topological space which is $T_{0}(i)$ and $T_{0}(i v)$, but not $T_{0}(i i), T_{0}(i i i)$ and $T_{0}(v i)$. Hence, $T_{0}(i)$ and $T_{0}(i v)$ can't assert $T_{0}(i i), T_{0}(i i i)$ or $T_{0}(v i)$.

Counterexample 2:

Let $X=\{p, q\}$, and τ be a topology on X given by $\tau=\{\underset{\sim}{X}, \underset{\sim}{\emptyset},\langle X, \emptyset,\{p\}\rangle,\langle X, \emptyset,\{q\}\rangle,\langle X, \emptyset, \emptyset\rangle\}$. We get, IOS's containing $\underset{\sim}{p}$ is $\underset{\sim}{X}$ only, and similarly IOS's containing $\underset{\sim}{q}$ is $\underset{\sim}{X}$ only. Therefore, there does not exist open U to get $\underset{\sim}{p} \in U, \underset{\sim}{q} \notin U$ or $\underset{\sim}{q} \in U, \underset{\sim}{p} \notin U$. Therefore, it is not $T_{0}(i)$. Analogously, we can conclude that it is not $T_{0}(i i i)$.

Again, we get, IOS's containing $\underset{\sim}{p}$ are $\underset{\sim}{X},\langle X,\{\emptyset, q\}\rangle$ and $\langle X, \emptyset, \emptyset\rangle$, and IOS's containing $\underset{\sim}{q}$ are $\underset{\sim}{X},\langle X, \emptyset,\{p\}\rangle$ and $\langle X, \emptyset, \emptyset\rangle$. Therefore, by choosing $U=\langle X,\{\emptyset, q\}\rangle$, we get $\underset{\sim}{p} \in U, \underset{\sim}{q} \notin U$. Therefore, it is $T_{0}(i i)$. Furthermore, choosing $U=\langle X,\{\emptyset, q\}\rangle$, we get $\underset{\sim}{p} \in U \subseteq \underset{\sim}{q}=\langle X,\{p\}, \varnothing\rangle$. Therefore, it is $T_{0}(i v)$.

Therefore, this is a topological space that is $T_{0}(i i)$ and $T_{0}(i v)$, but not $T_{0}(i)$ and $T_{0}(i i i)$. Hence, $T_{0}(i i)$ and $T_{0}(i v)$ can't assert $T_{0}(i)$ or $T_{0}(i i i)$.

Counterexample 3:

Let $X=\{p, q\}$, and τ be a topology on X given by $\tau=\{\underset{\sim}{X}, \underset{\sim}{\emptyset},\langle X\{P\}\rangle\langle\{X, p, \emptyset, X, \emptyset, p\}\rangle\} ;$
intuitionistic generator topology generated by $A=\langle X,\{\emptyset, p\}\rangle$. We get, IOS's containing $\underset{\sim}{p}$ are $\underset{\sim}{X}$ and $\langle X,\{p\}, \varnothing\rangle$ and IOS's containing $\underset{\sim}{q}$ is $\underset{\sim}{X}$ only Thus choosing $U=\langle X,\{p\}, \emptyset\rangle \in \tau$, we get $\underset{\sim}{p} \in$ $U, \underset{\sim}{q} \notin U$. Therefore, it is $T_{0}(i)$. Furthermore, choosing $U=\langle X,\{p\}, \varnothing\rangle \in \tau$ or $U=\underset{\sim}{X} \in \tau$, we fail to get $\underset{\sim}{p} \in U \subseteq \underset{\sim}{q}=\langle X,\{p\},\{q\}\rangle$, and similarly,
choosing $U=\underset{\sim}{X} \in \tau$, we fail to get $\underset{\sim}{q} \in U=\underset{\sim}{X} \subseteq$ $\underset{\sim}{p}=\langle X,\{q\},\{p\}\rangle$. Therefore, it is not $T_{0}(i i i)$.

On the other hand, IOS's containing $\underset{\sim}{p}$ are $\underset{\sim}{X}$ and $\langle X,\{p\}, \varnothing\rangle$, and open Set containing $\underset{\sim}{q}$ are $\underset{\sim}{X}$, $\langle X,\{p\}, \varnothing\rangle, \quad$ and $\quad\langle X,\{\emptyset, p\}\rangle$. Choosing $\quad U=$ $\langle X,\{\emptyset, p\}\rangle$, we get $\underset{\sim}{q} \in U, \underset{\sim}{p} \notin U$. Therefore, it is $T_{0}(i i)$. Furthermore, choosing $U=\langle X,\{\emptyset, p\}\rangle$, we get $\underset{\sim}{q} \in U \subseteq \underset{\sim}{p}=\langle X,\{q\}, \emptyset\rangle$. Therefore, it is $T_{0}(i v)$.
Therefore, this is a topological space that is $T_{0}(i)$, $T_{0}(i i)$, and $T_{0}(i v)$, but not $T_{0}(i i i)$. Hence, $T_{0}(i)$, $T_{0}(i i)$ and $T_{0}(i v)$ can't assert $T_{0}(i i i)$.

Counterexample 4:

Let $\quad X=\{p, q, r\}$, and
$\tau=\{\underset{\sim}{X}, \underset{\sim}{\emptyset},\langle\{X, p\},\{q, r\}\rangle,\langle x\{q, r\},\{p\}\rangle\} \quad$ is \quad a topology on X; It is an intuitionistic generator topology, generated by $A=\langle X,\{p\}\{q, r\}\rangle$. We get, IOS's containing $\underset{\sim}{p}$ are $\underset{\sim}{X}$ and $\langle X,\{q, r\}\{p\}\rangle \mathrm{p}, \mathrm{q}, \mathrm{r}$, and IOS's containing $\underset{\sim}{q}$ are $\underset{\sim}{X}$ and $\langle X,\{q, r\},\{p\}\rangle$, and IOS's containing $\underset{\sim}{r}$ are $\underset{\sim}{X}$ and $\langle X,\{q, r\},\{p\}\rangle$. Thus for $q, r \in X$, there does not exist open U to get $\underset{\sim}{q} \in U, \underset{\sim}{r} \notin U$ or $\underset{\sim}{r} \in U, \underset{\sim}{q} \notin U$. Therefore, it is not $T_{0}(i)$. Analogously, it is not $T_{0}(i i i)$. Additionally, for any pair from $p, q, r \in X$, choosing $U=$ $\langle X,\{p\},\{q, r\}\rangle \in \tau$, we get the necessary $\underset{\sim}{q} \notin U$ or $\underset{\sim}{r} \notin U$ as required. Hence, it is $T_{0}(v)$.
On the other hand, IOS's containing $\underset{\sim}{p}$ are $\underset{\sim}{X}$ and $\langle X,\{p\},\{q, r\}\rangle, \quad$ containing $\underset{\sim}{q} \quad$ are $\quad \underset{\sim}{X} \quad$ and $\langle X,\{q, r\},\{p\}\rangle$, and containing $\underset{\sim}{r}$ are $\underset{\sim}{X}$ and $\langle X,\{q, r\},\{p\}\rangle$. For $q, r \in X$, there does not exist open U to satisfy $\underset{\sim}{q} \in U, \underset{\sim}{r} \notin U$ or $\underset{\sim}{r} \in U, \underset{\sim}{q} \notin U$. Therefore, it is not $T_{0}(i i)$. Analogously, there is no open U to get $\underset{\sim}{q} \in U \subseteq \underset{\sim}{\underset{\sim}{r}}=\langle X,\{p, q\},\{r\}\rangle$ or $\underset{\sim}{r} \in U \subseteq \underset{\sim}{q}=\langle X,\{p, r\},\{q\}\rangle$. Therefore, it is not $T_{0}(i v)$ too. Additionally, for any pair from $p, q, r \in X$ and choosing $U=\langle X,\{p\},\{q, r\}\rangle \in \tau$, we get the necessary $\underset{\sim}{q} \notin U$ or $\underset{\sim}{r} \notin U$ as required. Hence, it is $T_{0}(v i)$.

Therefore, this is a topological space which is $T_{0}(v)$, $T_{0}(v i)$, but not $T_{0}(i), T_{0}(i i), T_{0}(i i i)$ and $T_{0}(i v)$.
Hence, $T_{0}(v)$ and $T_{0}(v i)$ can'nt assert $T_{0}(i)$ or $T_{0}(i i)$ or $T_{0}(i i i)$ or $T_{0}(i v)$.

Counterexample 5:

Let $X=\{p, q, r\}$, and τ be a topology on X given by $\tau=\{\underset{\sim}{X}, \underset{\sim}{\varnothing},\langle\{x\}\rangle,\langle\{p\}\rangle,\langle X, p, \emptyset, X, \emptyset, p, X, \emptyset, \emptyset\rangle\} ; \quad$ an intuitionistic prime generator topology generated by $A=\langle X,\{p\}, \varnothing\rangle$. We get IOS's containing $\underset{\sim}{p}$ are $\underset{\sim}{X}$ and $\langle X,\{p\}, \varnothing\rangle$, IOS's containing $\underset{\sim}{q}$ is $\underset{\sim}{X}$ only, and IOS's containing $\underset{\sim}{r}$ is $\underset{\sim}{X}$ only too. Therefore, for $q, r \in X$, there does not exist open U to get $\underset{\sim}{p} \in$ $U, \underset{\sim}{q} \notin U$ or $\underset{\sim}{q} \in U, \underset{\sim}{p} \notin U$. Therefore, it is not $T_{0}(i)$ and not $T_{0}(i i i)$ as well. In addition, for each pair from $p, q, r \in X$, choosing $U=\langle X, \emptyset, \emptyset\rangle \in \tau$, we get $\underset{\sim}{p}, \underset{\sim}{q}, \underset{\sim}{r} \notin U$. Therefore, it is $T_{0}(v)$.
Again IOS's containing $\underset{\sim}{p}$ are $\underset{\sim}{X},\langle\{X, p\}, \varnothing\rangle$ and $\langle X, \emptyset, \varnothing\rangle$, IOS's not containing $\underset{\sim}{p}$ are $\langle X,\{\emptyset p\}\rangle$ and $\underset{\sim}{\emptyset}$; IOS's containing $\underset{\sim}{q}$ are $\underset{\sim}{X},\langle X,\{p\}, \emptyset\rangle,,\langle X, \emptyset,\{p\}\rangle$ and $\langle X, \emptyset, \emptyset\rangle$, IOS's not containing $\underset{\sim}{q}$ is $\underset{\sim}{\emptyset}$ only. IOS's containing $\underset{\sim}{r}$ are $\underset{\sim}{X},\langle X,\{p\}, \emptyset\rangle\langle X, \emptyset,\{p\}\rangle$ and $\langle X, \emptyset, \emptyset\rangle$, IOS's not containing $\underset{\sim}{r}$ is $\underset{\sim}{\emptyset}$ only. We see, for $q, r \in X$, there does not exist open U to satisfy $\underset{\sim}{q} \in U, \underset{\sim}{r} \notin U$ or $\underset{\sim}{r} \in U, \underset{\sim}{q} \notin U$. Therefore, it is not $T_{0}(i i)$ too. However, for $p, q \in X$, choosing $U=$ $\langle X,\{p\}, \varnothing\rangle$, we get $\underset{\sim}{p} \in U \subseteq \underset{\sim}{q}=\langle X,\{p, r\}, \varnothing\rangle$, the similar results hold for $p, r \in X$ and for $q, r \in X$ too. Therefore, it is $T_{0}(i v)$. Similarly, for $q, r \in X$, nonempty open U does not exist to satisfy $\underset{\sim}{q} \notin U$ or $\underset{\sim}{r} \notin U$. Hence, it is not $T_{0}(v i)$.
Therefore, this is a topological space which is $T_{0}(i v)$, $T_{0}(v)$, but is not $T_{0}(i), T_{0}(i i), T_{0}(i i i)$ and $T_{0}(v i)$. Hence, $T_{0}(i v)$ and $T_{0}(v)$ can't assert $T_{0}(i)$ or $T_{0}(i i)$ or $T_{0}(i i i)$ or $T_{0}(v i)$.

Properties

This section proves that our defined notions satisfy the hereditary and topological properties. Moreover,
we prove that the two of these notions are productive and projective.
Theorem: A homeomorphic image of a $T_{0}(i)$ space is a $T_{0}(i)$ space.

Proof.

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a homeomorphism, i.e., a bijection open and continuous (by definition in the primaries section). Suppose that (X, τ) is a $T_{0}(i)$ space. We want to show that (Y, σ) is $T_{0}(i)$ too.
Choose two arbitrary $y_{1}, y_{2} \in Y$, with $y_{1} \neq y_{2}$, then $f^{-1}\left(y_{1}\right), f^{-1}\left(y_{2}\right) \in X$, And since f is a bijection, so is f^{-1}, with its existence. In particular, as f^{-1} is oneone, $f^{-1}\left(y_{1}\right) \neq f^{-1}\left(y_{2}\right)$ in X. Suppose that $f^{-1}\left(y_{1}\right)=x_{1}$ and $f^{-1}\left(y_{2}\right)=x_{2}$. As (X, τ) is a $T_{0}(i)$ space, with $x_{1} \neq x_{2}$ in X, then there exists $U \in \tau$ such that $x_{\sim} \in U, x_{2} \notin U$ or $x_{2} \in U, x_{\sim} \notin U$. Now $x_{\sim}^{x} \in U, x_{\sim} \notin U$ or $x_{\sim} \in U, \underset{\sim}{x_{1}} \notin U$ implies $f\left(x_{\sim}\right) \in$ $f(U), f\left(x_{2}\right) \notin f(U) \quad$ or $\quad f\left(x_{2}\right) \in f(U), f\left(x_{\sim}\right) \notin$ $f(U)$. As f is open, $f(U)=R($ say $) \in \sigma$. Since f is onto, $f\left(x_{\sim}\right)=f\left(f^{-1}\left(y_{1}\right)\right)=y_{\sim}^{y_{1}}$ and $f\left(x_{\sim}\right)=$ $f\left(f^{-1}\left(y_{2}\right)\right)=y_{\sim}$ [by corollary in the preliminaries section]. Therefore, we get $R \in \sigma$ such that $y_{\sim} \in$ $R, y_{\sim} \notin R$ and $y_{\sim} y_{\sim} \in R, y_{\sim} \notin R$.
Theorem: Homeomorphic image of a $T_{0}(r)$ space is a $T_{0}(r)$ space for $r=i, i i, \ldots, v i$.
The proof is the same for $r=i i, i i i, \ldots, v i$. as for $r=i$ in the above theorem.
Each $T_{0}(r)$ separation axioms for $r=i, i i, \ldots, v i$ is a topological property.
Theorem: Inverse homeomorphic image of a $T_{0}(i)$ space is a $T_{0}(i)$ space.

Proof.

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a homeomorphism, i.e., a bijection open and continuous. Suppose that (Y, σ) is a $T_{0}(i)$ space. We want to show that (X, τ) is $T_{0}(i)$ too. For any two arbitrary $x_{1}, x_{2} \in X$, with $x_{1} \neq x_{2}$, since f is a bijection, particularly one-one, therefore, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ in Y.

Choose two arbitrary $x_{1}, x_{2} \in X$, with $x_{1} \neq x_{2}$, then $f\left(x_{1}\right), f\left(x_{2}\right) \in Y$, And since f is a bijection, and in particular one-one, therefore, $f\left(x_{1}\right) f\left(x_{2}\right)$ in Y.

Suppose $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. As (Y, σ) is a $T_{0}(i)$ space, with this $y_{1} \neq y_{2}$ in Y, there must exist $R \in \sigma$ such that $y_{\sim} \in R, y_{2} \notin R$ or $y_{2} \in R, y_{1} \notin R$. Now $y_{\sim} \in R, y_{2} \notin R \quad$ or $\quad y_{\sim} \in R, y_{\sim} \notin R$ implies $f^{-1}\left(y_{\sim}\right) \in f^{-1}(R), f^{-1}\left(y_{\sim}\right) \notin f^{-1}(R)$ $f^{-1}\left(y_{\sim}\right) \in f(R), f^{-1}\left(y_{\sim}\right) \notin f^{-1}(R)$. As f is continuous, and $R \in \sigma, \quad$ therefore, $\quad f^{-1}(R)=$ $U($ say $) \in \tau$. Since f is one-one, $f^{-1}\left(y_{1}\right)=$ $f^{-1}(f(\underset{\sim}{x} 1))={\underset{\sim}{1}}_{1}^{x}$ and $f^{-1}\left({\underset{\sim}{2}}_{2}\right)=f^{-1}(f(\underset{\sim}{x}))=x_{\sim}$ [By corollary in the preliminaries section]. Therefore, we get $U \in \sigma$ such that $\quad x_{\sim} \in U, \underset{\sim}{x} \notin U$ and $x_{\sim} \in U, x_{\sim} \notin U$.

Theorem: Inverse homeomorphic image of a $T_{0}(r)$ space is a $T_{0}(r)$ space for $r=i, i i, \ldots, v i$.

The proof is the same for $r=i i, \ldots, v i$. as for $r=i$ in the above theorem.

Theorem: If $(X,) \tau$ is $T_{0}(i)$, then for any subset $A \subseteq X$, the subspace $\left(A, \tau_{A}\right)$ is also $T_{0}(i)$.

Proof.

Let (X, τ) be a $T_{0}(i)$ space and $A \subseteq X$, with the subspace topology τ_{A} on A. We want to show that $\left(A, \tau_{A}\right)$ is also $T_{0}(i)$.

Let $x, y \in A$, with $x \neq y$, then $x, y \in X$, with $x \neq y$, hold the same. As (X, τ) is a $T_{0}(i)$ space, therefore, we must have $U \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{y} \notin U$ or $y \in U, \underset{\sim}{x} \notin U$. Now, for this $U \in \tau$, we get $U_{A}=$ $U \cap A$ in τ_{A}. This must satisfy $\underset{\sim}{x} \in U_{A}, y_{\sim} \notin U_{A}$ or $y_{\sim} \in U_{A}, \underset{\sim}{x} \notin U_{A}$. Hence, $\left(A, \tau_{A}\right)$ is $T_{0}(i)$.
Theorem: If $(X,) \tau$ is $T_{0}(r)$, then for any subset $A \subseteq X$, the subspace $\left(A, \tau_{A}\right)$ is also $T_{0}(r)$ for $r=i i, i i i, \ldots, v i$.

The proof is the same for $r=i i, i i i \ldots, v i$. as for $r=i$ in the above theorem.

This shows that each of $T_{0}(r)$ for $r=i, i i, \ldots, v i$ is hereditary.

Theorem: If $(X,) \tau$, and (Y, σ) be two ITSs. If
(a) $(X,) \tau$, and (Y, σ) both are $T_{0}(i)$, then so is $(X \times Y, \sigma \times \tau)$.
(b) $(X,) \tau$, and (Y, σ) both are $T_{0}(i i)$, then so is $(X \times Y, \sigma \times \tau)$.

Proof

(a) Let (X, τ) and (Y, σ) are both $T_{0}(i)$. We want to prove that $(X \times Y, \sigma \times \tau)$ is $T_{0}(i)$ too. Choose arbitrary points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in $X \times Y$, with $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$. Then either $x_{1} \neq x_{2}$ or $y_{1} \neq y_{2}$. For $x_{1} \neq x_{2}$ in X, as (X, τ) is $T_{0}(i)$, there must exist $U \in \tau$ such that such that $x_{\sim} \in U, x_{2} \notin U$ or $x_{\sim} \in U, \underset{\sim}{x} \notin U$. Then we have IOS's $U \times \underset{\sim}{Y}=$ $\left\langle X \times Y, U_{1} \times Y,\left(U_{2}^{c} \times \phi^{c}\right)^{c}\right\rangle$ in $\tau \times \sigma$ such that $\left(x_{1}, y_{1}\right) \in U \times \underset{\sim}{Y}, \quad\left(x_{2}, y_{2}\right) \notin U \times \underset{\sim}{Y} \quad$ or $\quad\left(x_{2}, y_{\sim}\right) \in$ $U \times \underset{\sim}{Y}, \quad\left(x_{1}, y_{1}\right) \notin U \times \underset{\sim}{Y}$.

Similarly, for $y_{1} \neq y_{2}$ in Y, as (Y, σ) is $T_{0}(i)$, there must exist $R \in \sigma$ such that such that $y_{\sim} \in R, y_{2} \notin R$ or $y_{\sim} \in R, y_{\sim} \notin R$. Then we have IOS's $\underset{\sim}{X} \times R=$ $\left\langle X \times Y, X \times R_{1},\left(\phi^{c} \times R_{2}^{c}\right)^{c}\right\rangle$ in $\tau \times \sigma$ such that $\left(x_{1}, y_{\sim}\right) \in \underset{\sim}{X} \times R, \quad\left(x_{2}, y_{2}\right) \notin \underset{\sim}{X} \times R \quad$ or $\quad\left(x_{2}, y_{\sim}\right) \in$ $\underset{\sim}{X} \times R,\left(x_{1}, y_{1}\right) \notin \underset{\sim}{X} \times R$.
(b) Let (X, τ) and (Y, σ) are both $T_{0}(i i)$. We want to prove that $(X \times Y, \sigma \times \tau)$ is T_{0} (ii) too. Choose arbitrary points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in $X \times Y$, with $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$. Then either $x_{1} \neq x_{2}$ or $y_{1} \neq y_{2}$. For $x_{1} \neq x_{2}$ in X as (X, τ) is $T_{0}(i i)$, there must exist $U \in \tau$ such that $\underset{\sim}{x_{1}} \in U, \underset{\sim}{x_{2}} \notin U$ or $\underset{\sim}{x_{2}} \in U, \underset{\sim}{x_{1}} \notin U$. Then we have IOS's $U \times \underset{\sim}{Y}=\left\langle X \times Y, U_{1} \times\right.$ $\left.Y,\left(U_{2}^{c} \times \phi^{c}\right)^{c}\right\rangle$ in $\tau \times \sigma$ such that $\left(x_{1},{\underset{\sim}{r}}^{y_{1}}\right) \in U \times \underset{\sim}{\mathrm{Y}}$, $\left(x_{2}, y_{2}\right) \notin U \times \underset{\sim}{Y}$ or $\left(x_{2}, y_{z}\right) \in U \times \underset{\sim}{Y}, \quad\left(x_{1}, y_{\tilde{\sim}}\right) \notin$ $U \times \underset{\sim}{\mathrm{Y}}$.
Similarly, for $y_{1} \neq y_{2}$ in Y, as (Y, σ) is $T_{0}(i i)$, there must exist $R \in \sigma$ such that such that $\underset{\sim}{y_{1}} \in R, y_{\tilde{\sim}}^{y_{2}} \notin R$ or $\underset{\sim}{y_{2}} \in R, \underset{\sim}{y_{1}} \notin R$. Then we have IOS's $\underset{\sim}{X} \times R=$ $\left\langle X \times Y, X \times R_{1},\left(\phi^{c} \times R_{2}^{c}\right)^{c}\right\rangle$ in $\tau \times \sigma$ such that $\left(x_{1}, y_{\sim}\right) \in \underset{\sim}{X} \times R, \quad\left(x_{2}, y_{2}\right) \notin \underset{\sim}{X} \times R \quad$ or $\quad\left(x_{2}, y_{\tilde{\sim}}\right) \in$ $\underset{\sim}{X} \times R, \quad\left(x_{1}, y_{2}\right) \notin \underset{\sim}{X} \times R$.

Hence, $T_{0}(i)$ and $T_{0}(i i)$ are productive.
Theorem: If $(X,) \tau$, and (Y, σ) be two ITS's. If
(a) $(X \times Y, \sigma \times \tau)$ is $T_{0}(i)$, then $(X,) \tau$, and (Y, σ) both are $T_{0}(i)$.
(b) $(X \times Y, \sigma \times \tau)$ is $T_{0}(i i)$, then $(X,) \tau$, and (Y, σ) both are $T_{0}(i i)$.

Proof.

(a) Let $(X \times Y, \sigma \times \tau)$ is $T_{0}(i)$. We want to show that (X, τ) and (Y, σ) are $T_{0}(i)$.
To show (X, τ) follows $T_{0}(i)$, choose arbitrary points $x_{1}, x_{2} \in X$, with $x_{1} \neq x_{2}$, and fix $\mathrm{y} \in Y$, then in $X \times Y,\left(x_{1}, y\right) \neq\left(x_{2}, y\right)$, and as $(X \times Y, \sigma \times \tau)$ is $T_{0}(i)$, we must have $U \times R \in \tau \times \sigma$ such that $\left(x_{1_{\sim}}, y\right) \in U \times R, \quad\left(x_{2}, y\right) \notin U \times R$ or $\left(x_{\sim}, y\right) \in U \times$ $R, \quad\left(x_{1}, y\right) \notin U \times R$. This implies that $\left(x_{1}, y\right) \in$ $U_{1} \times R_{1},\left(x_{2}, y\right) \notin U_{1} \times R_{1} \quad$ or $\left(x_{2}, y\right) \in U_{1} \times R_{1}$, $\left(x_{1}, y\right) \notin U_{1} \times R_{1}$. More specifically, we get $x_{1} \in U_{1}, x_{2} \notin U_{1}$ or $x_{2} \in U_{1}, x_{1} \notin U_{1}$. Therefore, for $x_{1}, x_{2} \in X$, with $x_{1} \neq x_{2}$, we get $U \in \tau$ such that $\underset{\sim}{x_{1}} \in U, x_{\sim}^{x} \notin U$ or $x_{\sim}^{x} \in U, x_{\sim} \notin U$. This shows that (X, τ) is $T_{0}(i)$.

Now, to show (Y, σ) is $T_{0}(i)$, choose arbitrary points $y_{1}, y_{2} \in Y$, with $y_{1} \neq y_{2}$, and fix $x \in X$. Then in $X \times Y,\left(x, y_{1}\right) \neq\left(x, y_{2}\right)$ and as $(X \times Y, \sigma \times \tau)$ is $T_{0}(i)$, we must have $U \times R \in \tau \times \sigma$ such that $\left(x, y_{1}\right) \in U \times R,\left(x, y_{2}\right) \notin U \times R$ or $\left(x, y_{2}\right) \in U \times$ $R,\left(x, y_{1}\right) \notin U \times R$. This implies that $\left(x, y_{1}\right) \in U_{1} \times$ $R_{1},\left(x, y_{2}\right) \notin U_{1} \times R_{1}$ or $\left(x, y_{2}\right) \in U_{1} \times R_{1},\left(x, y_{1}\right) \notin$ $U_{1} \times R_{1}$. More specifically, we get $y_{1} \in R_{1}, y_{2} \notin R_{1}$ or $y_{2} \in R_{1}, y_{1} \notin R_{1}$. Therefore, for $y_{1}, y_{2} \in Y$, with $y_{1} \neq y_{2}$, we get $R \in \sigma$ such that $y_{\sim} \in R, y_{\sim} \notin R$ or $y_{\sim} \in R, y_{\sim} \notin R$. This shows that (Y, σ) is $T_{0}(i)$.
(b) Let $(X \times Y, \sigma \times \tau)$ is $T_{0}(i i)$. We want to show that (X, τ) and (Y, σ) are $T_{0}(i i)$.

To show (X, τ) follows $T_{0}(i i)$, choose arbitrary points $x_{1}, x_{2} \in X$, with $x_{1} \neq x_{2}$, and fix $\mathrm{y} \in Y$ then in $X \times Y,\left(x_{1}, y\right) \neq\left(x_{2}, y\right)$ and as $(X \times Y, \sigma \times \tau)$ is $T_{0}(i i)$, we must have $U \times R \in \tau \times \sigma$ such that $\left(x_{\tilde{z}}^{x_{\sim}}, y\right) \in U \times R,\left(\underset{\sim}{x_{2}}, y\right) \notin U \times R$ or $\left(x_{\underset{\sim}{2}}^{x_{\tilde{z}}} y\right) \in U \times$ $R,\left(x_{\underset{\sim}{1}}, y\right) \notin U \times R$. This implies that $\left(x_{1}, y\right) \notin U_{2} \times$
$R_{2},\left(x_{2}, y\right) \in U_{2} \times R_{2} \quad$ or $\quad\left(x_{2}, y\right) \notin U_{2} \times R_{2}$, $\left(x_{1}, y\right) \in U_{2} \times R_{2}$. we get $x_{1} \notin U_{2}, x_{2} \in U_{2}$ or $x_{2} \notin U_{2}, x_{1} \in U_{2}$. Therefore, for $x_{1}, x_{2} \in X$, with $x_{1} \neq x_{2}$, we get $U \in \tau$ such that $\underset{\sim}{x_{1}} \in U, \underset{\sim}{x} \not \underset{2}{x_{2}} \notin$ or $\underset{\sim}{x_{2}} \in U, \underset{\sim}{x_{1}} \notin U$. This shows that (X, τ) is $T_{0}(i i)$.

Now, to show (Y, σ) is $T_{0}(i i)$, choose arbitrary points $y_{1}, y_{2} \in Y, Y, y_{1} \neq, y_{2}$, and Fix $x \in X$. Then in $X \times Y,\left(x, y_{1}\right) \neq\left(x, y_{2}\right)$ and as $(X \times Y, \sigma \times \tau)$ is $T_{0}(i i)$, we must have $U \times R \in \tau \times \sigma$ such that $\left(x, \underset{\sim}{y_{1}}\right) \in U \times R, \quad\left(x, \underset{\sim}{y_{2}}\right) \notin U \times R$ or $\left(x,{\underset{\sim}{z}}_{2}^{y_{2}}\right) \in U \times$ $R, \quad\left(x,{\underset{\sim}{z}}_{1}^{y_{1}}\right) \notin U \times R$. This implies that $\left(x, y_{1}\right) \notin$ $U_{2} \times R_{2},\left(x, y_{2}\right) \in U_{2} \times R_{2} \quad$ or $\left(x, y_{2}\right) \notin U_{2} \times R_{2}$, $\left(x, y_{1}\right) \in U_{2} \times R_{2}$. More specifically, we get $y_{1} \notin R_{2}, y_{2} \in R_{2}$ or $y_{2} \notin R_{2}, y_{1} \in R_{2}$. Hence, for $y_{1}, y_{2} \in Y$, with $y_{1} \neq y_{2}$, we get $R \in \sigma$ such that $\underset{\sim}{y_{1}} \in R, \underset{\sim}{y_{2}} \notin R$ or $\underset{\sim}{y_{2}} \in R, \underset{\sim}{y_{1}} \notin R$. This shows that (Y, σ) is $T_{0}(i i)$. Hence, $T_{0}(i)$ and $T_{0}(i i)$ are projective.

Conclusions

In this paper, we provide some new and modified notions for T_{0} separation axioms, analyze interrelationships among them, and give necessary counter examples for non-implications. We show that our defined notions satisfy hereditary and topological properties, and two of these given notions are productive and projective. These results are very encouraging for further study in this area, especially for other higher separation axioms.

Credit authorship contribution statement

Rajendra Chandra Bhowmik:

Conceptualization, Investigation, Methodology, Formal analysis, Writing-original draft, Writing review editing;
Md. Sahadat Hossain: Validation, Supervision.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Ahmed E, Hossain MS and Ali DM. On intuitionistic fuzzy T_{0} spaces. J. Bangladesh Acad. Sci. 2014a; 38(2): 197-207.

Ahmed E, Hossain MS and Ali DM. On intuitionistic fuzzy T_{1} spaces. J. Phys. Sci. 2014b; 19: 59-66.

Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986; 20(1): 87-96.

Atanassov KT. Intuitionistic fuzzy sets. Int. J. Bioautomation, 2016; 20(S1): S1-S6.

Bayhan S and Coker D. On fuzzy separation axioms in intuitionistic fuzzy topological spaces. BUSEFAL. 1996; 67: 77-87.

Bayhan S and Coker D. On separation axioms in intuitionistic topological space. Int. J. Math. Math. Sci. 2001; 27(10): 621-630.

Coker D and Demirci M. On intuitionistic fuzzy points. Notes on Intuitionistic Fuzzy Sets. 1995; 1(2): 79-84.

Coker D. A note on intuitionistic sets and intuitionistic points. Turkish J. Math. 1996; 20(3): 343-351.

Coker D. An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets Syst. 1997; 88 (1): 81-89.

Coker D. An introduction to intuitionistic topological spaces. BUSEFAL. 2000; 81: 51-56.

Islam MS, Hossain MS and Asaduzzaman M. Level separation on intuitionistic fuzzy T_{1} spaces. J. Bangladesh Acad. Sci. 2018a; 42(1): 73-85.

Islam R, Hossain MS and Amin SR. Some properties of intuitionistic $L-T_{0}$ spaces. J. fuzzy Set. Valued Anal. 2018b; 2018(2): 77-85.

Mahbub MA, Hossain MS and Hossain MA. Connectedness concept in intuitionistic fuzzy topological spaces. Notes on Intuitionistic Fuzzy Sets. 2021; 27(1): 72-82.

Mahbub MA, Hossain MS and Hossain MA. On (r, s)-connectedness in intuitionistic fuzzy topological spaces. Notes on Intuitionistic Fuzzy Sets. 2022; 28 (1): 23-36.

Mahbub MA, Hossain MS and Hossain MA. On Qcompactness in intuitionistic fuzzy topological spaces. J. Bangladesh Acad. Sci. 2019; 43(2): 197-230.

Prova TT and Hossain MS. Intuitionistic fuzzy based regular and normal spaces. Notes on Intuitionistic Fuzzy Sets. 2020; 26(4):53-63.

Prova TT and Hossain MS. Separation axioms in intuitionistic topological spaces. Ital. J. Pure Appl. Math. 2022; 48: 986-995.

Selvanayaki S and Ilango G. Generators in intuitionistic topological spaces. Int. J. Pure Appl. Math. 2017; 116 (12): 209-218.

Selvanayaki S and Ilango G. Homeomorphism on intuitionistic topological spaces. Ann. Fuzzy Math. Inform. 2016; 11 (6): 957-966.

Zadeh LA. Fuzzy sets. Information and Control. 1965; 8(3): 338-353.

[^0]: *Torresponding author:<rajcumath @ yahoo.com>
 ${ }^{l}$ Department of Mathematics, Rajshahi University, Rajshahi, Bangladesh

