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ARTICLE INFO 
 ABSTRACT  

  Determination of a valid sample size is a fundamental step in research. This paper explains how 
existing formulas are tied in a single thread by applying the concept of standard error, margin of 
error, Z and t scores, confidence interval and sampling distribution. Bringing the concept of sample 

control ratio, we suggest a unified formula which is   where I is the sample size, N is 

the population, t is the t-value at a desired level of probability with df = (N-1) and  is the sample 

control ratio to be estimated by  for continuous variables and  for categorical variables 

where  is the proportion of acceptable error and p is the proportion of presence of an attribute in 
the population. This formula does not need the finite population correction, and it has been derived 
from and consistent with existing formulas. A researcher does not need to calculate the error margin 
in absolute terms for this formula, and it is sufficient to provide only the proportion of error (e.g., 
0.03 or 0.05). This paper should help social scientists, researchers, academicians and students 
determine the appropriate sample size for their research with greater confidence and clarity. 
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Introduction 

Determining sample size is a common and very 
important step for any survey research work because a 
larger sample size increases cost, while a smaller 
sample size reduces precision. Determining adequate 
sample size from a population is one of the most 
fundamental tasks in research. A valid generalization of 
findings is always dependent on the sample size and 
sampling techniques used. Inferences are made based 
on the samples about the population without observing 
the entire population (Upton and Cook, 1996). Sample 
size should be large enough to ensure the minimum 
possible risk of accepting false hypothesis within an 
acceptable limit (Diamond, 1989). An appropriate 
sample size coupled with an appropriate sampling 
technique is the foundation of statistical manipulation 
of the gathered data in social surveys. A sample is a 
representative fraction of the population (an entire 
collection of subjects or units of study) (Moore et al., 
2014). The subjects or units could be people, crops, 
animals, areas or anything else whose characteristics 

are studied in research. Sample size indicates the 
number of samples to be drawn from the population to 
make a fair generalization about the population after 
statistical analysis (Witte and Witte, 2017).  
 
Attempts to determine the appropriate sample size is 
an age-old statistical strategy (e.g., Cochran, 1953; 
Haldane, 1945; Seelbinder, 1953; Stein, 1945). Most of 
the statistical books have touched on the formula of 
calculating sample size (e.g., Cochran, 1977; Kothari, 
2004; Sampath, 2001; Yamane, 1967). However, 
individual books explain their own styles that lack the 
linkage among different formulas with different levels 
of accuracy. Karimnezhad and Parsian (2018) and 
Martin and Elster (2020) have applied Bayesian 
approach that results in a higher sample size with 
better accuracy. In a case-control study where 
relationship is measured based on odds-ratio, sample 
size formula would be different (Sambucini, 2000). Even 
more sophisticated approaches are sometimes 
suggested that can outperform usual random selection 
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or Bayesian approach (Heller et al., 2015). For example, 
tail distribution of sample distribution is checked 
against the corresponding population distributions to 
justify sample adequacy (Chou and Johnson, 1987). 
Besides, sample size estimation focusing on a single 
variable in a multivariate study could be misleading, and 
therefore multiple variables should be considered 
(Benedetti et al., 2019; Liu, 2013). The estimation of 
sample size for categorical variables are different from 
that for continuous ones (Huschens, 1990; Laga and 
Likeš, 1975). Therefore, selection of the appropriate 
formula for sample size determination is often 
confusing.  
 
Various formulas are different, for example, the use of Z 
or t values, estimating the population variance, deciding 
on which type of variables should be used in 
determining the sample size. Bartlett II et al. (2001) and 
Israel (1992) explained the application of Cochran’s 
(1977) and Yamane’s (1967) formulas that provide a 
solid understanding of the formulas. Another widely 
used formula for estimating the sample size has been 
suggested by Krejcie and Morgan (1970) who did not 
provide a clear explanation of the derivation of their 
equation. Therefore, it is easy to get confused about 
which formula a researcher should use in their 
research. This paper explains the formulas of sample 
size determination in a consistent manner and layman’s 
language so that researchers and students do not 

require the complex mathematical proof of the 
derivation of the formulas. This paper does not aim to 
invent a new formula, which is fundamentally different 
from existing ones, but to propose a unified formula, 
which is consistent with the available formulas. The 
proposed unified formula can be used for determining 
the minimum sample size, which will confine the 
sampling errors within the accepted limits and be 
applicable to social surveys having continuous or binary 
variables and small or large populations. This paper will 
help social scientist, researchers and students 
determine the appropriate sample size with more 
confidence and clear understanding of the process that 
builds up the formulas. 
 
Sample size derived from standard error 
When we draw a sample size of n from a population of 
N, specific statistics (e.g., mean, standard deviation and 
coefficient of variation) can be calculated from this 
sample. If we have k number of samples of nk sizes, we 
can calculate k number of means from the k number of 
samples. These k number of means will allow us to 
create a distribution plot (Fig. 1) which is termed as the 
sampling distribution. Thus, the sampling distribution is 
a hypothetical distribution that represents the 
distribution of a statistic for an infinite number of 
samples. The sample, which we use in research, is just 
one of those infinite number of possible samples that 
could have been selected.  

  

 
 
Fig. 1. Population (N) values and sample means, a. Normally distributed N values generated using R codes [set.seed(1); 

rnorm(100000, mean=45, sd=5)], b. Distribution of means of 100,000 samples (each of which has n = 100) randomly 
drawn from the population 

 
It is very unlikely that the sample mean (M) will be 
equal to the population mean (µ). Fig. 1a has been 
constructed using a population (N) of randomly 

generated 100,000 values [ N (µ = 45,  = 5)], where, µ 

and  have been assumed to be, for example, 45 and 5, 
respectively. From the N, we have drawn 100,000 
samples each of which has 100 units (n = 100) and 

plotted the calculated 100,000 sample means in Fig. 1b. 
Figure 1 shows that the population mean (µ = 45) and 
the mean (M = 45) of the means of the randomly drawn 
100,000 samples are equal. However, all the sample 
means are not equal to 45 rather they vary between 
42.78 and 47.08. For example, the mean and standard 
deviation of the first sample is 45.26 and 5.09, 
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respectively, which are different from the population 
parameters. Therefore, it is very unlikely that a sample 
mean out of these 100,000-sample means will be equal 
to the population mean. A researcher wants to 
determine the centre of this sampling distribution (Fig 
1b) where the best estimate of the true population 
mean should be. Figure 1 also illustrates that the 
average of the sampling distribution represents the 
population parameter (μ here for example). We can 
also calculate the standard deviation of the sampling 
distribution which is termed as the standard error (SE). 
In this example, the standard deviation of the sampling 
distribution is 0.5 which should be equal to the SE 
calculated from the sample standard deviation using Eq. 
1 (Witte and Witte, 2017). 
 

  ………….. Eq. 1 

 
We have created 100,000 samples each with size 100, 
and 5.09 is the standard deviation of the first sample of 

these total samples. Although  denotes the standard 
deviation of the population, we have used sample 

standard deviation in a practical sense because  is 
unknown for most of the cases. However, this shows 
how SE can be estimated from sample values. 
Calculation in Eq. 1 depicts that the standard deviation 
of the sampling distribution (i.e., SE = 0.5) is almost 
equal to the SE calculated from population values. This 
standard error indicates a rough estimate of how the 
sample means deviate from the population mean. This 
implication of standard error helps make inferences 
about the population using the sample values. 
 
In statistics, the standard deviation of a sampling 
distribution is called the SE. The concept of “Standard 
error” (in sampling, it is termed as “Sampling error”) is 
central to the sampling theory and determination of 

sample size (Cochran, 1977; Kothari, 2004). Standard 
deviation is the dispersion of scores with respect to the 
average in a single sample, and standard error is the 
deviation of averages from the average of averages in a 
particular sampling distribution. We never actually 
create the sampling distribution. All we have to deal 
with is the sample standard deviation. The higher the 
standard deviation is, the higher will be the standard 
error (sampling error).  
 
In our example, SE calculated from the population and 
sample standard deviations are almost equal. However, 
this will not be equal if the samples are not 
representative of the population. To make the sample 
representative, two criteria must be fulfilled: (a) sample 
size should be large enough, and (b) sample drawn 
should be random enough. This paper specifically 
focuses on the determination of sample size which will 
be large enough to draw a valid inference about the 
population with a given level of accuracy and small 
enough to avoid unnecessary expenses of time and 
resources. 
 
A close examination of Eq. 1 shows that SE is inversely 
proportional to the square root of the sample size (n). 
Figure 2 shows the effect of sample size on the SE. Any 
increases in n results in a decrease in the SE, which is 
calculated from sample standard deviation as we do not 
have true population values. The SE decreases rapidly in 
the initial increases of n, which is very optimistic that a 
small increase in the n should give us a far better 
inference about the population. In practice, we do not 
need the SE (calculated from the sample) which is less 
than the true SE (calculated from the population). 
Therefore, we need to determine the optimum size of 
the sample. 

   

 
 

Fig. 2. Sensitivity of standard error to sample size 
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Estimating sample size from standard error 
From Eq. 1, we can determine n by solving n as shown 
in Eq. 2. 

  ………….. Eq. 2 

 

As we know all these values, 2 = 52 = 25 and SE2 = 0.52 
= 0.25, therefore n will be 100. This seems very simple 

but a problem arises when we do not know SE and . 
This issue can be solved by collecting data in two steps 
(Cochran, 1977; Seelbinder, 1953; Stein, 1945). In the 
first step, data is collected from a small fraction of the 
population (for example, n0 = 30) that allows the 

researcher to estimate the  and SE. The n is then 

calculated using these  and SE. In the second stage, 
data is collected from the remaining (n-n0) number of 
samples. So far, we have formulated the equations 

considering continuous variables where  represents 
the standard deviation of the population. To use Eq. 2 
for categorical variables (e.g., dichotomous or binary 

variables),  has to be replaced by  which 

is the standard deviation of a binary variable where p is 
the proportion of presence of a response. For example, 
if there are 45% businesspersons in a population, p of 
the businesspersons will be 0.45. Therefore, the n for a 
binary variable will follow Eq. 3. 
 

 …….. Eq. 3 

 

However, this formula (Eq. 2 or Eq. 3) does not take 
population size into account which must be considered 
to make the samples representative of the population. 
Therefore, the margin of error needs to be incorporated 
in the equation of sample size determination. 
 
Margin of error, confidence interval and choice between 
Z or t scores 
The estimated sample size has crucial importance on 
the accuracy of estimated confidence intervals (Liu, 
2013). Therefore, determination of population 
parameters from sample statistics requires the concept 

of confidence interval (Cl) and margin of error (). The  
is subtracted from and added to sample statistic to 
obtain the Cl. The Cl tells that a statistic (e.g., mean and 
standard deviation) falls between a certain interval 

produced by the δ. The Cl is expressed as Eq. 4 (Moore 
et al., 2014). 
 

  

 

   ………..  Eq. 4 

 

In Eq. 4,    or   is called the 

margin of error () which depends on the SE as well as 
on the Z or t values. Although Z score of a standard 
normal curve is constant for a constant α (level of 
probability of confidence), t scores vary with population 

parameters such as  and N. However, we can calculate 

Cl of mean by adding  to and subtracting  from the 
mean value. In our example (see Section 2), mean of 
the first sample (of the randomly generated 100,000 
samples) = 45.26, SE = 0.5 and Z1-α/2 = 1.96 at α = 95% 
level of probability for a standard normal distribution. 

Therefore,  = 1.96 × 0.5 = 0.98 and Cl = 45.26 ± 0.98 = 
[44.28, 46.24] which means that the true population 
mean value falls outside this range from 44.28 to 46.24 
for 5% of the times. In our example dataset, the range 

of population values is 44.28 (= 66.57 – 22.29) and  = 
0.98 (in absolute proportion) which is 2.21% of 44.28 (in 
percentage of the population scale points). 
 
A choice between Z or t scores depends on the 
population size. When the population is small (<30), t1-

α/2 value is used to calculate the  . Figure 3 shows that 
increasing n (degree of freedom or df) has decreased 
the t- values because Z-score calculation does not need 
the df parameter. Therefore, Z-score is constant at a 
specific α for a standard normal distribution with µ = 0 

and  = 1. However, t-values depend on the df, and for 
larger df they tend to coincide with Z-scores. A larger 
sample than 30 is traditionally considered as a large 
sample and assumed to follow a normal distribution, 
and hence the central limit theorem can be applied. 
Figure 3 also shows that the gap between t and z scores 
increases at lower α levels. Hereafter, for simplicity, t1-

α/2 and Z1-α/2 have been denoted as t and Z, respectively. 
To apply the formula for smaller samples, it is 
recommended to use t-scores instead of Z-values 
(Bartlett II et al., 2001). 
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Fig. 3. Changes in t-scores (solid lines) relative to the degree of freedom and corresponding constant Z-scores (dash 

lines) 
 
Derivation of formulas for sample size determination 
from margin of error 
If we extract the margin of error part from Eq. 4 it looks 
as Eq. 5 for continuous variables and Eq. 6 for 
categorical variables. 
 

  ……………..…. Eq. 5 

 

 ……... Eq. 6 

 

Equation 5 and Eq. 6 are the same where   is replaced 

with  and p is the probability of the 

proportion of positive response in the population. Now, 
we can use Eq. 5 and Eq. 6 to create formulas for the 
determination of n. 
 

Eq.5 ……… Eq. 7 

 

Eq. 6 …. Eq. 8 

 
This is how Cochran (1977: 75, 78) devised the formula 
of obtaining n for continuous data (Eq. 7) and 
categorical data (Eq. 8) where n0 denotes the initial 

sample size. Here, the margin of error () is also known 
as absolute error or precision. However, for a larger 

population when  ratio is appreciable or not 

negligible (>0.05, for example, as mentioned by Bartlett 
II et al. (2001) a finite population correction formula 
(Eq. 9) has to be applied to obtain the final sample size 
(n) (Cochran, 1977).  
 

  ………………………… Eq. 9 

 

When n = N, Eq. 9 can result in the final n which is 50% 

of the n0 and gradually decreases as  increases. Again 

the difference between the use of  and  can be 

ignored (Cochran, 1977, p. 76). Here, (n0-1) may be 
important to make the formula applicable for small 
samples. The term (n0-1) very slightly increases the n in 
Eq. 9 to make it adjusted for a smaller population and 
smaller samples. It does not affect the calculation of n 
for a larger population. It could be analogous to Bessel’s 
correction in the calculation of variance from sample 
values where (n-1) is used as the divisor (similar to df = 
n-1 to get an unbiased estimate of population variance 
(Upton and Cook, 1996; Warne, 2017). 
 
If we substitute the value of n from Eq. 8 in Eq. 9 it 
provides us with another formula of estimation of n (Eq. 
10) via the following calculation. 
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 ……… Eq. 10 

 
Although t values vary with df, it is customary to use t = 

1.96 at  = 95% (Bartlett II et al., 2001) which is true 

around df ≈ 300. Cochran (1977) used t = 2 which is 

appropriate at α = 5% and df ≈ 60. However, Z is always 

equal to 1.96 at α = 95% for a normal curve. Thus, Z2 = 

1.96 × 1.96 = 3.8419 ≈ 3.841459 = X2 at α = 95% and df 

= 1 (for a binary variable). Therefore, Krejcie and 
Morgan (1970) used X2 in their widely used formula of 
sample size (Eq. 11) that does not need population 
correction because finite population correction has 
already been embedded in this formula. 
 

  …….. Eq. 11 

 
Kothari’s (2004) derivation of the formula for n has a 
subtle difference in the sense that it used the finite 

population multiplier, which is . 

This multiplier was multiplied with  that resulted in a 
formula for the determination of n (Eq. 12). In this 
formula, Kothari (2004) used Z-values instead of t-

values and we know that   for 

categorical variables. 
 

 
 

       …………………. Eq. 12 

 
Similar to the derivation of Eq. 11, we can also derive 
Eq. 13 from Eq. 8 and Eq. 9. In this case, we have 

considered   and   in Eq. 11 has 

now become   in Eq. 13. 
 

 …………………...…. Eq. 13 

 
If Eq. 13 takes the value of X2 = 3.84 at α = 95%, df = 1 
and p = 0.5, Eq. 14 emerges assuming 0.96 ≈ 1.  
 

 
 

 
 

 
 

 ……………………………...……. Eq. 14 

 
This formula (Eq. 14) has been suggested by Yamane 
(1967) which is only applicable for categorical variables 
with p= 0.5, α = 0.95 and df = 1, i.e., for binary variables. 
Here, p = 0.5 has been used because it provides the 
highest variance and maximum sample size for 
categorical variables (Krejcie and Morgan, 1970). As a 
proof, we can differentiate the variance = np(1-p) for a 
binary variable with respect to p. The variance is the 
largest when the first-order derivative is zero. The 
following solution shows that this condition is fulfilled 
only when p = 0.5. 
 

 

 

 

 
  

  

 

 
 
This can also be visualized as in Fig. 4 to show the 
maximum variance at p = 0.50. 
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Fig. 4. Variances for different p values 
 
Application of the formulas to estimate sample size 
It is clear from Section 5 that the formulas  (Eq. 7 and 
Eq. 8)  suggested by Cochran (1977) have the maximum 
number of tuning parameters and applicable to both 
continuous and categorical variables as well as small 
and large populations. Several estimations are required 
to apply these formulas to determine the appropriate 
sample size, which are the total number of sampling 
units in the population N, t scores with population df = 

(N-1) at the desired level of α, population variance 2 or 

p(1-p) and squared margin of error in absolute term  2. 
 
The population size is determined based on the total 
sampling units in the sampling frame in a specified area. 
For example, if a researcher wishes to study the effect 
of age, monthly income and training on homestead 
gardening on the nutritional status of married women 

in a district the sampling frame will be composed of 
only the married women. Total population (male, 
female both married and unmarried) of the district 
could be one million but the sampling population or 
sampling frame is much lower that contains only 
married women. Let us assume the total number of 
married women in the district is 250,000 which is the 
sampling population (N). Determination of t-score at a 
specified α and df is straightforward. A higher α 
produces higher accuracy but generates a higher n. We 
will consider α = 0.95, df = (250000 – 1) = 249999 and 

t1-0.95/2 (df=249999) = 1.96. Estimation of  2 and  2 

depends on the variable types and their range of values. 
In this example, we have several major variables such as 
age, monthly income, homestead gardening (Yes = 1 or 
No = 0) and nutritional status (7-point Likert type scale: 

 
Extremely poor = 1, very poor = 2, poor = 3, moderate = 
4, high = 5, very high = 6, extremely high = 7). We 
assume the age of the married women in the 
population varies between 21 to 60 years and therefore 
the number of unique scale points in round numbers 
will be (maximum – minimum +1) is 40. If the monthly 
income varies from $501 to $2000 the number of scale 
points in round numbers will be 1500. For homestead 
gardening, the number of scale points will be (1 – 0 + 1) 
= 2 and for nutritional status, it will be 7 – 1 + 1 = 7. 
 
Estimation of variance for continuous variables needs to 

account for how many standard deviations () from 
mean are required to include all the observations in a 

population. For a normal distribution (Fig. 5), µ ± 1   

covers 68.27%, µ ± 2  contains 95.45% and µ ± 6 
includes almost all (99.99966%) of the observations. 

This 6 (six-sigma) is the basis of lean management 

where 6 is expressed to represent 3.4 defects per 

million items (Pepper and Spedding, 2010). This 6 is 
not only applicable to continuous variables but also for 
normally distributed any variables with more than two 

scale points. Bartlett II et al. (2001) mentioned that 6 
would contain 98% of all the responses in a 7-point 

Likert type scale. Thus, we can estimate population  by 
dividing the total number of scale points by 6 because 

of 6  100% of scale points   = number of scale 
points ÷ 6. Now we can apply this strategy to estimate 
variances for different non-binary variables in our 
example.
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Fig. 5. Standard normal curve showing µ ± 6 includes 99.99966% of the observations 

 
We have three non-binary variables, namely age (40 
scale points), monthly income (1500 scale points) and 
nutritional status (7 scale points). Therefore, for age, σ 
= 40/6 = 6.67; for monthly income, σ = 1500/6 = 250; 
and for nutritional status, σ = 7/6 = 1.167. 
 
We have one last tuning parameter in Eq. 7 and Eq. 8, 

that is the margin of error () in absolute terms. 

According to Krejcie and Morgan (1970), acceptable  
for continuous and categorical data are, respectively, 
3% and 5% of the total scale points. This means that the 
δ depends on the scale points and the proportion of 

error (), a researcher is willing to accept while making 
inferences about the population, which is 0.03 (3%) for 
continuous variables and 0.05 (5%) for categorical 
variables. However, researchers may choose any other 

 as they consider appropriate for their specific 

research works. Therefore,  in absolute term will be 

the number of scale points (SP) multiplied by  

expressed as proportion. Thus, for age,  = SP ×  = 40 × 

0.03 = 1.2; for monthly income,   = 1500 × 0.03 = 45; 

and for nutritional status,  = 7 × 0.03 = 0.21. 

 
We have one binary variable that is participation in 
homestead gardening. We have already mentioned that 
p is required only for dichotomous or binary categorical 
variables and the maximum sample size is obtained at 
maximum variance when p = 0.5. However, p is the 
proportion of presence of an attribute in the 
population. This proportion can be obtained from 
previous studies, reports or pilot study (Bartlett II et al., 
2001; Cochran, 1977). If this is impractical to figure out, 
it is suggested to use p = 0.5 to avoid the risk of 
accepting the false hypothesis. In our example, we 
assume that 35% of the married women are engaged in 
homestead gardening, so p = 0.35 for this variable. 
Again, for this categorical variable, we are willing to 

accept 5% margin of error and therefore   = 0.05.  
 
Now we have all the parameters needed to calculate 
the sample size by plugging these values in Eq. 7 and Eq. 
8 followed by the population correction using Eq. 9. The 

calculated sample sizes (rounding up, such as 52.3 → 
53) for different variables are shown in Table 1.

Table 1. Sample size for different variables as an example 

Variables Initial sample (n0) Final sample with population correction (n) 

Age 119 119 
Monthly income 119 119 
Homestead gardening 350 350 
Nutritional status 119 119 

 

Three important features can be seen from Table 1. 

Firstly, n0 = n because   = 119/250000 to 350/250000 

which is negligible. Secondly, sample size estimated 
from the binary variable (homestead gardening) is 
larger than the continuous variables (age, monthly 
income, or nutritional status). Thirdly, all the 
continuous variables have the identical sample size. This 
happens because of the formation of Eq. 7 and Eq. 8 
which can be expressed as Eq. 15. 
 

…………. Eq. 15 

 

Where  and   for binary 

variables. This ρ can be termed as ‘sample control ratio’ 
that controls the estimation of the sample size to a 
greater extent. In our example, this ρ for age = 6.67/1.2 
= 5.56, monthly income = 250/45 = 5.56, nutritional 
status = 1.167/0.21 = 5.56 and homestead gardening = 

 /0.05 = 9.54. For a binary variable, 
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when p = 0.5 and  = 0.05, the highest ρ can be 
obtained which is 10 and of course  ρ = 0 for p = 0. 
 
Now, we can examine how the sample size formula (Eq. 
8) is sensitive to N (Eq. 9) as shown in Fig. 6. If 
population correction factor is not applied, sample size 

will always be 385 when t = 1.96, p = 0.5 and  = 0.05. If 
this 385 is larger than 5% of the total population, the 

correction formula (Eq. 9) is applied to reduce the 
sample size which happens when N < 7700. Therefore, 
the formula of Cochran (1977) is sensitive to N only 
when N < 7700, and the sample size will never be larger 
than 385 at α = 0.95. Therefore, finite population 
correction can adjust the sample size substantially to a 
lower size for only small populations (Israel, 1992). 

   

 
Fig. 6. Sample size according to Cochran (1977). Without population correction, the sample size is always 385 

(rounding up of 384.16) which is 5% of 7700 
 
A unified formula for both continuous and categorical 
data and its application 
We have seen that Eq. 7 (for continuous data) and Eq. 8 
(for categorical data) combined with Eq. 9 have the 
highest number of tuning parameters which should 
provide a more accurate sample size. To generate a 
unified formula, which is applicable to both continuous 

and categorical data, we need to solve for  (in Eq. 7) 

from p (in Eq. 8) and we know that  . 

From Eq. 9 and Eq. 15, we can derive Eq. 16 after the 
finite population correction.  
 

Eq. 15  

Eq. 9   

 ……………………… Eq. 16  

 
This unified formula (Eq. 16) has three parameters, 

which are N, t and  where  is the sample control ratio 
as explained in Eq. 15. Specifications of the parameters 
are the same as we have done in Section 6. As finite 
population correction works only when N < 7700, we 
have included this in Eq. 15 to make it applicable for 
both small and large populations. We have also 
suggested to use t-values instead of constant Z-values 
at a specific α to reflect the population df. The only 

parameter remaining, which is sample control ratio (), 
has to be estimated by using the following procedure: 
 

Eq. 15    

Section 6  and , where SP is 

the number of scale points. 
 

, where  is the 

proportion of error willing to accept. 
 

For binary variable,   =  and  , 

therefore,  . 

 
Therefore, it is not necessary to estimate the number of 
scale points or variances in the continuous and Likert-
type scale variables to determine the sample size. For 
binary variables, estimation of p is important but if it is 
not practical it is suggested to assume p = 0.5. During 
estimating the sample size, it is always advisable to 
consider the variable that would play major roles in the 
research. It is always better to estimate the sample size 
considering several important variables and select the 
highest number to avoid accepting false hypotheses. 
Setting the α level at higher level, for example 99%, will 
result in a higher sample size with better accuracy.  
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For a categorical variable, if p ≤ 10%, it is recommended 
to continue sampling until the desired number of rare 
items have been included in the sample and this 
process is known as inverse sampling (Cochran, 1977; 
Haldane, 1945). In many situations, response rate may 
not be 100% where oversampling would be necessary 
(Bartlett II et al., 2001). For example, if an investigator 
foresees that they can obtain data from 85% of the 
samples, they should set the sample size as n/0.85 to 
have the required number of responses from the 
population. Although the suggested formula would 
yield the minimum sample size that would be sufficient 
at a given level of confidence interval and accepted 
error limits, there could be some other conditions that 
play a vital role in the sampling calculation. For 
example, to be able to apply central limit theorem in 
parametric tests with several groups of data, sample 
size in each group should be larger than 30 (Kothari, 
2004) or 25 (Witte and Witte, 2017). Similarly, specific 
statistical analysis may require minimum number of 
samples per explanatory variable, for example, factor 
analysis or multiple regression demands at least ten 
observations per independent variable and not less 
than 100 observations in total (Bartlett II et al., 2001). 
 
There could be some situations where researchers may 
arbitrarily set sample sizes (e.g., 100, 110 and 85) 
though this is not a recommended practice. It could 
happen due to constraints of time, manpower, funds 
and communication to reach the sampled respondents. 
The survey cost always plays an important role in the 
sampling design, and it can result in the exclusion of 
some of the population units from the selected samples 
(Chang et al., 2004). In such scenarios, it should be 

revealed to the audience about how much error () 
could be associated with the inferences. Let us consider 
a researcher has investigated 76 sample adults (18 to 75 
years old) from a total of 1234 adults in a village to 

explore the effect of age on their marital status (1 = 
married, 0 = otherwise). In their sample, they have 
found that standard deviations for age and marital 
status are 0.46 and 9.5 years, respectively. In this case, 
the error can be estimated from Eq. 17 which has been 

derived from Eq. 16 considering   and  

= 1.96 at df = 1234 – 1 = 1233. 
 

 ……………………….. Eq. 17 

 

Therefore,  for age = 2.07 and  for marital status = 

0.10. We know from Section 6 that  = SP ×  (for 

continuous variables) and  =  (for categorical 
variables). In this case, SP = 75 – 18 + 1 = 58. Therefore, 

proportion of error () could have been for age = /SP = 
2.07/58 = 0.0357 = 3.57% and for marital status 0.10 = 
10% in the inferences made based on 76 samples out of 
1234 adults. 
 
We also have developed an applet which can be run in a 
web browser using the URL <https://kamrulext. 
shinyapps.io/sample/>, or running an R command 
<if(!require("shiny")) install. packages ("shiny"); 
require(" shiny"); runGist( "d53e8ff6845ea1a6c92199c 
75ab5d43e")>. Three R packages have been used to 
create this applet which are ‘shiny’ (Chang et al., 2020), 
‘tidyverse’ (Wickham, 2017; Wickham et al., 2019) and 
‘ggpmisc’ (Aphalo, 2020) that work in the R Version 
4.0.2 (R Core Team, 2020) and RStudio Version 
1.3.1056. A screenshot of the applet is presented in Fig. 
7 showing that users can specify different parameters 
and obtain the minimum sample size for both 
categorical and continuous variables as well as for small 
and large populations. 
 

 

 
Fig. 7. Screenshot of the web applet for sample sizes estimation which is independent of operating systems and 

browsers 
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Comparison of sample sizes obtained from different 
methods 
Mostly used parameters for determining the sample 

size are p = 0.5, α = 0.05 and  = 0.05. Samples sizes for 
binary variables using these parameters have been 
calculated using different formulas (Table 2). Binary 
variables have been used for demonstration because 
they produce the largest number of samples. Table 2 
shows that sample sizes computed by the formulas of 
Cochran (1977) and Kothari (2004) are almost equal but 
the formula of Krejcie and Morgan (1970) gives larger 
sample sizes. The differences in sample sizes, in this 
case, are produced due to the use of t, z or X2 values 

though the structural formations of the formulas are 
identical. Yamane’s (1967) simplified formula 
overestimates sample size that would increase time and 
cost of sample surveys. The proposed formula by this 
paper provides sample sizes consistent with the formula 
of Krejcie and Morgan (1970), and in all cases is within 
the range obtained by the other four comparing 
formulas. In addition, it takes the population into 
account while estimating t-values for the sample size 
determination. Smaller sample sizes can minimize 
expenditures of surveys but they may fail to confine the 
sampling error within the limit of errors that the 
researcher is willing to accept.  

 
Table 2. Sample sizes obtained from various formulas 

N 
Sample size (n)  t-value at df = (N-1)  

and α = 0.05 Cochran1 Kothari2 Krejcie3 Yamane4 Proposed5 

20 19 19 20 20 20 1.729133 
50 43 43 45 45 45 1.676551 
100 74 74 80 80 80 1.660391 
200 116 116 132 134 133 1.652547 
300 143 143 169 172 170 1.649966 
400 163 162 197 200 197 1.648682 
500 177 176 218 223 218 1.647913 
600 188 187 235 240 235 1.647401 
700 196 196 249 255 249 1.647036 
800 203 203 260 267 261 1.646763 
900 209 209 270 277 270 1.646550 
1000 214 214 278 286 279 1.646380 
1500 230 230 306 316 307 1.645871 
2000 239 239 323 334 323 1.645616 
4000 254 254 351 364 351 1.645235 
6000 259 259 362 375 362 1.645108 
8000 262 262 367 381 367 1.645044 
10000 264 264 370 385 371 1.645006 
100000 270 270 383 399 383 1.644869 

1Cochran’s (1977) formula (Eq. 10):   

2Kothari’s (2004) formula (Eq. 12):    

3Krejcie and Morgan’s (1970) formula (Eq. 11):   

4Yamane’s (1967) formula (Eq. 14):   

5Proposed formula (Eq. 16):   where   for binary variables 

 
Conclusion 

The aim of this paper is to discuss the various formulas 
to estimate the sample size in social survey research 
and to propose a simple methodology to determine 
sample sizes. It has been shown here that all the widely 
used equations for sample size share the same 
principles with different styles of notations and 
simplifications. A modified formula, with a freely 
available Applet, has been suggested which is based on 
the well-known equations of Cochran (1977). All other 

formulas discussed in this paper can fundamentally be 
derived from these well-known equations. Application 
of the proposed formula has been made easier by 
providing examples that do not need any advanced 
statistical knowledge. The proposed formula in this 
paper has some clear advantages. Firstly, users do not 
need to estimate the error margin in absolute terms, 
instead they only need to provide the proportions of 
error they are willing to accept while making inferences. 
Secondly, this formula has only one tuning parameter 

https://kamrulext.shinyapps.io/sample/
https://kamrulext.shinyapps.io/sample/
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(the sample control ratio) that needs to be estimated 
from the given proportions of error. Lastly, it does not 
require the finite population correction which is already 
embedded in this formula. A comparison with four 
other common sample size determination methods 
shows that the proposed formula produces sample sizes 
within the range determined by the other four widely 
used methods. This paper has not generated any tables 
for sample size determination because the formula 
suggested is very easy to apply using the applet in 
various situations, such as surveys consisting of binary 
or continuous variables and small or large populations, 
with greater transparency and lesser confusion. It is 
expected to be highly useful for the researchers and 
students interested in social survey research. 
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