
https://doi.org/10.5455/JBAU.98074

ISSN 1810-3030 (Print) 2408-8684 (Online)

Journal of Bangladesh Agricultural University

Exploring Poultry Farm Environment for Antibiotic Resistant *Escherichia coli, Salmonella* spp., and *Staphylococcus* spp. Having Public Health Significance

Md. Jannat Hossain, Md. Saiful Islam, Md. Abdus Sobur, Sumaiya Binte Zaman, Ashrafun Nahar, Marzia Rahman, Md. Tanvir Rahman[⊠]

¹Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh

ARTICLE INFO ABSTRACT **Article history** Poultry farm could be potential source for antibiotic resistant bacteria. Present study was designed to Received: 12 Jul 2020 determine total load of viable bacteria, Escherichia coli, Salmonella spp. and Staphylococcus spp. in Accepted: 16 Sep 2020 different components of poultry farm environments; followed by detection of their antibiogram. A Published online: 25 Sep 2020 total of 75 samples of six different types (poultry droppings-15, litter-15, poultry feed-15, bird handler's hand wash-10, water-10, and air-10) were collected from five poultry farms. Bacterial total Keywords counts were done by spot diffusion method followed by isolation and identification of E. coli, Antibiotic resistant bacteria, Salmonella spp., and Staphylococcus spp. based on morphology, cultural, staining, and biochemical Colistin resistance, test. Antimicrobial resistant profiles were determined by disk diffusion method. The mean total Environment, Methicillin bacterial count, E. coli, Salmonella spp., and Staphylococcus spp. count ranged from 3.44±0.65 to resistant Staphylococcus aureus 9.22±0.55, 0±0 to 7.12±0.37, 0±0 to 5.84±0.20, and 0±0 to 8.45±.0.15 log CFU/gm or ml, respectively. (MRSA), Poultry farm Of 75 samples, 43 (57.33%), 33 (44%), and 38 (50.67%) samples were positive as E. coli, Salmonella spp., and Staphylococcus spp., respectively. Antibiogram study revealed 42.1% Staphylococcus spp. Correspondence resistance to oxacillin i.e. MRSA in nature. Interestingly, E. coli and Salmonella showed 48.84% and Md. Tanvir Rahman 54.55% resistance to colistin. In addition, isolated bacteria also showed various degree of resistance ⊠: tanvirahman@bau.edu.bd against gentamicin, ciprofloxacin, ampicillin, oxytetracycline and chloramphenicol. Antibiotic resistant E. coli, Salmonella spp., and Staphylococcus spp. were detected from poultry farm environments that has the chance to enter into the food chain and poses serious threat to human health. Copyright © 2020 by authors and BAURES. This work is licensed under the Creative Commons Attribution International License (CC By 4.0).

Introduction

Usage of antibiotics for prevention and control of multifarious bacterial infections has dramatically increased the livestock and poultry production globally in the last few decades. However, the extensive and inappropriate use of antibiotics has resulted in the development of antibiotic resistance (ABR) in bacteria through generating high selection pressure to natural microbial systems (Schwarz et al., 2017). Due to drastic use of antibiotics in poultry farms as therapeutics and growth promoters, ABR has emerged as a burning issue in clinical touchstone and exhibited enormous and multinational public health risk (Boovaragamoorthy et al., 2019; Schwarz et al., 2017). Antimicrobial resistance (AMR), particularly ABR has exposed venturesome treat to public health. It is estimated that around 700,000 human deaths per year can be happened globally due to AMR (Clifford et al., 2018). Nowadays, antibiotic resistant microorganisms are posing inversely cabbalistic

and antithetical effects on all the components of one health *i.e.*, animal, human, and environment through circulating extensively in the environmental settings (Aslam et al., 2018; Prestinaci et al., 2015). Indiscrimination and accidental usage of antibiotics in poultry along with lacking of proper knowledge among people facilitate the dissemination of antibiotic-resistant microorganisms in environment surroundings (Li and Webster, 2018). However, poultry is avowed as significant emergence for enhancement of AMR level because of generating sublime selection pressure for ABR in Escherichia coli, Salmonella spp., and Staphylococcus spp. (Thanner et al., 2016). In addition, being gut associated in chicken, these ABR bacteria can act as reservoirs to disseminate from poultry to human, environment, and other animals (Saharan et al., 2020; Thanner et al., 2016). Furthermore, poultry farm environmental settings including feed, litter, water, air, and human hand washing can be contaminated with ABR

Cite This Article

Hossain, M.J., Islam, M.S., Sobur, M.A., Zaman, S.B., Nahar, A., Rahman, M., Rahman, M.T. 2020. Exploring Poultry Farm Environment for Antibiotic Resistant *Escherichia coli, Salmonella* spp., and *Staphylococcus* spp. Having Public Health Significance. *Journal of Bangladesh Agricultural University*, 18(3): 615–622. https://doi.org/10.5455/JBAU.98074

resistant *Escherichia coli, Salmonella* spp. and *Staphylococcus* spp. through poultry droppings. These resistant bacteria accumulating into farm environment can also be transmitted directly to human working on farm and leads ominous human health crisis (Chang *et al.,* 2015).

E. coli, a zoonotic commensal pathogen, is considered as breakneck organism in worldwide poultry sector leading to sinister economic losses (Kim et al., 2020; Rahman et al., 2020). Notwithstanding most strains of E. coli are non-pathogenic, few strains develop gastrointestinal (GI) illness as existing in GI tract as common microbial flora of both human and animals (Tenaillon et al., 2010). In addition, pathogenic strains of E. coli can develop urinary tract infections (UTI), abdominal sepsis, meningitis, and septicemia in human leading to zoonotic in nature (Mellata, 2013). Salmonella spp. are ubiquitous foodborne pathogens and zoonotic in nature (Abdukhalilova et al., 2016). Poultry can act as natural reservoirs of Salmonella spp., transmit to human, and develop Salmonellosis along with septicemia, enteric fever, and gastroenteritis (Varga et al., 2019; Shanta et al., 2017). Several serotypes of Salmonella have showed resistance to mostly used antibiotics leading to enhancement of production cost (Nair et al., 2018). Staphylococcus spp. is one of the most prevalent human opportunistic pathogens, causing a broad variety of diseases ranging from mild skin and soft-tissue infections to infective endocarditis, osteomyelitis, bacteremia, and necrotizing pneumonia (Al-Talib et al., 2011). Some strains of Staphylococcus spp. emerged high level of resistance e.g. methicillin resistant Staphylococcus aureus (MRSA) considered as superbug which is posed resistance to almost every obtainable antibiotic used in treatment of Staphylococcal infections (Mamza et al., 2010; Stapleton and Taylor, 2002).

Development of resistance against antibiotics in commensal bacteria is a serious growing problem in modern medicine. The availability of surveillance data on occurrence of AMR bacteria in poultry farming system in Bangladesh, especially in poultry farm environments are crucial to adopt measures to combat AMR related hazards. Present study was therefore carried out using one-health approach to determine total viable bacterial load in poultry farm environment settings followed by detection of *E. coli, Salmonella* spp. and *Staphylococcus* spp. and their antibiogram having public health importance.

Materials and Methods

Ethical approval

No ethical approval was required; however verbal permission was taken from the farm owners and farm workers during sample collection.

Study area

Five broiler poultry farms located in Mymensingh district of Bangladesh (24.7539°N, 90.4073°E) (Figure 1) namely Bangladesh Agricultural University (BAU) Poultry Farm, Kewatkhali Poultry Farm, M/S Guru Poultry Farm, S.S. Poultry Farm, and Zakir Poultry Farm selected randomly for the sampling purpose.

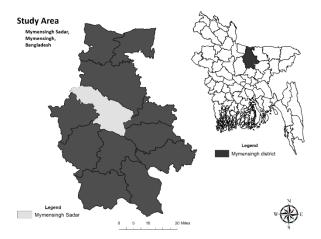


Figure 1. Study area map of Mymensingh Sadar, Mymensingh, Bangladesh. Geographical Information System (GIS) data were collected from DIVA-GIS (http://www.divagis.org) and map was created using ArcMap 10.7 software.

Sample collection

A total 75 poultry droppings, litter, feed, bird handler's hand wash, water and air of the broiler shade were collected from five broiler farms for analysis. From each farm 15 samples: three poultry dropping, three poultry litter, three poultry feed, two bird handler's hand wash, two water, and two air samples were collected. All samples except air were collected aseptically using sterile zip-lock bag. Air was sampled using settle pate method as previously described by Mbamalu et al. (2015) with few modifications. In brief, instead of nutrient agar, here plate count agar (PCA), eosin methylene blue (EMB) agar, xylose-lysine deoxycholate (XLD) agar and mannitol salt agar (MSA) plates were exposed 1 meter above the ground to different corners of the poultry shades for 10 minutes. Poultry droppings, poultry litter and poultry feed were collected into sterile zip-lock bag using sterile plastic spoons. For bird handler's hand wash using phosphate buffer solution (PBS) was used as described by Sobur et al. (2019a). All the samples were transported to the Bacteriology laboratory, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh maintaining cold chain immediately after collection for bacteriological analysis.

Hossain et al.

Sample processing

Solid or semisolid samples (poultry droppings, litter, feed) and liquid samples (water, bird handler's hand washings) were mixed with 0.1% peptone water for preparing dilution to count total bacterial load. Briefly, solid or semisolid and liquid samples were weighed as 10g and 10 ml, respectively and followed by adding and mixing well into separate sterile beaker containing 90 ml 0.1% peptone water to have initial dilution. In epilogue, ten-fold serial dilutions were prepared to enumerate total bacterial count. On the other hand, collected samples except agar plates exposed to air were transferred into sterile test tubes containing 5 ml nutrient broth followed by incubated aerobically at 37°C overnight for bacterial growth. The agar plates exposed to air were directly kept under incubator for culture.

Total viable bacteria, E. coli, Salmonella and Staphylococcus count

The total viable counts were made using plate-serial dilution spotting (SP-SDS) as described by Thomas et al. (2015), In brief, initially ten-fold dilutions (10⁻¹-10⁻⁶) of each sample were prepared in Eppendorf tubes (1.5 ml) containing 0.1% peptone water. Earlier, PCA, EMB, XLD, and MS agar plates were divided and marked separately to count total bacterial load (Total Viable Count, TVC), E. coli (Total Coliform Count, TCC), Salmonella spp. (Total Salmonella count, TS₁C), and Staphylococcus spp. (Total Staphylococcus Count, TS₂C), respectively. After that, 3 drops of diluted broth each containing 10 μ l broth were inoculated into each divided parts of selected agar plates separately; followed by incubation at 37°C for 24 hours for development of single colonies. The observation of colonies with any types, metallic sheen, black center, and yellow color on PCA, EMB, XLD, and MS agar media, respectively were identified as growth of any bacteria, E. coli, and Salmonella spp., and Staphylococcus spp., respectively. Finally, CFU was calculated based on average count of 3-30 colonies per 10 µl from particular dilution were recorded as colony forming unit (cfu)/gm or ml samples.

Isolation and identification of bacteria

Isolation and Identification of *E. coli, Salmonella* spp., and *Staphylococcus* spp. from collected samples were based on cultural characteristics on selective media followed by staining characteristics under Gram's staining and biochemical test. Initially, the broth culture with bacterial growth were streaked on EMB, XLD, and MS agar media; followed by incubation aerobically for overnight at 37°C. Growth of metallic sheen colonies on EMB agar, black center colonies on SS agar and golden yellow colonies on MS agar were considered as *E. coli, Salmonella* spp., and *Staphylococcus* spp. respectively.

Those colonies were then subjected to morphological study by Gram staining and biochemical tests namely sugar fermentation test, methyl red test Voges-Proskauer test, indole test, coagulase test, catalase test (Sobur *et al.,* 2019a; Sobur *et al.,* 2019b; Zaman *et al.,* 2020; levy *et al.* 2020).

Antimicrobial susceptibility test

antimicrobial Isolated bacteria subjected to susceptibility test by disk diffusion method as described by Bauer et al. (1966). Seven commonly used antibiotics namely- colistin (10µg), chloramphenicol (30µg), ciprofloxacin (5µg), ampicillin (2µg), gentamycin (10µg), oxacillin (1µg), and oxytetracycline (30µg) were used for antimicrobial susceptibility test. These tests were conducted on Mueller Hinton agar media (Himedia, India) with purely growth of bacteria having a concentration of bacterial growth equal to 0.5 McFarland standard (HiMedia, India). Finally, zone of growth inhibitions was computed as sensitive, intermediate, and resistant based on standards provided by Clinical and Laboratory Standards Institute (CLSI, 2016).

Results

Total viable bacteria, E. coli, Salmonella and Staphylococcus count

Among the samples analyzed, poultry litter was found to carry maximum TVC and TS₂C, whereas maximum TCC was recorded in poultry droppings. Both farm water and farm air manifested minimum TS₁C. The overall bacterial load of different samples are represented in Table 1. In farm-wise, maximum TVC and TCC were detected in BAU Poultry Farm and Zakir Poultry Farm, respectively, whereas maximum TS₁C, and TS₂C were detected in S.S. Poultry Farm. The S.S. Poultry Farm showed minimum TVC and TCC, in contrary, M/S Guru & S.S. Poultry Farm revealed minimum TS₁C, and TS₂C (Table 1 and 2).

Bacterial isolation and identification

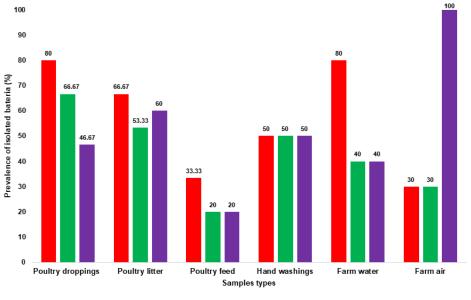
Among the 75 samples, 43 (57.33%), 33 (44%), and 38 (50.67%) were found to be positive for *E. coli, Salmonella* spp., and *Staphylococcus* spp., respectively. The highest prevalence of *E. coli* (80%, 12/15) and *Salmonella* spp. (66.67%, 10/15) were detected in poultry droppings, whereas highest occurrence of *Staphylococcus* spp. (100%, 10/10) were detected in farm air samples. Conversely, farm air samples showed lowest occurrence of *E. coli* (30%, 30/10), whereas poultry feed samples exhibited lowest *Salmonella* spp. (20%, 3/15) and *Staphylococcus* spp. (20%, 3/15). The overall occurrence of isolated bacteria from different samples of selected poultry farms are represented in Figure 2.

Antimicrobial susceptibility test

Antimicrobial susceptibility test revealed that all the *E. coli* and *Salmonella* spp. were found resistance to oxacillin, whereas *Staphylococcus* spp. exhibited highest resistance against ampicillin (71.05%). Additionally, several antimicrobial agents revealed frequently resistant to all type of isolates e.g. ampicillin, colistin,

gentamicin, oxytetracycline to *E. coli*; ampicillin, colistin, gentamicin, chloramphenicol, ciprofloxacin, oxy-tetracycline to *Salmonella* spp.; and oxy-tetracycline, chloramphenicol, ciprofloxacin to *Staphylococcus* spp. Interestingly, 42.10% *Staphylococcus* spp. were also found resistant to oxacillin, i.e., phenotypically MRSA in nature. The overall antibiotic resistance profiles of the isolated bacteria are presented in figure 3.

Table 1. Bacterial load of different samples of poultry farm


Sample	TVC (Mean log CFU±SD/gm or ml)		TCC (Mean log CFU±SD/gm or ml)		TS₁C (Mean log CFU±SD/gm or ml)		TS₂C (Mean log CFU±SD/gm or ml)	
	Max	Min	Max	Min	Max	Min	Max	Min
Poultry droppings	8.93± 0.52	6.96 ± 0.21	7.12 ± 0.37	5.49 ± 0.42	5.81 ± 0.04	3.39 ±. 0.35	7.66±.0.24	6.17 ±.0.16
Poultry litter	9.22± 0.55	7.53 ± 0.72	7.00 ± 0.08	5.57 ± 0.97	5.84 ± 0.20	4.62 ±. 0.05	8.45±.0.15	5.32 ±.0.33
Poultry feed	6.79± 0.04	5.79 ± 0.07	5.49 ± 0.64	4.89 ± 0.61	3.84 ± 0.62	3.17 ±. 0.15	2.01 ± 0.08	0 ± 0
Hand washings	6.93± 0.54	5.67 ± 0.80	5.83 ± 0.57	4.54 ± 0.70	4.79 ± 0.49	3.28 ±. 0.24	6.52 ± 0.10	5.01 ± 0.25
Farm water	4.54 ± 0.71	3.44 ± 0.55	3.47 ± 0.10	2.00 ± 0.18	2.78 ± 0.24	0 ± 0	3.36 ±0.05	0 ± 0
Farm air	7.54 ± 0.24	5.63 ± 0.19	4.15 ± 0.30	0 ± 0	3.01 ± 0.10	0 ± 0	1.93 ±0.14	0 ± 0

(TVC= Total viable Count, TCC=Total coliform count, TS₁C= Total *Salmonella* count, TS₂C= Total *Staphylococcus* count, CFU= Colony forming unit, SD= Standard deviation, Max= Maximum, Min= Minimum).

Table 2. Overall result on bacterial load in different farms


Bacterial load	Max / Min	(Mean log CFU±SD/gm or ml)	Sample	Source of sample	
TVC	Maximum	9.22 ± 0.55	Poultry litter	BAU Poultry Farm	
	Minimum	3.44 ± 0.55	Water	S.S. Poultry Farm	
тсс	Maximum	7.12 ± 0.37	Poultry droppings	Zakir Poultry Farm	
	Minimum	0 ± 0	Air	S.S. Poultry Farm	
TS₁C	Maximum	5.84 ± 0.20	Poultry litter	S.S. Poultry Farm	
	Minimum	0 ± 0	Water & Air	M/S Guru & S.S. Poultry	
				Farm	
TS ₂ C	Maximum	8.45±.0.15	Poultry litter	S.S. Poultry Farm	
	Minimum	0 ± 0	Poultry feed, Water & Air	BAU & M/S Guru Poultry	
				Farm	

(TVC= Total viable Count, TCC=Total coliform count, TS1C= Total Salmonella count, TS2C= Total Staphylococcus count, CFU= Colony forming unit, SD= Standard deviation, Max= Maximum, Min= Minimum)

■ E. coli ■ Salmonella spp. ■ Staphylococcus spp.

Figure 2. Occurrence of E. coli, Salmonella and Staphylococcus in the poultry farm samples

E. coli Salmonella spp. Staphylococcus spp.

Discussion

Antibiotic resistance is a serious global health issue affecting all the components of one health. The indiscriminate administration of antimicrobial agents for therapeutic purpose and as growth promoting agent to maintain increase growth and production in poultry industries has resulted in the emergence of antibiotic resistance in many of the avian bacterial pathogens. Here we investigated the load of selective bacterial population in poultry and various components of poultry farm environments as well as their antibiotic resistance pattern.

Present study revealed the widespread occurrence of bacteria in poultry environments. The maximum TVC was detected in poultry litter followed by in droppings, farm air, handlers' hand washings, poultry feed, and farm water. Previously, Nasrin et al. (2007) reported higher bacterial count in fecal materials; (103.5±3.62 ×10⁵ CFU/gm) and poultry litter (37.0±1.79 ×10⁵ CFU/gm); followed by poultry feed (6.5 \pm 1.87 ×10⁵ CFU/gm) and drinking water (31.33±1.12 ×10⁵ CFU/ml). Presence of increased level of bacterial load in poultry litter and poultry droppings is not unexpected. Poultry gut which is full of varieties of microbes are released from poultry through droppings (fecal materials), contaminate and accumulate into the litter (Pan and Yu, 2014; Borda-Molina et al., 2018; Diaz et al., 2019). Similarly, load of total E. coli, Salmonella spp. and Staphylococcus spp. counts were also found higher in poultry dropping and litter compared to other samples tested.

Poultry feed could be potential source for pathogens. In this study analyzed 33.33% feed were found to be contaminated with E. coli, 20% with Salmonella spp., and 20% with Staphylococcus spp. as reported by others (Rahman et al., 1999; Alam et al. 2020). These contaminations of poultry feed may be due to haphazard employment of technologies during processing, storage, transportation of poultry feed or may be originated from nitrogenous wastes (Uwaezuoke and Ogbulie, 2008). In addition, the exhibition of pathogens in feed from our present study suggests that feed can be a potential source of E. coli, Salmonella spp., and Staphylococcus spp. in poultry. Presence of bacteria in water samples recorded from our present study exhibited that contaminated water can be common source for multiple bacteria in poultry farm. Salmonella spp. in drinking water in poultry farms has earlier been reported from Gazipur and Tangail district of Bangladesh (Al-Mamun et al., (2017)). Occurrence of Salmonella spp. in the farm water samples may be linked with fecal contamination of the water at any point of the water supply, storage and distribution system into the farm that need further investigation. Detection of bacteria in the poultry handlers' hand washings suggest need for the better hygiene and sanitation. Like previous study, we also detected E. coli in air samples in the poultry farm (Duan et al., 2008). Pathogens found as bioaerosol form may

develop allergies, difficulties in immune, nervous, and respiratory functions (Konieczny *et al.*, 2016). Detection of *E. coli*, *Salmonella* spp., and *Staphylococcus* spp. in air samples of poultry farms revealed high risks for the poultry farm workers.

In present study, *E. coli* were isolated most frequently (57%) from the samples analyzed, followed by *Staphylococcus* spp. (50.67%) and *Salmonella* spp. (44%). As ubiquitous in nature, detection of these bacteria in poultry farm environments was not surprising, since these are mostly found as part of the poultry gut microbiota (Pan and Yu, 2014). Previously several studies also isolated *E. coli, Salmonella* spp., and *Staphylococcus* spp. from different samples of poultry farm environments (Nasrin *et al.*, 2007; Skora *et al.*, 2016; Chat *et al.*, 2019). Occurrence of *E. coli, Salmonella* spp., and *Staphylococcus* spp. in the poultry environments may be due to the improper management, unhygienic condition and inadequate biosecurity measures of poultry farms.

Among the antibiotic resistance bacteria MRSA had been receiving public health attention for over a decade because of their zoonotic potential (Zaman et al., 2020). In this study about 42.10% Staphylococcus spp. were also found resistant to oxacillin. Previously, Ali et al. (2017) detected MRSA from different poultry farm of Bangladesh. However, the presence of MRSA in poultry farm has to be considered as serious health issues because of the potentiality of these MRSA to transmit to personnel working in the farm. Isolated E. coli and Salmonella spp. also showed various degree of resistance to antibiotic including ampicillin, gentamicin chloramphenicol and colistin. Occurrence of antibiotic resistance level recorded in current study is not surprising in context of Bangladesh. In Bangladesh, antibiotics extensively are being used and inappropriately to treat infectious diseases in poultry, animals, and human (personal communication). Amer et al. (2018) detected E. coli from broiler farms in Egypt which were resistant against oxytetracycline (85%), ampicllin (80%), chloramphenicol (65%), gentamicin (55%) and oxacillin (30%). Another study (Zhao et al., 2016) showed that Salmonella spp. isolated from free ranged chicken in china were found to be resistant against ampicillin (57.9%), gentamicin (23.7%), chloramphenicol (13.2%) and ciprofloxacin (13.2%). In addition, recently Mridha et al. (2020) recorded that 80%, 12.73%, and 9.09% Salmonella spp. isolates were resistant against tetracycline, ciprofloxacin, and gentamicin, respectively in Dhaka, Gazipur, and Tangail districts of Bangladesh. Furthermore, Roy et al. (2017) detected resistant Salmonella spp. and Staphylococcus spp. isolates from poultry feed in Bangladesh.

As per WHO AWaRe (access, watch, reserve) classification, colistin is considered as a reserve group of antibiotics. This is one of the last-resort antimicrobials used for the treatment of multidrug-resistant Gramnegative bacteria. However, many reports are now available describing resistance to colistin (Sobur et al., 2019c; Yin et al., 2017; Zhang et al., 2018a). Here we found about 48.84% isolated E. coli and 54.55% Salmonella resistant to colistin. Farmers often use colistin in the production of food animals including in poultry to enhance growth. Antibiotic itself, acts as a selective pressure to induce resistance (Peterson and Kaur, 2018). Poultry and livestock also act as major reservoir and transmitter of colistin resistance (Hoelzer et al., 2017). Previously, few reports recorded in the development of colistin resistance bacteria from poultry and poultry environments (Sobur et al., 2019c; Zhang et al., 2018a; Zhang et al., 2018b; Shang et al., 2018). In addition, a study conducted in Vietnam showed that the development of colistin resistance bacteria is associated with extensive and blind use of colistin in poultry and livestock industry (Nguyen et al., 2016). The presence of antibiotic resistant along with colistin resistant bacteria in poultry farm environments exposes hazardous health significance in poultry and working personnel in farms. We suggest monitoring of poultry farm on the use of colistin and other antibiotics so that development of resistance could be kept at minimum level.

Conclusion

Detection of antibiotic resistance *E. coli, Salmonella* spp., and *Staphylococcus* spp. in poultry farm environments is of public health concern. From poultry farm and farm environments, they can transmit to human causing health problems. In addition, they can also enter into the food chain. Further detail molecular epidemiological studies are required to suggest better farm management to reduce the AMR related hazards in poultry farm.

Acknowledgments

We are very much grateful to the farm owners for giving us access to the samples. MJH was supported by NST fellowship of Government of the Bangladesh.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

Abdukhalilova, G., Kaftyreva, L., Wagenaar, J.A., Tangyarikov, B., Bektimirov, A., Akhmedov, I., Khodjaev, Z., Kruse, H. and World Health Organization 2016. Occurrence and antimicrobial resistance of *Salmonella* and *Campylobacter* in humans and broiler chicken in Uzbekistan. Public Health Panorama, 2:340-347.

- Al Mamun, M.A., Kabir, S.L., Islam, M.M., Lubna, M., Islam, S.S., Akhter, A.T. and Hossain, M.M. 2017. Molecular identification and characterization of *Salmonella* species isolated from poultry value chains of Gazipur and Tangail districts of Bangladesh. African Journal of Microbiology Research, 11:474-481. https://doi.org/10.5897/AJMR2017-8431.
- Alam, S.B., Mahmud, M., Akter, R., Hasan, M., Sobur, A., Nazir, K.H.M., Noreddin, A., Rahman, T., El Zowalaty, M.E. and Rahman, M. 2020. Molecular Detection of Multidrug Resistant *Salmonella* Species Isolated from Broiler Farm in Bangladesh. Pathogens, 9:201. https://doi.org/10.3390/pathogens9030201.
- Ali, Y., Islam, M.A., Muzahid, N.H., Sikder, M.O.F., Hossain, M.A. and Marzan, L.W. 2017. Characterization, prevalence and antibiogram study of *Staphylococcus aureus* in poultry. Asian Pacific Journal of Tropical Biomedicine, 7:253-256. https://doi.org/10.1016/j.apjtb.2016.12.001.
- Al-Talib, H., Hasan, H., Yean, C.Y., Al-Ashwal, S.M. and Ravichandran, M. 2011. Fatal necrotizing pneumonia caused by Panton-Valentine leukocidin-producing hospital-acquired *Staphylococcus aureus*: a case report. Japanese Journal of Infectious Diseases, 64:58-60.
- Amer, M.M., Mekky, H.M., Amer, A.M. and Fedawy, H.S. 2018. Antimicrobial resistance genes in pathogenic *Escherichia coli* isolated from diseased broiler chickens in Egypt and their relationship with the phenotypic resistance characteristics. Veterinary World, 11:1082. https://doi.org/10.14202/vetworld.2018.1082-1088.
- Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., Nisar, M.A., Alvi, R.F., Aslam, M.A., Qamar, M.U. and Salamat, M.K.F. 2018. Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11:1645-1658. https://doi.org/10.2147/IDR.S173867.
- Bauer, A.W., Kirby, W.M.M., Sherris, J.C. and Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45:493-496. https://doi.org/10.1093/ajcp/45.4_ts.493.
- Boovaragamoorthy, G.M., Anbazhagan, M., Piruthiviraj, P., Pugazhendhi, A., Kumar, S.S., Al-Dhabi, N.A., Ghilan, A.K.M., Arasu, M.V. and Kaliannan, T. 2019. Clinically important microbial diversity and its antibiotic resistance pattern towards various drugs. Journal of Infection and Public Health, 12:783-788. https://doi.org/10.1016/j.jiph.2019.08.008.
- Borda-Molina, D., Seifert, J. and Camarinha-Silva, A. 2018. Current perspectives of the chicken gastrointestinal tract and its microbiome. Computational and Structural Biotechnology Journal, 16:131-139.

https://doi.org/10.1016/j.csbj.2018.03.002.

- Chang, Q., Wang, W., Regev-Yochay, G., Lipsitch, M. and Hanage, W.P. 2015. Antibiotics in agriculture and the risk to human health: how worried should we be?. Evolutionary applications, 8:240-247. https://doi.org/10.1111/eva.12185.
- Chat, M.E., Dadah, A.J. and Uba, A. 2019. Isolation of Enteric Bacteria from Various Sources in Selected Poultry Farms in Kaduna State. Bioprocess Engineering, 3:1-5. https://doi.org/10.11648/j.be.20190301.11.
- Clifford, K, Darash, D, da Costa, C.P., Meyer, H. Islam, M.T., Meyer, H., Klohe, K., Winklerc, A., Rahman, M.T., Islam, M.T. and Zaman, M.H. 2018. The threat of antimicrobial resistance opportunities for a technology-integrated One Health approach. Bulletin of the World Health Organization, 96:662-664.
- Clinical and Laboratory Standards Institute (CLSI) 2016. Performance standards for antimicrobial susceptibility testing. 26th edition, CLSI supplement M100s. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania.
- Diaz Carrasco, J.M., Casanova, N.A. and Fernández Miyakawa, M.E. 2019. Microbiota, gut health and chicken productivity: what is the connection?. Microorganisms, 7:374. https://doi.org/10.3390/microorganisms7100374.

- Duan, H., Chai, T., Cai, Y., Zhong, Z., Yao, M. and Zhang, X. 2008. Transmission identification of *Escherichia coli* aerosol in chicken houses to their environments using ERIC-PCR. Science in China Series C: Life Sciences, 51:164-173. https://doi.org/10.1007/s11427-008-0021-0.
- Hoelzer, K., Wong, N., Thomas, J., Talkington, K., Jungman, E. and Coukell, A. 2017. Antimicrobial drug use in food-producing animals and associated human health risks: what, and how strong, is the evidence?. BMC Veterinary Research, 13: 211. https://doi.org/10.1186/s12917-017-1131-3.
- Ievy, S., Islam, M.S., Sobur, M.A., Talukder, M., Rahman, M.B., Khan, M.F.R. and Rahman, M.T. 2020. Molecular Detection of Avian Pathogenic *Escherichia coli* (APEC) for the First Time in Layer Farms in Bangladesh and Their Antibiotic Resistance Patterns. Microorganisms, 8: 1021. https://doi.org/10.3390/microorganisms8071021.
- Kim, Y.B., Yoon, M.Y., Ha, J.S., Seo, K.W., Noh, E.B., Son, S.H. and Lee, Y.J. 2020. Molecular characterization of avian pathogenic *Escherichia coli* from broiler chickens with colibacillosis. Poultry Science, 99:1088-1095. https://doi.org/10.1016/j.psj.2019.10.047.
- Konieczny, P., Cegielska-Radziejewska, R., Mroczek, E. and Dziedzic, J. 2016. Analysis of air quality in selected areas of a poultry processing plant with the use of a microbiological air sampler. Brazilian Journal of Poultry Science, 18:401-406. https://doi.org/10.1590/1806-9061-2015-0156.
- Li, B. and Webster, T.J. 2018. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research®, 36:22-32. https://doi.org/10.1002/jor.23656.
- Mamza, S.A., Egwu, G.O. and Mshelia, G.D. 2010. Beta-lactamase *Escherichia coli* and *Staphylococcus aureus* isolated from chickens in Nigeria. Veterinary Italian Journal, 46:155-165.
- Mbamalu, O., Uebel, R. and Meki, B 2015. Control of airborne microbes in a poultry setting using Dioxy MP 14. Brazilian Journal of Poultry Science, 17:77-86. https://doi.org/10.1590/1516-635x170177-86.
- Mellata, M. 2013. Human and avian extraintestinal pathogenic *Escherichia coli*: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathogens and Disease, 10:916-932. https://doi.org/10.1089/fpd.2013.1533.
- Mridha, D., Uddin, M.N., Alam, B., Akhter, A.T., Islam, S.S., Islam, M.S., Khan, M.S.R. and Kabir, S.L. 2020. Identification and characterization of *Salmonella* spp. from samples of broiler farms in selected districts of Bangladesh. Veterinary World, 13:275-283. https://doi.org/10.14202/vetworld.2020.275-283.
- Nair, V.T.D., Venkitanarayanan, K. and Kollanoor Johny, A. 2018. Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 7:167. https://doi.org/10.3390/foods7100167.
- Nasrin, M.S., Islam, M.J., Nazir, K.H.M.N.H., Choudhury, K.A. and Rahman, M.T. 2007. Identification of bacteria and determination of their load in adult layer and its environment. Journal of the Bangladesh Society for Agricultural Science and Technology, 4:69-72.
- Nguyen, N.T., Nguyen, H.M., Nguyen, C.V., Nguyen, T.V., Nguyen, M.T., Thai, H.Q., Ho, M.H., Thwaites, G., Ngo, H.T., Baker, S. and Carrique-Mas, J. 2016. Use of colistin and other critical antimicrobials on pig and chicken farms in southern Vietnam and its association with resistance in commensal *Escherichia coli* bacteria. Applied and Environmental Microbiology, 82:3727-3735. https://doi.org/10.1128/AEM.00337-16.
- Pan, D. and Yu, Z. 2014. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5:108-119. https://doi.org/10.4161/gmic.26945.
- Peterson, E. and Kaur, P. 2018. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9: 2928.

https://doi.org/10.3389/fmicb.2018.02928.

Prestinaci, F., Pezzotti, P. and Pantosti, A. 2015. Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health, 109:309-318.

https://doi.org/10.1179/2047773215Y.0000000030.

- Rahman, M.T., Saha, S. and Islam, M.A. 1999. Prevalence of *Salmonella* in poultry feed of Mymensingh, Bangladesh. The Bangladesh Veterinary Journal, 16:45-46.
- Rahman, M.T., Sobur, M.A., Islam, M.S., Ievy, S., Hossain, M.J., El Zowalaty, M.E., Rahman, A.T. and Ashour, H.M. 2020.
 Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms, 8:1405. https://doi.org/10.3390/microorganisms8091405.
- Roy, C.R., Ahmed, T. and Uddin, M.A. 2017. Microbiological analysis of poultry feeds along with the demonstration of the antibiotic susceptibility of the isolates and the antibacterial activity of the feeds. Bangladesh Journal of Microbiology, 34:103-107. https://doi.org/10.3329/bjm.v34i2.39620.
- Saharan, V.V., Verma, P. and Singh, A.P. 2020. Escherichia coli, Salmonella spp., and Staphylococcus aureus susceptibility to antimicrobials of human and veterinary importance in poultry sector of India. Journal of Food Safety, 40:e12742. https://doi.org/10.1111/jfs.12742.
- Schwarz, S., Loeffler, A. and Kadlec, K. 2017. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Advances in Veterinary Dermatology, 12:95-110. https://doi.org/10.1002/9781119278368.ch5.1.
- Shang, K., Wei, B. and Kang, M. 2018. Distribution and dissemination of antimicrobial-resistant Salmonella in broiler farms with or without enrofloxacin use. BMC Veterinary Research, 14:257. https://doi.org/10.1186/s12917-018-1590-1.
- Shanta, I.S., Hasnat, M.A., Zeidner, N., Gurley, E.S., Azziz-Baumgartner, E., Sharker, M.A.Y., Hossain, K., Khan, S.U., Haider, N., Bhuyan, A.A. and Hossain, M.A. 2017. Raising backyard poultry in rural Bangladesh: financial and nutritional benefits, but persistent risky practices. Transboundary and Emerging Diseases, 64:1454–1464. https://doi.org/10.1111/tbed.12536.
- Skóra, J., Matusiak, K., Wojewódzki, P., Nowak, A., Sulyok, M., Ligocka, A., Okrasa, M., Hermann, J. and Gutarowska, B. 2016. Evaluation of microbiological and chemical contaminants in poultry farms. International Journal of Environmental Research and Public Health, 13:192. https://doi.org/10.3390/ijerph13020192.
- Sobur, M.A., Sabuj, A.A.M., Sarker, R., Rahman, A.T., Kabir, S.L. and Rahman, M.T. 2019a. Antibiotic resistant *Escherichia coli* and *Salmonella* spp. associated with dairy cattle and farm environment having public health significance. Veterinary World, 12:984-993.

https://doi.org/10.14202/vetworld.2019.984-993.

- Sobur, A., Haque, Z.F., Sabuj, A.A., levy, S., Rahman, A.T., El Zowalaty, M.E. and Rahman, T. 2019b. Molecular detection of multidrug and colistin-resistant *Escherichia coli* isolated from house flies in various environmental settings. Future Microbiology, 14:847-858. https://doi.org/10.2217/fmb-2019-0053.
- Sobur, M.A., levy, S., Haque, Z.F., Nahar, A., Zaman, S.B. and Rahman, M.T. 2019c. Emergence of colistin-resistant *Escherichia coli* in

poultry, house flies, and pond water in Mymensingh, Bangladesh. Journal of Advanced Veterinary and Animal Research, 6:50-53. https://doi.org/10.5455/javar.2019.f311.

- Stapleton, P.D. and Taylor, P.W. 2002. Methicillin resistance in *Staphylococcus aureus*. Science Progress, 85:57-72. https://doi.org/10.3184/003685002783238870.
- Tenaillon, O., Skurnik, D., Picard, B. and Denamur, E. 2010. The population genetics of commensal *Escherichia coli*. Nature Reviews Microbiology, 8:207-217. https://doi.org/10.1038/nrmicro2298.
- Thanner, S., Drissner, D. and Walsh, F. 2016. Antimicrobial resistance in agriculture. MBio, 7:e02227-e02215. https://doi.org/10.1128/mBio.02227-15.
- Thomas, P., Sekhar, A.C., Upreti, R., Mujawar, M.M. and Pasha, S.S. 2015. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples. Biotechnology Reports, 8:45-55. https://doi.org/10.1016/j.btre.2015.08.003.
- Uwaezuoke, J.C. and Ogbulie, J.N. 2008. Microbiological quality of commercially available poultry feeds sold in parts of Eastern Nigeria. Journal of Applied Sciences and Environmental Management, 12:113-117. https://doi.org/10.4314/jasem.v12i1.55587.
- Varga, C., Guerin, M.T., Brash, M.L., Slavic, D., Boerlin, P. and Susta, L. 2019. Antimicrobial resistance in fecal *Escherichia coli* and *Salmonella enterica* isolates: A two-year prospective study of small poultry flocks in Ontario, Canada. BMC Veterinary Research, 15:1-10. https://doi.org/10.1186/s12917-019-2187-z.
- Yin, W., Li, H., Shen, Y., Liu, Z., Wang, S., Shen, Z., Zhang, R., Walsh, T.R., Shen, J. and Wang, Y. 2017. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio, 8:e00543e00517. https://doi.org/10.1128/mBio.00543-17.
- Zaman, S.B., Sobur, M.A., Hossain, M.J., Pondit, A., Khatun, M.M., Choudhury, M.A., Tawyabur, M. and Rahman, M.T. 2020. Molecular detection of methicillin-resistant *Staphylococcus aureus* (MRSA) in ornamental birds having public health significance. Journal of Bangladesh Agricultural University, 18:415–420. https://doi.org/10.5455/JBAU.80165.
- Zhang, J., Chen, L., Wang, J., Yassin, A.K., Butaye, P., Kelly, P., Gong, J., Guo, W., Li, J., Li, M. and Yang, F. 2018a. Molecular detection of colistin resistance genes (*mcr-1*, *mcr-2* and *mcr-3*) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Scientific Reports, 8:1-9. https://doi.org/10.1038/s41598-018-22084-4.
- Zhang, J., Chen, L., Wang, J., Butaye, P., Huang, K., Qiu, H., Zhang, X., Gong, W. and Wang, C. 2018b. Molecular detection of colistin resistance genes (*mcr-1* to *mcr-5*) in human vaginal swabs. BMC Research Notes, 11:143. https://doi.org/10.1186/s13104-018-3255-3.
- Zhao, X., Gao, Y., Ye, C., Yang, L., Wang, T. and Chang, W. 2016. Prevalence and characteristics of *Salmonella* isolated from free-range chickens in Shandong Province, China. Bio Med Research International, 2016:e8183931. https://doi.org/10.1155/2016/8183931.