Hyperspectral imaging technique for offal quantification in minced meat
DOI:
https://doi.org/10.3329/jbau.v12i1.21411Keywords:
Adulteration, Hyperspectral imaging, Wavelength Selection, Minced meat, Offal, PLSRAbstract
Spectral imaging is a new technique that combines conventional imaging and spectroscopy in a single system to obtain both spatial and spectral information simultaneously from an object. In this study, potential of hyperspectral imaging in the spectral range of 910-1700 nm was investigated for detecting adulteration in minced lamb meat. Spectral data were extracted to develop a partial least squares regression (PLSR) model to predict the level of adulteration in minced lamb. Good prediction model was obtained using the whole spectral range with a coefficient of determination (R2 CV) of 0.97 and root-mean-square errors estimated by cross validation (RMSECV) of 1.80%. Successive projection algorithm (SPA) was employed for optimal waveband selection. The PLSR model using only 7 optimum wavelengths (930, 1067, 1396, 1460, 1658, 1668, and 1702 nm) resulted in a coefficient of determination (R2 CV) of 0.97 and RMSECV of 1.84%. The study demonstrated the ability of the hyperspectral imaging as a rapid and alternative to the time-consuming and conventional methods to detect adulteration in minced lamb meat.
DOI: http://dx.doi.org/10.3329/jbau.v12i1.21411
J. Bangladesh Agril. Univ. 12(1): 189-194, June 2014
Downloads
174
177
Downloads
Published
How to Cite
Issue
Section
License
© 2003-2017 Bangladesh Agricultural University Research System.
Journal of the Bangladesh Agricultural University is licensed under a Creative Commons Attribution 4.0 International License.
JBAU is an Open Access journal. All articles are published under the CC-BY license which permits the use, distribution and reproduction in any medium, provided the original work is properly cited.