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ABSTRACT 

To obtain the second order approximate solution of a third order weakly nonlinear ordinary 
differential system with strong damping and slowly varying coefficients modeling a damped 
oscillatory process is considered based on the extension of a unified Krylov-Bogoliubov-
Mitropolskii (KBM) method. The asymptotic solution for different initial conditions shows a good 
coincidence with those obtained by the numerical procedure for obtaining the transient’s response. 
The method is illustrated by an example. 
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INTRODUCTION 

The study of non-linear problems is of crucial importance not only in all areas of 
physics but also in engineering and in applied mathematics, since most phenomena in the 
world are essentially non-linear and are described by non-linear equations. It is very 
difficult to solve non-linear problems and in general, it is often more difficult to get an 
analytical approximation than a numerical one for a given non-linear problem. There are 
several methods used to find approximate solutions to non-linear problems, such as the 
perturbation techniques (Murty 1971, Bojadziev 1983, Alam and Sattar 1997) and 
harmonic balance based method (Itovich and Moiola 2005). The method has been 
extended to damped oscillatory and purely non oscillatory systems with slowly varying 
coefficients by Bojadziev and Edwards (1981). Arya and Bojadziev (1980) studied a 
system of second order nonlinear hyperbolic differential equation with slowly varying 
coefficients. They (1981) also studied a time-dependent nonlinear oscillatory system with 
damping, slowly varying coefficients and delay. Feshchenko et al. (1967) presented a 
brief way to determine KBM (Bogoliubov and Yu 1961, Krylov and Bogoliubov 1947) 
solution (first order) of an nth, ,....3,2n  order differential systems. Alam (2003) 
investigated a unified KBM method for obtaining the first approximate solution of nth 
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order nonlinear systems with slowly varying coefficients. Alam and Sattar (2004) also 
presented an asymptotic method for obtaining the first approximate solution of a third 
order non-linear differential system with varying coefficients. Moreover, Alam (2002) 
investigated a unified KBM method for obtaining the first approximate solution of 

)3(, nnth  order non-linear differential system with constant coefficients. Recently, 
Roy and Alam (2004) have studied the effect of higher approximation of Krylov-
Bogoliubov-Mitropolskii’s solution and matched asymptotic solution for second order 
non-linear differential system with slowly varying coefficients and damping. Sometimes 
the first approximate solutions obtained in [1-10] give desired results when the linear 
damping effect is very small. Otherwise, the solutions give incorrect results after a long 
time 1t  where the reduced frequency becomes small. From the present study, it is 
seen that the most of the authors in references have obtained the first approximate 
solutions for both constants and varying coefficients. The complicated and no less 
important case of second order approximate solution of a third order non-linear 
differential system with strong damping and slowly varying coefficients by a unified 
KBM method has remained almost untouched. The main goal of this paper is to fill this 
gap. 
 
METHOD 

Let authors consider a third-order weakly non-linear ordinary differential equation 
with slowly varying coefficients in the following form [1] 

),,,()()()( 321  xxxfxkxkxkx    (1) 

where the over dots represent the time derivatives,   is a small positive parameter which 
measures the strength of the nonlinearity, t   slowly varying time, 3,2,1,0)(  jk j   
and f  is a given nonlinear function which satisfies ),,,(),,,(  xxxfxxxf   . The 
coefficients are varying slowly in the sense that their time derivatives are proportional to ε 
(Alam and Sallar 1947). 

 By putting  0,0  constant in Eq. (1), they obtains the solution of the 
unperturbed equation. They assume that the unperturbed part of Eq. (1) has three 
eigenvalues ,3,2,1),( 0 jj   where )( 0 j  are constants, but if 0  then )( j  are 
varying slowly with time t. The solution of the linearrized equation of Eq. (1) is obtained 
in the following form 




3

1

)0(
0,)0,(

j

tj
j eatx  , (2) 

where 3,2,1,0, ja j  are arbitrary constants. 

Now authors are going to choose a solution of Eq. (1) that reduces to Eq. (2) as a limit 
0  in the following form according to the KBM method (Bogoliubov et al. 1961) 
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2
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3

1
 aaauaaautatx

j
j , (3) 

where each ja  satisfies the following first order differential equation 

 3
321

2
321 ),,(),,(   aaaBaaaAaa jjjjj . (4) 

Confining only to the first few terms, 1, 2, 3 in the series expansions of Eq. (3) and 
Eq. (4), they evaluate the functions ,, 21 uu  and 3,2,1,,, jBA jj   such that each 

)(ta j  appearing in Eq. (3) and Eq. (4) satisfy the given differential Eq. (1) with an 
accuracy of 1m  (Alam 2002). Theoretically, the solution can be obtained up to any 
order of approximations but, owing to the rapidly growing algebraic complexity for the 
derivation of the formula, the solution is in general confined to a low order, usually the 
first order (Alam 2001, 2003, Alam and Sattar 1997, 2004, Arya and Bojadziev 1980, 
1981, Bogoliubov and Mitropolskii 1961, Bojadziev and Edwards 1981, Bojadziev 1983, 
Feshchenko et al. 1966). In order to determine these functions it is assumed that the 
functions 21, uu  do not contain the fundamental terms (Alam 2002, 2003, Alam and 
Sattar 1997, 2004, Bogoliubov and Mitropolskii 1961, Krylov and Bogoliubov 1947) 
which included in the series expansions (3) at order 0 . Now differentiating Eq. (3) three 
times with respect to time t and using the relations Eq. (4) and substituting the values of 

xxx  ,,  together with x  into the original Eq. (1) with the slowly varying coefficients 
))()()(()( 3211  k , ,)()()()()()()( 3132212  k  )(3 k  

)()()( 321  and expanding the right hand side of Eq. (1) by Taylor’s series and 
equating the coefficients of  and 2  on both sides we obtain the following equations 
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where ,,,),,,(),,,(),,,(
3

1

3

1
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and .3,  n
d
d j

j 


  

Authors have already assumed that 1u  and 2u  do not contain the fundamental terms 
and for this reason the solution will be free from secular terms, namely tttt sin,cos  and 

tte . Since the solution will be non-uniform in presence of secular terms. Under these 
restrictions, we are able to solve Eq. (5) and Eq. (6), by separating this into 1n  
individual equations for the unknown functions jAuu ,, 21  and jB . In general, the 
functions 1

)1()0( ,, uff  and 2u  are expanded in Taylor series in the following forms 
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and 
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The eigen values of the unperturbed equation can be written as )( 0  and 
)()( 00  ll   where 1l . For the above restrictions, it guarantees that 1u  and 2u  

must be excluded all terms with 12
12

2
2



lm

l
lm

l aa  of )0(f  and )1(f  where 1122  ll mm . 
Since as a linear approximation )0..( ei  12
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1122  ll mm  or tle   when 1122  ll mm . It is noticed that tle   are known as the 

fundamental terms [4, 7, 12]. Usually these are included in equations jA  and jB . 
Moreover, it is restricted (by Krylov and Bogoliubov (1947) that the functions jA  and 

jB  are independent of the fundamental terms. Now to determine the equations for 1A  
and 1B , we followed the assumption of Bojadziev (1983) that 1u  and 2u  do not contain 
a term tte  (as limit 0l ) and obtained the following equations: 
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Then the equations for jAuu ,, 21  and njB j ,....2,1,   are obtained as 
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To obtain the particular solutions of Eqs. (11) - (17), they replace the operator   by 
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determination of second order approximate solution of Eq. (1) is completely determined. 

But it is noticed that the solution Eq. (3) is not a standard form of the KBM method. 
To reduce the standard form of the KBM solution from Eq. (3), authors need to use the 
following substitutions 

,2/)1(,
2
1

,
2
1

12

2

1








 nlbea

bea

aa

t
l

t
l



  (19) 

where a, b represent the amplitudes and   represents the phase of the nonlinear physical 
differential systems. 
 
EXAMPLE 

For the practical importance of the above method, authors consider the following 
third order weakly nonlinear differential equation with strong damping and slowly 
varying coefficients 

3
321 )()()( xxkxkxkx     (20) 
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Here 3,2,1,3  jn  3),( xxxf   and 3210 aaax  . So authors have, 
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Substituting the values of jn,  and )0(f  in Eq. (5) and according to our restrictions, 
we obtain four equations for 321 ,, AAA  and 1u  whose solutions are respectively given by 
the following equations 
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Also substituting Eq. (25) into Eqs. (17) - (18) and according to authors’ restrictions, 
they obtain three equations for 21, BB  and 3B  whose solutions are respectively given by 
the following equations 
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Authors are not interested to determine the correction term 2u  as it has no such 
effect on the solution. But it is too much complicated to solve, laborious and tedious 
work. So they can ignore it. Now substituting the values of 121 ,, BAA  and 2B  from Eq. 
(25) and Eq. (27) into Eq. (4), they obtain the following equations 
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For a damped nonlinear system, substituting )()(),( 2,11    and 

 ii beabeaaa 
2
1,

2
1, 321  into Eq. (26) and Eqs. (28) - (29) and then simplifying 

them, they obtain the following equations for the amplitudes, phase variables and the 
correction terms as the forms 
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Thus the second order approximate solution of Eq. (20) is obtained by 
1cos),( ubatx    (34) 

where ba,  and   are the solutions of Eq. (30) and 1u  is given by Eq. (31). 
 
RESULTS AND DISCUSSION 

The authors have solved two simultaneous differential equations for the amplitude(s) 
and phase variables, and a partial differential equation for 1u  involving three independent 
variables, amplitude(s) and phase. Also they are able to solve all the equations of jA  and 

3,2,1, jB j  including 1u  by a unified formula. In particular case, they are forced to 
assume that )(,)(   are constants and  he 0)(  is varying slowly with time t, 
where 0  is constant. The amplitudes and phase variables change slowly with time t. The 
behavior of amplitudes and phase variables characterizes the oscillating processes and 
they keep an important role to the non-linear dynamical systems. The amplitudes tend to 
zero as t  (i.e. when time is very large) in presence of damping. Figures are drawn 
to compare between the approximate solutions obtained by the perturbation method and 
those obtained by the numerical procedure for several damping.  
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Fig. 1. (a) First approximate solution (   
dotted lines) of Eq. (20) is compared with the 
corresponding numerical solution (-solid line) 
obtained by Runge-Kutta fourth-order formula for 
 = 0.5,  = 0.15, 0 = 1.0, h = 0.25,  = 0.1 and  
= x3 with the initial conditions [x(0) = 1.50838, 

38079.0)0( x , 97857.0)0( x ] or a0 = 0.5, 
b0 = 1.0 and 0 = 0. 

Fig. 1. (b) First approximate solution (   
dotted lines) of Eq. (20) is compared with the 
corresponding numerical solution (-solid line) 
obtained by Runge-Kutta fourth-order formula for 
 = 0.5,  = 0.15, 0 = 1.0, h = 0.25,  = 0.1 and  
= x3 with the initial conditions [x(0) = 1.50838, 

37974.0)0( x , 98498.0)0( x ] or a0 = 0.5, 
b0 = 1.0 and 0 = 0. 
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Fig. 2. (a) First approximate solution (   
dotted lines) of Eq. (20) is compared with the 
corresponding numerical solution (-solid line) 
obtained by Runge-Kutta fourth-order formula for 
 = 0.5,  = 0.15, 0 = 1.0, h = 0.25,  = 0.1 and  
= x3 with the initial conditions [x(0) = 1.50848, 

58074.0)0( x , 84169.0)0( x ] or a0 = 
0.5, b0 = 1.0 and 0 = 0. 

Fig. 2. (b) First approximate solution (   
dotted lines) of Eq. (20) is compared with the 
corresponding numerical solution (-solid line) 
obtained by Runge-Kutta fourth-order formula for 
 = 0.5,  = 0.15, 0 = 1.0, h = 0.25,  = 0.1 and  
= x3 with the initial conditions [x(0) = 1.50838, 

57933.0)0( x , 84885.0)0( x ] or a0 = 
0.5, b0 = 1.0 and 0 = 0. 

 
In Figs. (1)- (2), we observe that the analytical approximate solutions show good 
agreement with those obtained by the numerical procedure in presence of strong damping 
with slowly varying coefficients and the analytical approximate solutions deviate from 
the numerical solution when the damping effect is small (Fig. 3).  
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Fig. 3. (a) First approximate solution (   
dotted lines) of Eq. (20) is compared with the 
corresponding numerical solution (-solid line) 
obtained by Runge-Kutta fourth-order formula for 
 = 0.5,  = 0.15, 0 = 1.0, h = 0.25,  = 0.1 and  
= x3 with the initial conditions [x(0) = 1.50578, 

17768.0)0( x , 05083.1)0( x ] or a0 = 
0.5, b0 = 1.0 and 0 = 0. 

Fig. 3. (b) First approximate solution (   
dotted lines) of Eq. (20) is compared with the 
corresponding numerical solution (-solid line) 
obtained by Runge-Kutta fourth-order formula for 
 = 0.5,  = 0.15, 0 = 1.0, h = 0.25,  = 0.1 and  
= x3 with the initial conditions [x(0) = 1.50578, 

17715.0)0( x , 05717.1)0( x ] or a0 = 
0.5, b0 = 1.0 and 0 = 0. 

Moreover, this method is able to give the required result when the coefficients of the 
given nonlinear system become constants (h = 0, Fig. 4). The limitation of the presented 
method is that it is valid only for weakly nonlinear system with strong damping and 
converges rapidly to the numerical solution otherwise it deviates from the numerical 
solution. Most of the authors did not discuss this limitation of the unified KBM method.  
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Fig. 4. (a) First approximate solution (   
dotted lines) of Eq. (20) is compared with the 
corresponding numerical solution (-solid line) 
obtained by Runge-Kutta fourth-order formula for 
 = 0.5,  = 0.15, 0 = 1.0, h = 0.25,  = 0.1 and  
= x3 with the initial conditions [x(0) = 1.50838, 

41556.0)0( x , 95255.0)0( x ] or a0 = 
0.5, b0 = 1.0 and 0 = 0. 

Fig. 4. (b) First approximate solution (   
dotted lines) of Eq. (20) is compared with the 
corresponding numerical solution (-solid line) 
obtained by Runge-Kutta fourth-order formula for 
 = 0.5,  = 0.15, 0 = 1.0, h = 0.25,  = 0.1 and  
= x3 with the initial conditions [x(0) = 1.50838, 

41611.0)0( x , 94904.0)0( x ] or a0 = 
0.5, b0 = 1.0 and 0 = 0. 

According to the theory of nonlinear oscillations, higher order approximate solutions give 
the better results. In practice, however, a few terms are sufficient for good agreement to 
the numerical solution.  In the present study, it is seen that the first order approximate 
solutions lead to high accuracy in this case. As a result the graphs for the first and second 
order approximate solutions are almost same. 
 
CONCLUSION 

Usually, it is so much difficult to formulate the unified KBM method for obtaining 
the higher order approximate solutions of a third order nonlinear differential systems. The 
authors have presented a general formula for the second order approximate solutions by 
the unified KBM method for obtaining the transient’s response of a third order nonlinear 
differential systems with slowly varying coefficients in presence of strong damping. 
 
REFERENCES 
Alam, M. S. 2003. A Unified Krylov-Bogoliubov-Mitropolskii method for solving nth order 

nonlinear systems with slowly varying coefficients. Journal of Sound and Vibration 265 : 987-
1002. 

Alam, M. S. and M. A. Sattar. 2004. Asymptotic method for third-order nonlinear systems with 
slowly varying coefficients. Journal of Southeast Asian Bulletin of Mathematics 28 : 979-987. 

Alam, M. S. 2002. A Unified Krylov-Bogoliubov-Mitropolskii method for solving nth order 
nonlinear systems. Journal of Franklin Institute 339 : 239-248. 

Alam, M. S. and M. A. Sattar. 1997. A unified Krylov-Bogoliubov-Mitropolskii method for solving 
third-order nonlinear systems. Indian journal of Pure and Applied Mathematics 28 : 151-167. 

Arya, J. C. and  G. N. Bojadziev. 1980. Damped oscillating systems modeled by hyperbolic 
differential equations with slowly varying coefficients. Acta Mechanica 35 : 215-221. 

Arya, J. C. and G. N. Bojadziev. 1981. Time-dependent oscillating systems with damping, slowly 
varying parameters and delay. Acta Mechanica 41 : 109-119. 

Bogoliubov, N. N. and Yu. A. Mitropolskii. 1961. Asymptotic method in the theory of nonlinear 
oscillations, Gordan and Breach, New York. 



A UNIFIED KBM METHOD FOR OBTAINING THE SECOND  89 

Bojadziev, G. N. and J. Edwards. 1981. On some asymptotic methods for non-oscillatory and 
oscillatory Processes. J. Nonlinear vibration problems 20 : 69-79. 

Bojadziev, G. N. 1983. Damped nonlinear oscillations modeled by a 3-dimensional differential 
system. Acta Mechanica 48 : 193-201. 

Feshchenko, S. F., N. I. Shkil and Nikolenko. 1967. Asymptotic method in the theory of linear 
differential equation (Russian), Noaukova Dumka, Kiev 1966 (English translation, Amer, 
Elsevier Publishing Co., INC. New York). 

Itovich, G. R. and J. L. Moiola. 2005. On period doubling bifurcations of cycles and the harmonic 
balance method. Chaos Solutions Fractals 27 : 647-665. 

Krylov, N. N. and N. N. Bogoliubov. 1947. Introduction to nonlinear mechanics, Princeton 
University Press, New Jersey. 

Murty, I. S. N. 1971. A unified Krylov-Bogoliubov-Mitropolskii method for solving second-order 
nonlinear systems. International Journal of Nonlinear Mechanics 6 : 45-53. 

Roy, K. C. and M. S. Alam. 2004. Effect of higher approximation of Krylov-Bogoliubov-
Mitropolskii solution and matched asymptotic differential systems with slowly varying 
coefficients and damping near to a turning point. Vietnam journal of mechanics, VAST. 26 : 
182-192. 

 
 

(Received revised manuscript on 3 April, 2011) 
 


