

ISSN 1810-3030 (Print) 2408-8684 (Online)

Journal of Bangladesh Agricultural University

Journal home page: http://baures.bau.edu.bd/jbau

Quality evaluation of mince-based fish burger from tilapia (Oreochromis mossambicus) during frozen storage

Ulfat Jahan Lithi¹, Md. Faridullah¹, Md. Nasir Uddin¹, Mohammad Ferdous Mehbub¹, Md. Abu Zafar^{2⊠}

¹Department of Fisheries Technology, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200, Bangladesh ²Department of Aquaculture, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200, Bangladesh

ARTICLE INFO	Abstract
Article history: Received: 09 February 2020 Accepted: 03 April 2020 Published: 30 June 2020	Biochemical, microbial and sensory qualities of burger patty and fish mince prepared from Mozambique tilapia were determined during frozen storage condition (-18 °C) up to 75 days. Significant decrease (P>0.05) in moisture and lipid contents of mince and burger were observed during the storage period although moisture and lipid contents of burger was higher than the mince.
Keywords: Value added food, Sensory quality, Biochemical quality	Protein content of mince and burger reduced at the end of storage period however, reduction rate was not significant (p>0.05) and protein content of burger was slightly higher than that of mince. Ash content of both mince and burger increased significantly (p<0.05) throughout the storage period and ash content in burger was higher than that of mince. TVB-N content in fish mince and burger
Correspondence: Md. Abu Zafar ⊠: zafarhstu@gmail.com	 increased significantly (p<0.05). The pH value increased in both groups but the rate of increment was not significant (p>0.05). Microbial load of burger was found higher than mince but microbial load of both groups remained under maximum allowable count until the end of the storage period. Sensory parameters (color, texture, taste and overall acceptability) of burger decreased significantly (p<0.05), whereas, all parameters other than texture remained in good condition until the end of the storage
OPENOACCESS	period.

Copyright ©2020 by authors and BAURES. This work is licensed under the Creative Commons Attribution International License (CC By 4.0).

Introduction

Fish is a great source of $\omega 3$ fatty acids (Horrocks et al., 1999, Sidhu, 2003) therefore, consumption of fish and fishery products are increasing significantly in recent years. Tilapia is one of the most significant fish species and widely cultured in Bangladesh to meet up the increased protein demand. Tilapia (Oreochromis mossambicus) is regarded as a "weed fish" in aquaculture because of its fast growth rate (Ninan et al., 2008). However, quality of Tilapia flesh is very appropriate for fish mince-based products (Gopakumar, 1997). Tilapia as whole fish is found to have a storage life of 10-14 days in chilled condition (Surendran et al., 1989). However, various fish species have been investigated for the suitability of mince-based products (Onibala et al., 1997), among them flesh of tilapia has considered suitable for preparation of surimi-based products (Gopakumar, 1997). Surimi prepared from tilapia was very high in quality to that from Indian major carps (Ninan et al., 2004). After 180 days in frozen storage, the mince from tilapia was found to be physically stable with acceptable condition (Gryschek et al., 2003). The mince is white in color, has low fat content and no pronounced odor, which makes it an ideal raw material for the preparation of value-added products like fish burger (Ninan et al., 2010).

In recent years, people are very concerned about their food intake and due to life style, consumer's preference led to ready-to-eat foods because of their convenience (Yerlikaya et al., 2005). Value added products from fish are acceptable fast food products in the world (Chomnawang et al., 2007). Converting tilapia flesh into value added products like burger is a simple and a costeffective means which will increase the consumer acceptability of the fish (Vanitha, 2013). This type of technology will increase the utilization through the development of diversified fishery products, at the same time the farmer can increase income by supplying fish to the fish burger processing industries. Considering the facts, the present study was conducted to develop fish burger from tilapia (O. mossambicus) and subsequently quality changes in tilapia fish burger was investigated at frozen storage (-18 °C) condition.

Materials and methods

Study area and period

Experiment was conducted in the Laboratory of the Department of Fisheries Technology, Hajee Mohammad

Danesh Science and Technology University, Dinajpur, during the period of July 2017 to August 2018.

Cite this article

Lithi, U.J., Faridullah, M., Uddin, M.N., Mehbub, M.F., Zafar, M.A. 2020. Quality evaluation of mince-based fish burger from tilapia (*Oreochromis mossambicus*) during frozen storage. *Journal of Bangladesh Agricultural University*, 18(2): 524–528. https://doi.org/10.5455/JBAU.86202

Sample collection

Fresh Tilapia was purchased from Bahadur Bazar Fish market, Dinajpur, Bangladesh. Total 15kg fishes were collected, average weight of each fish was 750g and average length was 25 cm. The fishes were immediately transported to the Fisheries Technology Laboratory.

Preparation of fish mince and fish burger

The collected fish were beheaded, eviscerated and washed with clean water. After that fishes were filleted and skinned with sharp knife, deboned and minced with a meat mixer in cold condition. A considerable amount of prepared mince was packed in zip lock PVC bag for quality analysis during frozen storage period. The mince obtained from tilapia fish was mixed with onion (8.40%), ginger (3.45%), garlic (3.85%), green chili (4.80%), salt (3.00%), sugar (1%), black pepper (0.90%), tasting salt (0.45%), corn flour (4.40%) and egg (6.0%) (Ninan et al., 2010). The amount of spice was determined by adding small amount of each ingredient, until desirable taste was achieved. After that, the prepared dough was spread in aluminum tray at thickness about 0.5 inch. It was then kept at -18°C for 1 hour in a freezer for partial setting and then cut into round shaped burger patty. Diameter of produced fish burgers were about 1 inch and weight of each fish burger was around 100g. The battering solution was prepared by mixing with egg white, black pepper and salt. Then fish burger patties were dipped into the battering solution and rolled in the bread crumbs until uniform coating on the surface. Produced fish burger patties were put in zip lock PVC bags manually. Each zip lock bag contained3 pieces of burgers; in total 30 packets were prepared and stored at -18°C for 75 days.

Frying of tilapia fish burger

Battered and breaded fish burger patties were dip fried in soybean oil until the surface of the burger became golden brown color. Finally, prepared fish burger patties were kept on the paper towels in order to soak the extra oil from the surface of the fried tilapia fish burger.

Quality analysis of tilapia fish burger patty

Fresh fish mince and fish burger patties were analyzed for microbiological, chemical and sensory attributes periodically at 1st, 15th, 30th, 45th, 60th and 75th day of storage period. Samples were drawn randomly for chemical, microbiological and sensory quality analyses and all the analyses were performed at least in triplicate.

Biochemical analysis

Proximate composition (moisture, protein, lipid and ash), Total Volatile Base Nitrogen (TVB-N) and pH of fish mince and burger were tested according to the methods described by Association of Official Analytical Chemists (AOAC, 2005).

Determination of microbial load

Standard plate count (SPC) was determined by using consecutive decimal dilution technique in spread plate method. Approximately 10g of burger samples were put in a pre-sterilized blender containing 200 ml of peptone water (0.2% peptone) and homogenate was properly mixed with peptone water. Aliquots of 0.1 ml of the serial dilutions were pipetted out and transferred aseptically to the agar plates. The samples were spread by L- shaped glass rods throughout the surface of the media until the samples dried out. The plates were then put in incubator at 30°C for 24-48 hours and then plates were counted.

Sensory evaluation of tilapia fish burger

A panel of seven trained personnel was formed for sensory evaluation of tilapia fish burger. Panelists scored the burger for color, taste, texture and overall acceptability following 4-point hedonic scale as 1 for "excellent", 2 for "good", 3 for "average", 4 for "Bad" (Tokur *et al.*, 2004). For each sensory analysis fish burger patties were taken out randomly from frozen storage and stored at 4°C for thawing. After that, burger patty was fried in sunflower oil and presented to each panellist to recognize every attribute

Statistical analysis

For statistical analysis, SPSS 11.5 (SPSS Inc, Chicago, IL, USA) was used to determine the difference between group of biochemical and sensory data. Analysis of variance (ANOVA) was used to find the significance of difference between the storage periods.

Results

Changes in moisture, protein, lipid and ash content of tilapia fish mince and burger over 75 days are shown in Table 1. The moisture content of both fish mince and burger decreased significantly (p<0.05) over the storage period but fish burger contained higher amount of moisture than fish mince throughout the storage period.

Table 1. Changes in proximate composition (%) of tilapia fish mince and burger during frozen storage period (-18°C)

Analysis	Group	1 st day	15 th days	30 th days	45 th days	60 th days	75 th days
Moisture	Mince	72.68±.28	70.81±.65	70.52±.56	69.65±.19	69.35±.12	68.15±.16
Moisture	Burger	77.88±.71	77.06±.62	73.78±.29	72.66±.35	72.13±.39	70.53±.16
D ('	Mince	15.14±.22	15.05±.31	14.84±.14	14.50±.12	14.31±.08	$13.42 \pm .31$
Protein	Burger	15.51±.10	15.30±.18	15.12±.12	14.91±.19	$14.78 \pm .25$	14.16±.33
T · · 1	Mince	0.96±.03	$0.83 \pm .00$	$0.68 \pm .03$	$0.62 \pm .02$	0.53±.01	$0.41 \pm .01$
Lipid	Burger	$1.93 \pm .04$	1.76±.04	$1.54 \pm .02$	$1.41 \pm .01$	$1.11 \pm .01$	$0.99 \pm .01$
Ash	Mince	1.79±.05	$1.79 \pm .04$	1.91±.04	$1.95 \pm .03$	$2.30 \pm .07$	$3.80 \pm .11$
	Burger	3.53±.15	3.77±.08	$3.93 \pm .05$	4.03±.10	4.36±.18	$4.92 \pm .18$

Data are expressed as means± standard deviation

Quality evaluation of frozen fish burger

Decrease in protein content of fish mince and burger throughout the storage period which was not significant (p>0.05). The protein content of fish burger was marginally higher than fish mince. Lipid content of fish mince and fish burger reduced over the storage condition significantly (p < 0.05), however the lipid content of fish burger was significantly higher than fish mince. Therefore, proportion of lipid in fish burger and fish mince differs over the time. On the other hand ash content of both fish mince and fish burger increased significantly (p<0.05) throughout the storage period. Amount of ash content in fish burger was higher than that of fish mince. During frozen storage temperature, pH content in fish burger and mince increased slowly with the increase of storage period, which were not significant (p>0.05). However, no significant differences were observed between fish mince and burger over the period. In frozen storage condition, pH content of mince from 1st day to 75th day intervals were 6.07±0.02, 6.22±0.17, 6.56±0.06, 6.75±0.065, 7.11±0.18 and 7.30±0.18, respectively and in burger, pH contents from 1^{st} day to 75^{th} days were 6.60±0.16, 6.82±0.12, 6.91±0.12, 7.04±0.07, 7.59±0.03 and 7.92±0.08, respectively.

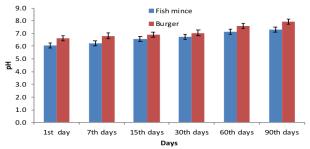


Fig. 1. Changes in pH of fish mince and burger during frozen storage

During frozen storage, TVB-N content in fish burger and mince increased slowly with the increase of storage period (Fig. 2).TVB-N content of mince from 1^{st} day to 75^{th} days were 10.23 ± 0.26 , 11.64 ± 0.15 , 11.85 ± 0.07 , 12.17 ± 0.16 , 12.29 ± 0.16 , and 12.29 ± 0.52 , respectively and TVB-N contents of burger from 1^{st} day to 75^{th} days were 9.97 ± 0.56 , 11.14 ± 0.09 , 11.72 ± 0.09 , 11.88 ± 0.09 , 12.13 ± 0.10 , and 13.10 ± 0.47 , respectively.

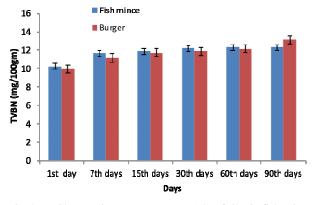


Fig. 2. Changes in TVB-N content (%) of tilapia fish mince and burger during frozen storage

The microbial load of fish burger was found higher than fish mince due to use of some additive. Decreasing rate of microbial load was related to freezing time, therefore gradual decrease of microbial load was found throughout the frozen storage period. The SPC count of fish mince and fish burger during the storage period are shown in (Table 2)

Table 2. Change in microbial load in fish mince and burger during frozen storage

Day -	SPC of Fish Bur	ger (CFU/g)
Day	Fish Mince	Burger
1^{st}	3.60×10^5	4.39×10^{5}
15 th	2.69×10^{5}	3.27×10^{5}
30 th	2.53×10^{5}	3.02×10^{5}
45 th	2.46×10^{5}	3.16×10^{5}
60 th	2.51×10^{5}	3.12×10^{5}
75 th	2.05×10^{5}	2.48×10^{5}

To determine the sensory parameters, namely, color, taste, texture and over all acceptability of tilapia fish burger were evaluated and the result has been presented in Table 3. All parameters except taste decreased significantly (p>0.05) during storage. However, overall acceptability and taste obtained "good" score until the end of storage whereas texture and color obtained "average" score.

Table 3. Change in sensory attributes in fish burger during frozen storage

Day	Color	Taste	Texture	Overall acceptability
1st	1.14±0.38	1.14±0.38	1.14±0.38	1.00±0.00
15 th	1.29±0.49	1.57±0.79	1.57±0.79	1.29±0.49
30 th	1.71±0.76	1.57±0.79	1.71±0.76	1.43±0.53
45^{th}	2.00±0.58	1.86±0.69	1.71±0.76	1.71±0.76
60^{th}	2.29±0.76	2.14±0.69	2.57±0.79	2.00±0.82
75 th	2.86±0.69	2.43±0.98	2.86±0.69	2.43±0.53
Maama	within the co		having different	ann ann amint ana

Means within the same column having different superscript are significantly different at p<0.05 $\,$

Score: 1-"excellent", 2- "good", 3- "average", 4- "Bad"

Discussion

Produced fish burgers had higher moisture, protein, lipid and ash content than fish mince but all parameters except ash content decreased gradually as frozen storage period progressed. Reduction of total moisture content both in fish mince and burger was due to dehydration during frozen storage (Ninan et al., 2008). However, moisture content of fish burger was higher than the mince, this was happened due to the addition of onion, ginger and garlic paste in burger patty. Likewise, present study, Tokur et al. (2004) evaluated chemical and sensory qualities of tilapia fish burger during frozen storage (-18°C) and found similar type of result. Reduction of protein in fish burger was slightly lower than mince may be due to the spices such as ginger, garlic paste, onion paste, green chili and eggs etc. added during preparation of fish burger. Mahmoudzadeh et al. (2010) reported similar findings when fish burger was prepared by adding various ingredients such as spice. However, denaturation of fish protein and leaching out of water soluble protein is associated with the decrease in protein in fishery products (Arannilewa *et al.*, 2005). Changes in the pH of fish muscle have been considered one of the causative factors in the denaturation of fish protein during frozen storage (Shimizu and Fujita, 1985). Reduction of protein was observed due to denaturation fish muscle during chilled and frozen storage (Gopakumar, 2002) and leaching out of some extractable soluble protein fraction during storage (Daramola *et al.*, 2007).

In the present study, percentage of lipid content was higher in fish burger than fish mince. Lipid content both in burger and mince decreased gradually due to lipid oxidation during frozen storage condition. Al-Bulushi et al. (2005) found decreasing pattern of lipid at the end of the frozen storage period for fish burger. Ninan et al. (2008) found that lipid content increased generally due to deep frying as well as dehydration during frozen storage period. Marimuthu et al. (2012) also reported that the lipid content in fried fish fillet increased due to absorption of oil during frying. During preparation of burger, spices like onion paste, ginger paste, garlic paste, green chili paste etc. were incorporated that was may be the main cause of increased ash percentage in burger than fish mince. Increase in ash content during the frozen storage of fish fingers made from croakers during the frozen storage was reported by Lakshminatha et al., (1992). Hassaballa et al. (2009) analyzed that the initial ash content of catfish burger was higher than the ash content at the end of frozen storage period. The change in pH of fish muscle is usually a good index for quality assessment which might indicate the enzymatic degradation of fish muscle (Love, 1992 and Vareltzis et al., 1997). In the present study, burger showed slightly increased pH from 6.60±0.16 to 7.92±0.08 (Figure, 1) when stored at freezing temperature. The pH also increased significantly due to release of CO₂ by the microbial flora present in the product (Adams & Moss, 2000). Similar observation during the refrigeration storage of fish patties produced from anchovy was reported by the (Kilinc, 2003). Bao et al. (2007) also reported the increasing trend of pH in Arctic charr (Salvelinus alpines) fillets at super chilling (-2°C) and chilling (3°C) storage temperature. These results are more or less similar to the present study. TVB-N is a commonly used chemical method to determine spoilage of fish. The TVB-N in freshwater fish and their products comes from ammonia (Tokur et al., 2004). In the study, TVB-N of tilapia fish burger during frozen storage increased from 9.97 to 13.10 mg/100g till 75thdays. Ninan et al., (2008) reported that TVB-N value was in the range of 12.4 to 20.2 mg/100g in tilapia fish cutlet. Mohmaudzadeh et al., (2010) reported TVB-N in deep flounder (Pseudorhombus elvatus) and brush tooth lizardfish (Saurida undosquamis) during storage at -18°C for 5 months. The increasing TVB-N value was related with bacterial spoilage and activity of endogenous enzymes (Chomnawang et al., 2007). TVB-N of Catla cutlet during frozen storage increased from 4.15 to 15.06 mg/100g till 105th days and then onward

decreased to 10.53 mg/100g on 180th days (Pawar *et al.*, 2013).

Total viable count is an important criterion for quality evaluation. Microbiological count of fish mince and burger decreased with freezing time and maximum decrease was found during the first month of storage period (Mahmoudzadeh et al., 2010). The maximum acceptable microbial load for fresh and frozen fish is 10^7 CFU/g recommended by International Commission of Microbiological Standards for Foods (ICMSF, 1978). There was no standard for fish burgers but according to hamburger standard maximum total viable count was given as 10⁶ CFU/g (Anonymous, 1992) and maximum level for the same product was 10^7 CFU/g (Wehr, 1982). ICMSF (1978) suggested that maximum level of total viable count for some fish products (i.e., fish sticks, fish portions, fish cakes) was 10^7 CFU/g. According to the above data, prepared tilapia burger was safe for consumption up to75 days of frozen storage. Overall acceptability of produced fish burger remained in good condition until the end of storage periods. Tokur et al. (2004) reported similar changes in the sensory qualities of fish burger developed from tilapia at -18°C for 8 months of storage. Mohmaudzadeh et al. (2010) reported that sensory parameters of fish burgers from deep flounder and brush tooth lizardfish decreased significantly during storage at -18°C for 5 months. Reddy et al. (1992) reported organoleptic score of frozen fish fingers from croaker and perch during storage and both types of fish fingers were acceptable up to 22 weeks at -20°C.

Conclusion

Keeping quality of tilapia fish mince and fish burger was determined on the 1st, 15th, 30th, 45th, 60th and 75th days of storage period and result showed that sensory, biochemical and microbial properties of fish burger remained in good condition compared to the fish mince throughout the storage period. The present study revealed that the preparation of burger from low cost fish would pave a way for proper utilization of this resource particularly during the peak season of harvesting. Scientific knowledge on quality changes in fish burger during frozen storage will provide a basis for supplying premium quality products. This study has immense importance to satisfy consumer's query relating to and how long fish burger can be stored without any deterioration in domestic freezer for the betterment of the public health.

Reference

- Adams, M.R. and Moss, M.O., 2000. Food Microbiology, The Royal Society of Chemistry, 51 P.
- Al-Bulushi, IM., Kasapis, S., Al-Oufi, H., and Al-Mamari,S. 2005. Evaluating quality and the storage stability of fish burgers during frozen storage. *Fisheries Science*,71(3): 648. https://link.springer.com/article/10.1111/j.1444-2906.2005.01011.x
- Anonymous, 1992. Köfte/Hamburger KöfteStandardı (TS 10580). TürkStandartlarıEnstitüsü, Ankara.

- AOAC, 2005. Official Methods of Analysis.Association of Official Analytical Chemists International, 18th edition, Washington (D. C.).
- Arannilewa, ST.,Salawu, SO., Sorungbe, AA., and Ola-Salawu, BB. 2005. Effect of frozen period on the chemical, microbiological and sensory quality of frozen tilapia fish (*Sarotherodungaliaenus*). African journal of Biotecnolgoy, 4(8): 852-855.

https://www.ajol.info/index.php/ajb/article/view/15196

- Bao, H. N. D., Arason, S. and Porarinsdottir, K. A. 2007. Effect of dry ice and super chilling on quality and shelf life of Arctic Charr (*Salvelinus alpines*) fillets. *International Journal of Food Engineering*, 3(3): 1-27.
- Chomnawang, C., Nantachai, K., Yongsawatdigul, J., Thawornchinsom, S. and Tungkawachara, S. 2007. Chemical and biological changes of hybrid catfish fillet stored at 4°C and its gel properties. *Food chemistry*, 103: 420-427. https://doi.org/10.1016/j.foodchem.2006.07.039
- Daramola, JA., Fasakin, EA. and Adeparusi, EO. 2007. Changes in physicochemical and sensory characteristics of smokeddried fish species stored at ambient temperature. *African Journal of Food, Agriculture, Nutrition and Development*, 7(6), 1-16.
- https://www.ajol.info/index.php/ajfand/article/view/136194 Gopakumar, K. 1997. Tropical Fishery Products, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, India, 491P.
- Gopakumar, K. 2002. Biochemical composition of fish In: Textbook of fish Processing Technology, directorate of information and publishing agriculture. ICAR, New Delhi.
- Gryschek, S.F.B., Oetterer, M. and Gallo, CR. 2003. Characterization and frozen storage stability of minced Nile tilapia. *Journal* of Aquatic Food Product and Technology, 12: 57–69. https://doi.org/10.1300/J030v12n03_06
- Hassaballa, A.Z., Mohamed, G.F., Ibrahim, H.M. and Abdelmageed, M. A. 2009. Frozen cooked catfish burger: Effect of different cooking methods and storage on its quality. *Global Veterinaria*, 3(3): 216-226.
- Horrocks, L.A. and Yeo, Y.K. 1999. Health benefits of docosahexaenoic acid (DHA). *Pharmacological Research*, 40(3): 211-225. https://doi.org/10.1006/phrs.1999.0495
- ICMSF, 1978.Microorganisms in Foods (Vol. 2).The International Commission on Microbiological Specifications for Foods, Toronto, Canada.
- Kilinc, B., Cakli, S. and Kisla, D. 2003. Quality changes of Sardine (Sardinapilchardus W., 1792) during frozen storage. EgeUniversit Journal of Fisheries & Aquatic Sciences, 20: 139–146.
- Lakshminatha, R., Setty, T.M.R. and Dora, K.C. 1992. Studies on the storage behavior of fish fingers from croakers and perches. *Journal of Fishery Technology*, 29: 35-39.
- Love, R.M. 1992. Biochemical dynamics and the quality of fresh and frozen fish, In: Fish Proc. Technol., Hall, G.M. (Ed.), Chapman and Hall. 1-30P.
- Mahmoudzadeh, M., Motallebi, A.A., Hosseini, H., Haratian, P., Ahmadi, H., Mohammadi, M., and Khaksar, R., 2010.Quality assessment of fish burgers from deep flounder (*Pseudorhombus elevatus*) and brushtooth lizardfish (*Sauridaundos quamis*) during storage at-18°C. *Iranian Journal of Fisheries Sciences*, 9(1): 111-126.
- Marimuthu, K., Thilaga, M., Kathiresan, S., Xavier, R. and Mas, R.H.M.H. 2012. Effect of different cooking methods on proximate and mineral composition of striped snakehead fish (*Channastriatus*, Bloch). Journal of Food Science and Technology, 49(3): 373-377. https://dxia.org/10.1007/s12107_011_0418_0
 - https://doi.org/10.1007/s13197-011-0418-9

- Ninan, G., Bindu, J. and Joseph, J. 2004.Properties of washed mince (surimi) from fresh and chill stored black tilapia, Oreochromis mossambicus (Peters 1852). Fishery Technology, 41: 21–28.
- Ninan, G., Bindu, J., and Joseph, J., 2008. Frozen storage studies of minced based products developed from tilapia (*Oreochromis mossambicus*). Fishery Technology 45(1): 35-42.
- Ninan, G., Bindu, J. and Joseph, J., 2010. Frozen storage studies of value - added mince - based products from tilapia (Oreochromis mossambicus, peters 1852). Journal of food Processing and Preservation, 34: 255-271. https://doi.org/10.1111/j.1745-4549.2009.00379.x
- Onibala, H., Takayama, T., Shindo, J., Hayashi, H. and Miki, H. 1997. Influence of freshness on occurrence of setting and disintegrating in heat induced gels from tilapia. *Fisheries Science*, 63:276–280. https://doi.org/10.2331/fishsci.63.276
- Pawar, P.P., Pagarkar, A.U., Rathod, N.B., Patil, S.S. and Mahakal, B.V., 2013. Effect of frozen storage on biochemical and sensory quality changes of fish cutlets, made from fresh water fish catla (*Catlacatla*). *International Journal of Bioassays*, 2(5): 789-793.
- Reddy, L., Setty, T.M.R. and Dora, K.C. 1992. Studies on the Storage Behavior of Frozen Fish Fingers from croaker and perches. *Fishery Technology.*, 29: 35-39.
- Ruiz-Capillas, C., and Moral, A. 2001. Correlation between biochemical and sensory quality indices in hake stored in Ice. *Food Research International*, 34: 441-447. https://doi.org/10.1016/S0963-9969(00)00189-7
- Shimizu, Y. and Fujita, T, 1985. Stability of unwashed and washed fish minces during frozen storage. Bulletin of the Japanese Society of Scientific Fisheries, 51: 1187.
- Sidhu, K.S. 2003. Health benefits and potential risks related to consumption of fish or fish oil. *Regulatory Toxicology and Pharmacology*, *38*(3): 336-344.
- Surendran, P.K., Joseph, J., Shenoy, A.V., Perigreen, P.A., MahadevaIyer, K. and Gopakumar, K. 1989. Studies on spoilage of commercially important tropical fishes under iced storage. *Fisheries Research*,7: 1–9. https://doi.org/10.1016/0165-7836(89)90002-7
- Tokur, B., Polat, A., Beklevik, G., and Özkütük, S. 2004. Changes in the quality of fish burger produced from Tilapia (*Oreochromisniloticus*) during frozen storage (- 18^oC). *European Food Research and Technology*, 218(5): 420-423.
- Vanitha, M., Dhanapal, K., Sravani, K., and Reddy, G. V. S. 2013. Quality evaluation of value added mince based products from Catla (*Catlacatla*) during frozen storage. *International Journal of Science, Environment and Technology*, 2(3): 487-501.
- Vareltzis, K., Koufidis, D., Gavriilidou, E., Papavergou, E. and Vasiliadou, S. 1997. Effectiveness of a natural Rosemary (Rosmarinus officinalis) extract on the stability of filleted and minced fish during frozen storage. *European Food Research and Technology*, 205: 93-96. https://doi.org/10.1007/s002170050131
- Wehr, H.M. 1982. Attitudes and Policies of Govermental Agencies on Microbial Criteria for Foods, an Update.*Food Technology*, 36: 45-54. http://www.nal.usda.gov/ Yerlikaya, P., Gokoglu, N. and Uran, H. 2005. Quality changes of fish patties produced from anchovy during refrigerated storage. *European Food Research and Technology*, 220(3-4): 287-291.