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 In this study, we investigate the triangle group 𝐺 = (
1

1−2𝑠
, ∞, ∞) associated 

with the generalized modular equation 
𝐹1(𝑠,1−𝑠;1;1−𝛽)2

𝐹1(𝑠,1−𝑠;1;𝛽)2
= 𝑝

𝐹1(𝑠,1−𝑠;1;1−𝛼)2

𝐹1(𝑠,1−𝑠;1;𝛼)2
, 

where 𝑝 ∈ ℕ \ {1} and 𝑠 ∈ (0,
1

2
]. We determine the generators of group 𝐺 

and prove that the group 𝐺 is a subgroup of the Hecke group 𝐻𝑘 . Also, we 

show that 𝐺 is an even-type subgroup of 𝐻𝑘 . We provide examples in the 

cases of Ramanujan’s theories of signatures 2, 3, and 4. 

2020 Mathematics Subject Classification: 11F06; 33C05. 

 

Introduction 
 
 

The great mathematician Srinivasa Ramanujan 

investigated the generalized modular equation 

𝐹1(𝑠,1−𝑠;1;1−𝛽)2

𝐹1(𝑠,1−𝑠;1;𝛽)2

= 𝑝
𝐹1(𝑠,1−𝑠;1;1−𝛼)2

𝐹1(𝑠,1−𝑠;1;𝛼)2

,        (1.1) 

where 

𝛼, 𝛽 ∈ (0, 1), 𝑠 ∈ (0,
1

2
] , 𝑝 ∈ ℕ \ {1}, 

and provided many remarkable formulas and 

identities (Berndt, 1991; 1998). Here, 𝐹12  is the 

Gaussian hypergeometric function defined as 

𝐹1(𝑎, 𝑏;  c; 𝛼)2 = ∑
(𝑎, 𝑗)(𝑏, 𝑗)

(𝑐, 𝑗) 𝑗!

∞

𝑗=0

𝛼𝑗 , 

where 𝑎, 𝑏, 𝑐 ∈ ℂ with 𝑐 ≠ 0, −1, −2, … , |𝛼| < 1, 

and (𝑎, 𝑗) denotes the Pochhammer symbol given by 

(𝛼, 𝑗) = {
1                                            if 𝑗 = 0,

𝛼(𝛼 + 1) ⋯ (𝛼 + 𝑗 − 1) if 𝑗 ≥ 1.
 

The integer 𝑝 is called the degree or order, and 
1

𝑠
 is 

called the signature of the equation (1.1).  

The function 𝐹12  can be extended to the slit plane ℂ\ 

[1,+∞) by Euler’s integral representation formula 

(Bateman, 1953; Whittaker and Watson, 1927). The 

identities given by Ramanujan were published in his 

unpublished notebooks without original proofs 

(Ramanujan, 1957; 1988). 

Ramanujan mainly investigated the generalized 

modular equation in the theories of signatures 2, 3, 4, 

and 6. Before the 1980s, there were no organized and 

developed theories associated with the generalized 

modular equation in the theories of signatures 2, 3, 4, 

and 6. Later, many mathematicians studied 

Ramanujan’s theories and tried to prove the results 

provided by Ramanujan. For example, Borwein and 

Borwein (1987), Berndt (1985; 1989; 1991; 2006), 

and Berndt et al. (1995) proved many results given 

by Ramanujan and organized the theories related to 

Ramanujan’s modular equation for 
1

𝑠
= 2, 3, 4, and 6. 

In their proofs, they used hypergeometric functions 

and the nontrivial identities for Jacobi’s theta 

functions in addition to several new ideas. Also, 

Anderson et al. (1997) and Anderson et al. (2000) 

have studied Ramanujan’s theories of modular 

equations from other perspectives. Alam and Sugawa 

(2022) provided a geometric method to prove 

Ramanujan’s modular equations arising from the 
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generalized modular equation. Alam (2024) studied 

the Hecke groups associated with the generalized 

modular equation in the theories of signatures 
1

𝑠
= 2, 

3, and 4. 

This paper studies the triangle groups associated with 

the generalized modular equation. We show that the 

triangle group 𝐺 = (
1

1−2𝑠
, ∞, ∞), where 𝑠 ∈ ( (0,

1

2
], 

is generated by 

𝐴1 = (
1 2 sin 𝜋𝑠
0 1

) 

and  

𝐴2 = (
1 0

2 sin 𝜋𝑠 1
), 

 

and is related to the generalized modular equation. The 

generators of the triangle group 𝐺 can also be expressed by 
 

𝐴1 = (
1 2 sin 𝜋𝑠
0 1

) 

and  

𝐴′2 = (4 sin2𝜋𝑠 − 1 −2 sin 𝜋𝑠
2 sin 𝜋𝑠 −1

) 

 

where 𝑠 ∈ (0,
1

2
]. For 𝑘 ≥ 3, the Hecke group 𝐻𝑘 is 

generated by 

 

 

 

 

𝑈 = (
1 2 cos

𝜋

𝑘
0 1

) 

and  

𝑉 = (
0 −1
1 0

). 

 

We prove that the triangle group 𝐺 is a subgroup of 

𝐻𝑘 and show that 𝐺 is an even-type subgroup of 𝐻𝑘 . 

Finally, we give examples in the cases of 

Ramanujan’s theories of signatures 
1

𝑠
= 2, 3, and 4. 

 

Preliminaries 

Let us consider the following hypergeometric 

differential equation 
 

𝛼(1 − 𝛼)
𝑑2𝑤

𝑑𝛼2 + {𝑐 − (𝑎 + 𝑏 + 1)𝛼}
𝑑𝑤

𝑑𝛼
 − 𝑎𝑏𝑤 = 0.    

                                                                              (2.1) 
 

The equation (2.1) has two linearly independent 

solutions 
 

𝑤1 = 𝐹1(𝑎, 𝑏;  c; 𝛼)2  

and  

𝑤2 = 𝐹1(𝑎, 𝑏;  a + b + 1 − c; 1 − 𝛼).2  
 

 

 

 

 
Fig. 1. The map 𝒈 transforms the upper half of the 𝜶-plane to 𝑻 on the 𝒈-plane. 
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We denote the upper half-plane {𝛼 ∈ ℂ ∶ Im 𝛼 > 0} 

by ℋ. If 

𝑔(𝛼) = 𝑖
𝐹1(𝑎, 𝑏;  a + b + 1 − c; 1 − 𝛼)2

𝐹1(𝑎, 𝑏;  c; 𝛼)2

, 

then 𝑔 maps ℋ conformally onto a hyperbolic 

triangle 𝑇 (Fig. 1). At the vertices 𝑔(0), 𝑔(1), and 

𝑔(∞), the interior angles of 𝑇 are (1 − 𝑐)𝜋, (𝑐 − 𝑎 −

𝑏)𝜋 and (𝑏 − 𝑎)𝜋, respectively (Nehari, 1952). 
 

For 𝑠 ∈ (0,
1

2
], let 

𝑎 = 𝑠, 𝑏 = 1 − 𝑠  and  𝑐 = 1. 

Then 

 𝑔(𝛼) = 𝑖
𝐹1(𝑠, 1 − 𝑠;  1; 1 − 𝛼)2

𝐹1(𝑠, 1 − s;  1; 𝛼)2

.     (2.2) 

The following lemma describes the above facts. 
 

Lemma 2.1 (Lemma 4.1 of (Anderson et al., 2010)). 

Consider the map 

𝑔(𝛼) = 𝑖
𝐹1(𝑠, 1 − 𝑠;  1; 1 − 𝛼)2

𝐹1(𝑠, 1 − 𝑠;  1; 𝛼)2

, 

where 𝑠 ∈ (0,
1

2
], then 𝑔 maps  

ℋ = {𝛼 ∈ ℂ ∶ 𝐼𝑚 𝛼 > 0} 

 onto the following hyperbolic triangle 

𝑇 = { 𝑔 ∈ ℋ: 0 < 𝑅𝑒 𝑔 < 𝑐𝑜𝑠
(1 − 2𝑠)𝜋

2
, 

     |2𝑔 𝑐𝑜𝑠
(1 − 2𝑠)𝜋

2
− 1| > 1} 

 

in the 𝑔-plane. At the vertices 𝑔(∞) = 𝑒𝑖
(1−2𝑠)

 2 , 

𝑔(0) = ∞ and 𝑔(1) = 0, the interior angles of 𝑇 are 

(1 − 2𝑠)𝜋, 0, and 0, respectively. 

The following set of matrices 
 

{(
𝑎 𝑏
𝑐 𝑑

) ∶ 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ,   𝑎𝑑 − 𝑏𝑐 = 1} 

 

constructs a group known as the unimodular group 

and is denoted by SL2(ℝ). The group PSL2(ℝ) is 

defined as 
 

PSL2(ℝ) = SL2(ℝ)/{±𝐼2}, 

where 𝐼2 is the 2 × 2 identity matrix (Serre, 1973; 

Katok, 1992). The action of the group P L2(ℝ) on ℋ 

is as follows: 
 

𝛼 ↦ (
𝑎 𝑏
𝑐 𝑑

) 𝛼 =
𝑎𝛼 + 𝑏

𝑐𝛼 + 𝑑
, 

 

where (
𝑎 𝑏
𝑐 𝑑

) ∈  PSL2(ℝ) and 𝛼 ∈ ℋ. 

Consider the boundary 𝜕ℋ = ℝ ∪ {∞} of ℋ. 

Vertical lines and semicircles orthogonal to the real 

axis, known as geodesics (Katok, 1992). The group 

PSL2(ℝ), together ith the transformation  

𝛾(𝛼) = −𝛼 

construct the group Isom(ℋ) of isometries of ℋ 

(Gannon, 2007), i.e., 

Isom(ℋ) ≅ PSL2(ℝ) ∪ 𝛾PSL2(ℝ) 

and the group of analytic automorphisms of ℋ, 

denoted by Aut(ℋ), is the group PSL2(ℝ). 

Let the internal angles of a triangle be 
𝜋

𝑚1
, 

𝜋

𝑚2
,  

𝜋

𝑚3
, 

then the triangle is 

(i) Euclidean if 
1

𝑚1
+

1

𝑚2
+

1

𝑚3
= 1, 

(ii) spherical if 
1

𝑚1
+

1

𝑚2
+

1

𝑚3
> 1, 

(iii) hyperbolic if 
1

𝑚1
+

1

𝑚2
+

1

𝑚3
< 1. 

In our study, we are interested in the hyperbolic 

triangle. We will denote the hyperbolic triangle by 𝑇. 

If the angles of two hyperbolic triangles are the 

same, then they are congruent. The area of 𝑇 depends 

on the angles 
𝜋

𝑚1
, 

𝜋

𝑚2
,  

𝜋

𝑚3
 and is given by the 

following theorem known as Gauss-Bonnet theorem 

(Katok, 1992)). 
 

Theorem 2.2 (Gauss-Bonnet). Let 𝑇 be a hyperbolic 

triangle with angles 
𝜋

𝑚1
,

𝜋

𝑚2
, and 

𝜋

𝑚3
, then 

𝐴𝑟𝑒𝑎(𝑇) = 𝜋 (1 −
1

𝑚1
−

1

𝑚2
−

1

𝑚3
). 

 

The upper half-plane ℋ can be tessellated by the 

successive reflections of the hyperbolic triangle 𝑇 

about its sides. Let 𝐾 be the group generated by the 

three reflections of 𝑇 about its sides; then, it is the 
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discrete subgroup of Isom(ℋ). Let 𝐺 be the 

subgroup of 𝐾 such that 𝐺 has only orientation-

preserving isometries. Then, 

𝐺 = 𝐾 ∩ PSL2(ℝ). 

Group 𝐺 is the triangle group with signature 

(𝑚1, 𝑚2, 𝑚3). One can also represent the triangle 

group 𝐺 as 

⟨𝐴, 𝐵| 𝐴𝑚1 = 𝐵𝑚2 = (𝐴𝐵)𝑚3 = 1⟩, 
 

where 𝐴, 𝐵 and 𝐴𝐵 represent the rotations, 

respectively, by 
2𝜋

𝑚1
,  

2𝜋

𝑚2
 and 

2𝜋

𝑚3
 about the vertices of 

𝑇. 

Let 𝐷 be a subset of ℋ, and let 𝐺 be a subgroup of 

PSL2(ℝ). If the following conditions are satisfied, 

then 𝐷 is called a fundamental domain for 𝐺 

(Shimura, 1971): 

(i) all points of 𝐷 are 𝐺-inequivalent, 

(ii) the subset 𝐷 is open and connected, 

(iii) if  𝑥 ∈ ℋ and 𝑦 is a point of the closure of 

𝐷, then 𝑥 is 𝐺-equivalent to 𝑦. 

When the subgroup 𝐺 is a triangle group, the 

fundamental domain for 𝐺 is given by the hyperbolic 

triangle 𝑇 and its reflection about one of its sides. 

Note that one can construct a fundamental domain 

for a subgroup of PSL2(ℝ) in different ways.  
 

For 𝑘 ≥ 3, the Hecke group 𝐻𝑘 is generated by 

𝑈 = (
1 𝛿𝑘

0 1
) 

and 

𝑉 = (
0 −1
1 0

), 

 

where 𝛿𝑘 = 2 cos
𝜋

𝑘
. The element 𝑉 has a fixed point 

at 𝛼 = 𝑖 of order 2. The Hecke group 𝐻𝑘 is a discrete 

subgroup of PSL2(ℝ). For 𝑙 ≥ 2, let 𝑘 = 2𝑙. Then 𝐻 𝑙 

is isomorphic to ℤ ∗ ℤ/𝑙ℤ and 𝐺 = 〈𝑈2𝑙 , 𝑉2𝑙〉 is a 

normal subgroup of 𝐻2𝑙 of index 2, where 

𝑈2𝑙 = (
1 𝛿2𝑙

0 1
) 

and  

𝑉2𝑙 = 𝑉−1𝑈2𝑙
−1𝑉 = (

1 0
𝛿2𝑙 1

). 

If 𝑙 = 2 and 𝑙 = 3, then the Hecke subgroups 𝐻4 and 

𝐻6 are important and interesting as the elements of 

𝐻4 and 𝐻6 are completely known (Parson, 1977). 

Note that the Hecke subgroup 𝐻3 is the classical 

modular group PSL2(ℤ) generated by 
 

(
1 1
0 1

)   and  (
0 −1
1 0

). 
 

The elements of Hecke group 𝐻𝑘 are of the following 

two types: 

(1) (
𝑎𝛿𝑘 𝑏

𝑐 𝑑𝛿𝑘
), where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ and 

𝑎𝑑𝛿𝑘
2 − 𝑏𝑐 = 1,  

(2) (
𝑎 𝑏𝛿𝑘

𝑐𝛿𝑘 𝑑
), where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ and   

𝑎𝑑 − 𝑏𝑐𝛿𝑘
2 = 1. 

 

Type (1) is known as the odd type Hecke subgroup, 

and type (2) is known as the even type Hecke 

subgroup (Cangul, 1997; Cangul and Singerman, 

1998). 

Fig. 2. Fundamental domain for 𝑯𝒌. 
 

Let 𝑊𝑘 = 𝑈𝑉 = (
𝛿𝑘 −1
1 0

). Then, 𝑊𝑘 has a fixed 

point at 𝑒𝑖𝜋/𝑘  of order 𝑘. The following set of points 

𝐷𝑘 = {𝛼 ∈ ℋ: |𝛼| ≥ 1, |𝑅𝑒 𝛼| ≤ cos
𝜋

𝑘
} 

is a fundamental domain for the Hecke group 𝐻𝑘 

(Fig. 2). One can easily see that the group 𝐻𝑘 is a 

triangle group with signature (2, 𝑘, ∞). 
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Main Results 
 

Theorem 3.1. The triangle group associated with the 

generalized modular equation 
 

𝐹1(𝑠, 1 − 𝑠; 1; 1 − 𝛽)2

𝐹1(𝑠, 1 − 𝑠; 1; 𝛽)2

= 𝑝
𝐹1(𝑠, 1 − 𝑠; 1; 1 − 𝛼)2

𝐹1(𝑠, 1 − 𝑠; 1; 𝛼)2

 

 

is 𝐺 = (
1

1−2𝑠
, ∞, ∞) generated by 

 

𝐴1 = (
1 2 𝑠𝑖𝑛 𝜋𝑠
0 1

) 

and  

𝐴2 = (
1 0

2 𝑠𝑖𝑛 𝜋𝑠 1
), 

 

where 𝑠 ∈ (0,
1

2
]. 

 

 

Proof. From Lemma 2.1, we have  the function 

𝑔(𝛼) = 𝑖
𝐹1(𝑠, 1 − 𝑠;  1; 1 − 𝛼)2

𝐹1(𝑠, 1 − s;  1; 𝛼)2

 

maps the upper half 𝛼-plane to the hyperbolic 

triangle 𝑇 with angles (1 − 2𝑠)𝜋, 0 and 0 at 𝑔(∞) =

𝑒𝑖
(1−2𝑠)𝜋

2 , 𝑔(0) = ∞ and 𝑔(1) = 0, respectively, in 

the upper half 𝑔-plane. 

Let 

𝜃1 =
𝜋

𝑚1
,   𝜃2 =

𝜋

𝑚2
 and   𝜃3 =

𝜋

𝑚3
 

be the internal angles of a hyperbolic triangle 𝑇, then 𝑇 

can be continued across its sides as a single-valued 

function if and only if 𝑚𝑗 > 1 and 𝑚𝑗 ∈ ℕ ∪ {∞} for 

𝑗 = 1, 2, 3 (Sansone and Gerretsen, 1969). Therefore, 

1

𝑚1
+

1

𝑚2
+

1

𝑚3
< 1 

 and 

𝑚1 =
1

1 − 2𝑠
,   𝑚2 = ∞  and 𝑚3 = ∞. 

 

It follows that we can tessellate ℋ by the triangle 𝑇.  

Since a triangle group preserves a tessellation by a 

triangle, the triangle group associated with the 

generalized modular equation is  

 𝐺 = (𝑚1, 𝑚2, 𝑚3) = (
1

1 − 2𝑠
, ∞, ∞). 

 

 

 

Fig. 3. Fundamental domain for the triangle 

group 𝑮 = (
𝟏

𝟏−𝟐𝒔
, ∞, ∞). 

 

If we reflect the hyperbolic triangle 𝑇 about the 

geodesic side joining 0 and ∞, then we obtain the 

hyperbolic triangle 𝑇′ with vertices at ∞, 0 and 𝑒−𝑖
𝜃1
2  

(see Fig. 3). The triangle 𝑇 represents ℋ, and the 

triangle 𝑇′ represents the lower half-plane. Note that 

one can reflect 𝑇 about any side of 𝑇. If the geodesic 

side between 𝑒−𝑖
𝜃1
2  and ∞ is identified with the 

geodesic side between 𝑒𝑖
𝜃1
2  and ∞, then the side-

pairing transformation is 
 

𝐴1 = (1 2 cos
𝜃1

2
0 1

) 

= (1 2 cos
(1 − 2𝑠)𝜋

2
0 1

) 

= (
1 2 sin 𝜋𝑠
0 1

). 

 

The transformation 𝐴1 divides the upper half of the 

𝛼-plane into infinite strips parallel to the 𝑦-axis and 

width 2 cos
𝜃1

2
. If the geodesic side between 0 and 

𝑒−𝑖
𝜃1
2  is identified with the geodesic side between 0 

and 𝑒𝑖
𝜃1
2 , then the side-pairing transformation is 



  
 

Alam and Saha/J. Bangladesh Acad. Sci. 48(2); 207-215: December 2024 

212 

 

 

𝐴2 = (
1 0

2 cos
𝜃1

2
1

) 

= (
1 0

2 sin 𝜋𝑠 1
). 

Therefore, the triangle group 𝐺 = (
1

1−2𝑠
, ∞, ∞) is 

generated by 

𝐴1 = (
1 2 sin 𝜋𝑠
0 1

) 

and  

𝐴2 = (
1 0

2 sin 𝜋𝑠 1
). 

 

Remark 1. The triangle group 𝐺 acts properly 

discontinuously on ℋ, and we obtain the quotient 

surface G\ℋ, which is the thrice punctured Riemann 

sphere ℂ̂ \ {0, 1, ∞}. 

 
 

Fig. 4. The modified fundamental domain for   

𝑮 = (
𝟏

𝟏−𝟐𝒔
, ∞, ∞). 

 

Lemma 3.2. The generators of the triangle group G =

(
1

1−2s
, ∞, ∞) can be expressed by 

𝐴1 = (
1 2 𝑠𝑖𝑛 𝜋𝑠
0 1

) 

and  

𝐴′2 = (4 𝑠𝑖𝑛2𝜋𝑠 − 1 −2 𝑠𝑖𝑛 𝜋𝑠
2 𝑠𝑖𝑛 𝜋𝑠 −1

), 

 

where s ∈ (0,
1

2
]. 

 

Proof. By Theorem 3.1, the generators of the triangle 

group 𝐺 = (
1

1−2𝑠
, ∞, ∞) are 

𝐴1 = (
1 2 sin 𝜋𝑠
0 1

) 

and  

𝐴2 = (
1 0

2 sin 𝜋𝑠 1
), 

 

where 𝑠 ∈ (0,
1

2
]. The fundamental domain for the 

triangle group 𝐺 is modified as follows. If we reflect 

the hyperbolic triangle 𝑇 about the geodesic side 

joining 𝑒𝑖
𝜃1
2  and ∞, then we obtain the hyperbolic 

triangle 𝑇′ whose vertices are at 2 cos
𝜃1

2
= 2 sin 𝜋𝑠, 

𝑒𝑖
𝜃1
2 = 𝑒𝑖

(1−2𝑠)𝜋

2 , and ∞ (Fig. 4). 

 

The triangle 𝑇 represents ℋ, and the triangle 𝑇′ 

represents the lower half-plane. If the geodesic side 

between 0 and ∞ is identified with the geodesic side 

between 2 sin 𝜋𝑠 and ∞, then the side-pairing 

transformation is 

𝐴1 = (
1 2 sin 𝜋𝑠
0 1

) 

and if the geodesic side between 0 and 𝑒𝑖
(1−2𝑠)𝜋

2  is 

identified with the geodesic side between 2 sin 𝜋𝑠 and 

𝑒𝑖
(1−2𝑠)𝜋

2 , then the side-pairing transformation is 

 

𝐴2
′ = −𝐴1𝐴2

−1 

= − (
1 2 sin 𝜋𝑠
0 1

) (
1 0

−2 sin 𝜋𝑠 1
) 

= (4 sin2𝜋𝑠 − 1 −2 sin 𝜋𝑠
2 sin 𝜋𝑠 −1

). 

 

Therefore, 𝐴1 and 𝐴2
′  are the generators of 𝐺. 

 

Remark 2. The generator A2
′  is an elliptic element of 

order m1 =
1

1−2s
. 
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Theorem 3.3. The group associated with the generalized 

modular equation 
 

𝐹1(𝑠, 1 − 𝑠; 1; 1 − 𝛽)2

𝐹1(𝑠, 1 − 𝑠; 1; 𝛽)2

= 𝑝
𝐹1(𝑠, 1 − 𝑠; 1; 1 − 𝛼)2

𝐹1(𝑠, 1 − 𝑠; 1; 𝛼)2

 

 

is a subgroup of the Hecke group Hk. 
 

Proof. According to Theorem 3.1, the triangle group 

𝐺 = (
1

1−2𝑠
, ∞, ∞) is associated with the generalized 

modular equation. The generators of the group 𝐺 are 

𝐴1 = (
1 2 sin 𝜋𝑠
0 1

) 

= (1 2 cos
(1 − 2𝑠)𝜋

2
0 1

) 

= (
1 2 cos

𝜋

2𝑚1

0 1

) 

and  

𝐴2 = (
1 0

2 sin 𝜋𝑠 1
) 

= (
1 0

2 cos
𝜋

2𝑚1
1). 

 

For 𝑘 ≥ 3, the Hecke group 𝐻𝑘 is generated by 

𝑈 = (
1 2 cos

𝜋

𝑘
0 1

) 

and  

𝑉 = (
0 −1
1 0

). 

Let 𝑘 = 2𝑚1, then 

𝐴1 = 𝑈 

and  

𝐴2 = 𝑉−1𝑈−1𝑉. 
 

Since the generators of the group 𝐺 can be expressed in 

terms of the generators of the Hecke group 𝐻𝑘, we 

conclude that 𝐺 is a subgroup of 𝐻𝑘. 

Lemma 3.4. The triangle group 𝐺 = (
1

1−2
, ∞, ∞) is an 

even type subgroup of  𝐻𝑘 . 

Proof. It is known that an even  type subgroup of 𝐻𝑘 is 

of the following form: 

(
𝑎 𝑏𝛿𝑘

𝑐𝛿𝑘 𝑑
), 

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, 𝛿𝑘 = 2 cos
𝜋

𝑘
 and 𝑎𝑑 − 𝑏𝑐𝛿𝑘

2 = 1. 

In the proof of Theorem 3.3, we have seen that the 

generators of the triangle group 𝐺 = (
1

1−2𝑠
, ∞, ∞) are 

𝐴1 = (
1 2 cos

𝜋

2𝑚1

0 1

) 

and  

𝐴2 = (
1 0

2 cos
𝜋

2𝑚1
1). 

Let 𝑘 = 2𝑚1 and 𝑎 = 1, 𝑏 = 2, 𝑐 = 0, 𝑑 = 1 or 𝑎 =

1, 𝑏 = 0, 𝑐 = 2, 𝑑 = 1. Then, we conclude that 𝐺 is an 

even-type subgroup of 𝐻𝑘 . 

Remark 3. The triangle group G can  be represented by 

𝐺 = {(
𝑎 𝑏𝛿𝑘

𝑐𝛿𝑘 𝑑
) : 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ 𝑎𝑛𝑑 𝑎𝑑 − 𝑏𝑐𝛿𝑘  

2 = 1}. 

 

Fig. 5. Fundamental domain for the triangle 

group 𝑮 = (∞, ∞, ∞). 

 

 

Example 3.1. For the signature 
1

𝑠
= 2, the generalized 

modular equation is 
 

𝐹1 (
1

2
,

1

2
; 1; 1 − 𝛽)2

𝐹1 (
1

2
,

1

2
; 1; 𝛽)2

= 𝑝
𝐹1 (

1

2
,

1

2
; 1; 1 − 𝛼)2

𝐹1 (
1

2
,

1

2
; 1; 𝛼)2

. 

 

In this case, the corresponding triangle group is 𝐺 =

(∞, ∞, ∞) and the generators of 𝐺 are  
 

𝐴1 = (
1 2
0 1

)  and  𝐴2 = (
1 0
2 1

). 

 



  
 

Alam and Saha/J. Bangladesh Acad. Sci. 48(2); 207-215: December 2024 

214 

 

The fundamental domain for 𝐺 = (∞, ∞, ∞) is 

shown in Fig. 5. The vertices of the triangle 𝑇 are at 

0, 1, and ∞; the angles of 𝑇 are 0, 0, and 0. 

 

Fig. 6. Fundamental domain for the triangle 

group 𝑮 = (𝟑, ∞, ∞). 

 

Example 3.2. If the signature 𝑠 =
1

3
, then the 

generalized modular equation is 
 

𝐹1 (
1

3
,

2

3
; 1; 1 − 𝛽)2

𝐹1 (
1

3
,

2

3
; 1; 𝛽)2

= 𝑝
𝐹1 (

1

3
,

2

3
; 1; 1 − 𝛼)2

𝐹1 (
1

3
,

2

3
; 1; 𝛼)2

 

 

and the corresponding triangle group is 𝐺 =

(3, ∞, ∞) and the generators of 𝐺 are 
 

𝐴1 = (1 √3
0 1

)  and  𝐴2 = (
1 0

√3 1
). 

 

The fundamental domain for 𝐺 = (3, ∞, ∞) is shown 

in Fig. 6. In this case, the triangle  𝑇 has internal 

angles 0, 0, and 
𝜋

3
 at the vertices ∞, 0, and 𝑒𝑖

𝜋

6, 

respectively.  
 

Example 3.3. If the signature 
1

𝑠
= 4, then the 

generalized modular equation is 
 

𝐹1 (
1

4
,

3

4
; 1; 1 − 𝛽)2

𝐹1 (
1

4
,

3

4
; 1; 𝛽)2

= 𝑝
𝐹1 (

1

4
,

3

4
; 1; 1 − 𝛼)2

𝐹1 (
1

4
,

3

4
; 1; 𝛼)2

. 

 

In this case, the corresponding triangle group is 𝐺 =

(2, ∞, ∞) generated by 

𝐴1 = (1 √2
0 1

)  and  𝐴2 = (
1 0

√2 1
). 

Fig. 7. Fundamental domain for the triangle 

group 𝑮 = (𝟐, ∞, ∞). 
 

The fundamental domain for 𝐺 = (2, ∞, ∞) is shown 

in Fig. 7. The internal angles of the  triangle 𝑇 are 0, 

0, and 
𝜋

2
 at the vertices ∞, 0, and 𝑒𝑖

𝜋

4, respectively. 

 

Conclusion 

We have studied the triangle group 𝐺 =

(
1

1−2𝑠
, ∞, ∞) associated with the generalized 

modular equation 
 

𝐹1(𝑠, 1 − 𝑠; 1; 1 − 𝛽)2

𝐹1(𝑠, 1 − 𝑠; 1; 𝛽)2

= 𝑝
𝐹1(𝑠, 1 − 𝑠; 1; 1 − 𝛼)2

𝐹1(𝑠, 1 − 𝑠; 1; 𝛼)2

 

 

where 𝑠 ∈ (0,
1

2
] and 𝑝 ∈ ℕ \ {1}. It has been proved 

that the triangle group 𝐺 is generated by 

𝐴1 = (
1 2 sin 𝜋𝑠
0 1

) 

and 

𝐴2 = (
1 0

2 sin 𝜋𝑠 1
). 

 

Also, we have proved that the group 𝐺 is a subgroup 

of the Hecke group 𝐻𝑘 . In fact, the group 𝐺 is an 

even-type subgroup of 𝐻𝑘 . Finally, three examples 

have been given in the cases of signatures 
1

𝑠
= 2, 3, 

and 4. 
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