Evaluation of Pangasius pond sediment potentials in vegetable production as rooftop Bag Gardening
DOI:
https://doi.org/10.3329/jbau.v12i2.28700Keywords:
Pangasius pond sediment, Morpho-physiological parameter, Vitamin CAbstract
An experimental research was carried out to assess the potential of Pangasius pond sediment (PPS) on the performance of yield and yield quality attributes of vegetable crop (BARIs tomato variety) grown in bag gardening system on rooftop under integrated aquaculture-horticulture approach. For this purpose, PPS chemical analysis, recording of plant morphological parameters and biochemical analysis of yield were performed. The plants were grown in 100% PPS =T1; 50% PPS + 50% Virgin soil (VS) = T2; and 60% VS + 40% Cowdung + 50g TSP + 50g MoP = T3. To compare with PPS treated treatments, treatment T3 was considered as control because it is a standard and recommended fertilizing dose of BARIs tomato production. The PPS sediments were collected from different aged ponds ranging from 1to 5 years Pangasius culture. The old PPS was used in bag gardening for the determination of soil physico-chemical, plant morpho-physiological and production parameters. All PPS in bags were belonged to silt loam in texture. The total nitrogen level was higher in T1 where 100% PPS was used. The T1 had the plant height 77.98 cm, number of leaves per plant 184.33, leaf area 622.49 cm2, which were significantly (p<0.05) higher than T2 and T3. In the case of phenological development, onset of early flowering and fruiting was noticed in T1, which was almost 1.5 weeks earlier than T2 and 2 weeks than T3. The reproductive characters like flowers per plant (28.67), weight of fruit per plant (53.78g) and fruit yield per bag (1945.74g) and total biomass of plants after harvesting (119.47g) were also significantly (p< 0.05) higher in T1 followed by T2 and T3 (control). The numbers of branches per plant (29.54), number of clusters per plant (35.84) and fruits per cluster (5.10) were higher in T1 than T2 and T3. The vitamin C content of tomato (28.26 mg %) was also significantly (p< 0.05) higher in T1 followed by T2 (24.67 mg %) and T3 (21.28 mg %). The treatment T1 showed the best performance followed by T2 and T3 (control). The perceived aquaculture waste of PPS had the high potential to grow vegetables with better production without any manure and chemical fertilizers. Therefore, PPS could reduce use of chemical fertilizers, especially urea which is environment friendly and less costly for vegetable production in bag gardening system.
J. Bangladesh Agril. Univ. 12(2): 397-404, December 2014
Downloads
71
86
Downloads
Published
How to Cite
Issue
Section
License
© 2003-2017 Bangladesh Agricultural University Research System.
Journal of the Bangladesh Agricultural University is licensed under a Creative Commons Attribution 4.0 International License.
JBAU is an Open Access journal. All articles are published under the CC-BY license which permits the use, distribution and reproduction in any medium, provided the original work is properly cited.