Salivary Biomarker in Diagnosis of Oral Squamous Cell Carcinoma: A Scoping Review

SMA SADATa, LAKTHERb

Abstract:

Oral saliva is an extracellular fluid produced and secreted by salivary glands which contains 99% of water and 1% of organic and inorganic substances. Inorganic elements consist of minerals such as sodium, potassium, calcium, magnesium, fluoride, and phosphates. Organic elements comprise enzymes, hormones, immunoglobulins, antioxidants are present in the saliva. The recent findings suggest that saliva could be used as a biomarker in diagnosing oral cancer and pre cancer. Most oral cancers are oral squamous cell carcinomas. Using saliva for detection of early oral squamous cell carcinomas in the search for new clinical markers is a promising approach because of its noninvasive sampling and easy collection method.

Introduction:

Oral cancer is one of the non-communicable diseases of which more than 90% are oral squamous cell carcinoma (OSCC); usually arises from a pre-existing oral potentially malignant disorder (OPMD)¹. Globally, oral cancer accounts for 2-4% of all cases while it is regarded as the 6th most common cancer in Asia^{1,2}. Early detection of OSCC can not only significantly reduce mortality and morbidity but also enable effective intervention and therapy³. At present, no specific early detection techniques are available other than conventional clinical oral examination and biopsy for histopathological evaluation⁴. The use of saliva as a diagnostic fluid has become matter of interest and became a roaring success in translational research in the recent years. Saliva is a good medium because it is noninvasive to collect and the donation process is largely stress-free, allowing many collections to be made without causing undue discomfort to the donor individuals. Moreover, it is

Biomarkers are the molecular signatures and indicators of normal biological, pathological process, and pharmacological response to treatment hence may provide useful information for detection, diagnosis, and prognosis of the disease. This review article provides the up-to-date list of known and emerging potential salivary biomarkers for diagnosis of oral cancer and pre cancer. Salivary biomarkers will help to differentiate patients who clinically have no detectable disease but are potential candidates for oral cancer.

Key Words: Salivary Bio Marker, Oral Cancer, Squamous Cell Carcinoma

> (J Bangladesh Coll Phys Surg 2025; 43: 294-297) DOI: https://doi.org/10.3329/jbcps.v43i4.85015

simple to collect, store, and transport; for its processing it does not require highly skilled health professionals⁵. It is safer to handle than blood and other bodily fluids as well. From the late 1990 until the present, more than 40 research studies have been published and more than 100 different salivary constituents have been identified as potential OSCC salivary biomarkers^{5,6}. Several excellent reviews have been previously published concerning the basis for salivary diagnostics, and the history and evolution of salivary proteomic, transcriptomic, genomic, and metabolic research for oral cancer detection⁵.

Oral cancer cells or their microenvironment produce several proteins which may eventually enter the circulation system and quantitative proteomics test can assess the expression pattern of these proteins. Saliva examination shows the greatest benefit for detection of oral cancer because of its direct contact with oral cancer lesion. Using salivary fluids as a medium for biomarker

Address of Correspondence: Dr. S. M. Anwar Sadat, Associate Professor, Dept. of Oral & Maxillofacial Surgery. Dhaka Dental College. President, Oral Cancer Care and Research (OCCR), Email address: an_sadat@yahoo.com, Contact no: 01711156023

Received: 24 September, 2024 Accept: 31 July, 2025

a. Dr. S. M. Anwar Sadat, Associate Professor, Dept of Oral & Maxillofacial Surgery, Dhaka Dental College. President, Oral Cancer Care and Research (OCCR), Dhaka, Bangladesh.

b. Dr. Liza Akther, Dental Surgeon.

generation and assessment helps alleviate subject/patient discomfort as a noninvasive method to disease diagnosis and prognosis⁶.

Suitable saliva for diagnosis of oral cancer

Saliva is a watery substance which is secreted from three major and minor salivary glands of lips, buccal mucosa and palate. Saliva plays a significant role in the protection of the intraoral structures against injuries caused by mechanical or chemical irritants and various pathogenic microbes. About 1-1.5L saliva are produced and secreted daily in healthy individual. Different factors such as hormones, enzymes, growth factors, immunoglobulins, and antibacterial components, which gain entry to saliva through blood by paracellular or transcellular routes. Functions of saliva includes lubrication, digestion, antimicrobial activity, facilitating re mineralization of tooth enamel, and maintenance of normal taste sensation. These important functions are achieved by the various chemical components of saliva including water (99%), inorganic compounds (ions), organic compounds (non-proteins and lipids), protein/ polypeptides, and hormones where proteins and polypeptides carry the main function. So far, more than 2300 proteins and peptides have been found in human saliva. The most abundant proteins are á-amylase, albumin, cystatins, hystatins, secretory-IgA, lactoferrin, mucins, lysozymes, proline rich proteins, statherin and transferrin—which together account for more than 98% of the total salivary proteins⁶. Most of the potential biomarkers for OSCC are salivary proteins. However, except for three, á-amylase, statherin, and transferrin, are non-protein OSCC salivary biomarker candidates, which are very low concentration in saliva and require methods and technologies with high sensitivity for detection and quantification⁶.

Saliva Collection

There exist different types of methods for collection of saliva. Saliva personnel-assisted or self-collection can be performed. Stimulated saliva which affects the original salivary consistency and Ph can be collected by promoting mitigatory action through chewing inert materials such as cotton or polystyrene salivate or gustatory stimulation by using sugar-free sour lemon drop, chewing gum and paraffin wax. Stimulation is given to those who cannot produce sufficient amount of saliva normally. Other method is without stimulation,

unstimulated whole saliva can be obtained by 'passive drooling' or 'spitting' directly into a sterile container. It is recommended to advice mouth rinse thoroughly prior to collection of saliva to avoid contamination by foreign bodies and organisms.

Potential salivary biomarker for oral cancer detection By several case control studies, more than 100 potential OSCC salivary biomarkers have been reported in the literature, based mainly on comparing the levels found in OSCC patients to the levels found in non-OSCC normal control⁵. These potential OSCC salivary biomarkers can be grouped according to the types of biomarkers, as follows^{7,8,9}:

- Non-organic compound biomarkers
 Flame photometry, atomic absorption, and spectrophotometry
- Peptide or protein biomarkers
 High performance liquid chromatography (HPLC)
 Enzyme-linked immunosorbent assay (ELISA)
 Radio-immunoassay

Two-dimensional gel electrophoresis (2DE), followed by mass spectrometry (MS) 2DE and reverse-phase liquid chromatography (LC), followed by LC-tandem MS

Matrix-assisted laser desorption/ionization time-offlight mass spectrometry (MALDI-TOF MS)

2DE followed by MALDI-TOF MS

- DNA, mRNA or microRNA biomarkers
 Polymerase chain reaction (PCR) Quantitative PCR (qPCR) [Microarrays followed by qPCR
- Metabolomic biomarkers
 Capillary electrophoresis TOF MS
 HPLC with quadrupole/TOF MS
- Miscellaneous biomarkers (chemical and enzyme activity)
 HPLC Colorimetric (mostly commercially available) assays

Comprehensive analysis of saliva in OSCC

Many researchers analyzed the human saliva and found various components such as calcium, inorganic phosphate, sodium, potassium, magnesium, albumin, total protein content of saliva, insulin growth Factor I, lactate dehydrogenase (LDH), amylase, total

immunoglobulin content of saliva, salivary immunoglobulin A (IgA), and matrix metalloproteinases-2 and 9 (MMP-2 and MMP-9) in subjects having oral cancer and healthy controls. Moreover, MMP1 and MMP 3 were 6-15 times higher in patients with OSCC than in healthy people, reported by Stott-Miller et al. MMP 9 also important for early diagnosis of oral cancer. Results where oral cancer patients showed a higher salivary protein content compared with the healthy controls. Not only protein content but also various inorganic constituents (Sodium, phosphate, calcium, magnesium) were also significantly higher than healthy person whereas Amylase, potassium, and salivary IgA levels were significantly lower. Albumin, LDH, MMP-2, and MMP-9 levels showed 8-10-fold rise in oral cancer patients when compared with healthy controls^{5,7,8,9}.

Thus, comprehensive analysis of saliva could serve as a valuable tool for diagnosis of oral cancer.

Different biomarkers of upregulated and downregulated in $OSCC^{9,10,11}$

A. Up regulated biomarker

CEA

Cancer antigen 125 (CA125)

p53

TNF-α

IL-1β

CD 44

IL-6

IL-8

IAP

ROS

RNS

MMP-2

MMP-9

LDH

B. Down regulated biomarker

Salivary antioxidants

Amylase

Potassium

IgA

Methods for analyzing salivary proteomic in OSCC

For the analysis of salivary proteomics, various methods are used which include capillary reversed phase liquid chromatography with quadrupole–time-of-flight mass spectrometry, multi analytic profiling technology shotgun proteomics on the basis of reverse-phase liquid chromatography, and human genome-microarrays to prepare a profile of salivary transcriptome^{9,12}.

Moreover, a unique diagnostic modality can identify a large group of mRNAs in the saliva which can be utilized popularly known as salivary transcriptome diagnostics¹³. The mRNA markers in saliva are the transcripts of interleukin-1, interleukin-8, and dual specificity protein phosphate 1. These significant protein biomarkers distinguish between OSCC patient and healthy controls ^{6,9,10}.

ELISA

ELISA analysis is done to evaluate the total levels of proteins present in the saliva among oral cancer patients in duplicating using a sandwich ELISA kit specific for each enzyme. The total amount of each enzyme is determined using its standard curve, which is plotted using Professional software¹⁴.

RT-PCR

To generate templates for in vitro transcription for the salivary oral cancer RNA markers, conventional real-time PCR (RT-PCR) is carried out using total RNA from human OSCC cell line as templates. The cDNA is synthesized in of reverse transcription reaction mix with reverse transcriptase. Therefore, it optimizes a preamplification procedure for salivary mRNA for oral cancer target detection, and detailed methods for primer design, one-step RT and PCR, excess primer removal, and quantitative PCR programming^{9,14}.

LC-MS/MS

High-resolution, high-mass accuracy nanoflow LC"MS/MS is performed with a combined linear quadrupole ion trap (LTQ) and Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with a nano-electrospray ion source. The most abundant ions detected in the scanning is subjected to MS/MS analysis performed in the LTQ mass spectrometer^{10,11}. The identified protein data obtained via mass spectrometry is exported to a table form with information on the molecular weights, intensities and analyzed scores of the protein candidates^{15,16}.

Conclusion

Salivary screening can be best choice for screening test for oral squamous cell carcinoma. If the lesion can be identified by early detection methods, can lead to reduction of early death of oral cancer patient and also giving the patient a chance for a better quality of life. Fortunately, current improvements in salivary proteomics technology have led to a hopeful future for salivary biomarkers in oral cancer care. As a result, saliva is expected to be used more frequently as a diagnostic fluid through identification of salivary biomarkers as diagnostic and prognostic tools for oral cancer and precancer patients. The use of salivary biomarkers for screening of OSCC invokes extensive research in the future. This review suggests that pursuing of saliva as a tool to detect the different types of cancer can pave the way for improved outcome of future noninvasive investigation in this field.

Conflict of interest:

Nothing to declare

References:

- Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncology 2009;45(4–5) 309-316. doi: 10.1016/j.oraloncology.2008.06.002.
- Vigneswaran N, Williams MD. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac Surg Clin North Am. 2014 May;26(2):123-41. doi: 10.1016/ j.coms.2014.01.001.
- The Global Cancer Observatory (GCO) is an interactive web-based platform presenting global cancer statistics to inform cancer control and research. Google link: https:// gco.iarc.fr/causes.
- Shugars DC, Patton LL. Detecting, diagnosing and preventing oral cancer. The Nurse Practitioner 1997; 22(6):105-132.
- Yu JS, Chen YT, Chiang WF, Hsiao YC, Chu LJ, See LC et al. Saliva protein biomarkers to detect oral squamous cell carcinoma in a high-risk population in Taiwan. Proc Natl Acad Sci U S A 2016;113(41):11549–54. https://doi.org/ 10.1073/pnas.1612368113.
- Bastlas D, Maturana A, Marin C, Martinez R, Niklander SE Salivary Biomarkers for Oral Cancer Detection: An Exploratory Systematic Review. Int J Mol Sci 2024; 23;25(5):2634. doi: 10.3390/ijms25052634
- Shah FD, Begum R, Vajaria BN, Patel KR, Patel JB, Shukla SN, et al. A review on salivary genomics and proteomics biomarkers in oral cancer. Indian Journal of Clinical

- Biochemistry 2011; 26:326–34. https://doi.org/10.1007/s12291-011-0149-8
- Matsumoto M, Matsuzaki F, Oshikawa K, Goshima N, Mori M, Kawamura Y, et al. A large-scale targeted proteomics assay resource based on an in vitro human proteome. Nast Methods 2017; 14:251–8. https://doi.org/10.1038/nmeth.4116
- Wu C, Chu H, Hsu C, Chang K, Liu H. Saliva proteome profiling reveals potential salivary biomarkers for detection of oral cavity squamous cell carcinoma. Proteomics 2015; 15:3394–404. https://doi.org/10.1002/pmic.201500157
- Chen YT, Chen HW, Wu CF, Chu LJ, Chiang WF, Wu CC, et al. Development of a multiplexed liquid chromatography multiple-reaction-monitoring mass spectrometry (LC-MRM/MS) method for evaluation of salivary proteins as oral cancer biomarkers. Molecular and Cellular Proteomics 2017;16(5):799-811. http://www.peptideatlas.org/PASS/ PASS00938
- Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, et al. Phases of biomarker development for early detection of cancer. Journal of National Cancer Institute 2001; 93:1054–61. https://doi.org/10.1093/jnci/ 93.14.1054
- Awasthi N. Role of salivary biomarkers in early detection of oral squamous cell carcinoma. Indian J Pathol Microbiol 2017; 60:464-8. doi: 10.4103/IJPM.IJPM 140 16.
- Kaur J, Jacob R, Huang Y, Salvo N, Politis C. Salivary biomarkers for oral cancer and pre cancer screening: a review. Clinical Oral Investigations 2018; 22(2):633-640. https://doi.org/10.1007/s00784-018-2337-x.
- Ghosh S, Singh P, Nambiar KS, Haragannavar VC, Augustine D, Sowmya SV, Rao RS. Role of salivary biomarkers in the diagnosis of oral cancer: Mini review. J Med Radiol Pathol Surg 2018; 5 (3):7-10. Doi: 15713/ins.jmrps.129.
- 15. Patil S, Arakeri G, Alamir AWH. Role of salivary transcriptomics as potential biomarkers in oral cancer: A systematic review. Journal of Oral Pathology and Medicine 2019; 48(10):871-879. DOI:10.1111/jop.12895.
- Prestiyanti NMI. Role of salivary biomarker as a diagnostic tool in oral cancer: A literature review. Intisari Sains Medis 2020;11(1):112-117. doi:10.15562/ism.vllil.622.