ORIGINAL ARTICLES

Factors Responsible for Delayed Diagnosis of Carcinoma Gallbladder

DBARa, ABMK ALAMb, MM CHOWDHURYC, BC DASd, A MAHMUDe, N SUZANAf

Abstract

Background: Gallbladder cancer typically remains silent until an advanced and often noncurative stage with the shortest median survival after diagnosis. This poor prognosis is due to an aggressive biologic behavior and a lack of sensitive screening tests for early detection resulting in delayed diagnosis at advanced stage. This study was conducted to find out the factors responsible for diagnosis of carcinoma gallbladder at advanced stage.

Materials and Methods: This observational study was conducted in BSMMU from July 2022- June 2023 on 110 patients of carcinoma gallbladder. The patients were grouped into early (stage I, II) and advanced stage (stage III, IV) on the basis of imaging or histopathology report. All the variables related to diagnosis of carcinoma gallbladder were evaluated and factors related to delayed diagnosis were found out.

Results: Most of the patients of this study group (60%) were diagnosed at advanced stage. Among the patients with

advanced carcinoma gallbladder, 82% reported from rural area, 54% were from low income family and 95% patients' educational status was up to HSC. Early gallbladder carcinoma mainly presented with pain (44%) and jaundice (31%) which resembles benign disease and Imaging findings of these patients were only GB wall thickening which does not strongly raise the suspicion of malignancy. In early gallbladder carcinoma group CA 19-9 and CEA were not significantly raised (32% and 25% respectively).

Conclusion: Rural residence, low educational level and poor economic status of the people of our study group; lack of specific symptom, sensitive imaging study and specific tumour marker at early stage of the disease was responsible for delayed diagnosis of carcinoma gallbladder at advanced stage.

Keywords: Carcinoma Gallbladder, Incidental carcinoma gallbladder, late diagnosis.

(J Bangladesh Coll Phys Surg 2025; 43: 255-160) DOI: https://doi.org/10.3329/jbcps.v43i4.85017

Background

Gallbladder cancer is the commonest malignant tumour of the biliary tract which is quite common in Indian subcontinent. It is also the most aggressive cancer of the biliary tract with the shortest median survival after diagnosis. Gallbladder cancer is generally considered to confer a poor prognosis as this tumour typically remains silent until an advanced and often noncurative stage. This poor prognosis is due, in part, to an

aggressive biologic behavior and a lack of sensitive screening tests for early detection resulting in delayed diagnosis at advanced stage.⁴

At an early stage gallbladder carcinoma remains mainly asymptomatic, symptomatic patients most commonly present with advanced disease.⁴ Right upper quadrant or epigastric pain is the most common symptom (54–83%), followed by jaundice (10–46%), nausea and vomiting (15–43%), anorexia (4–41%), and weight loss (10–39%).^{5,6}

- a. Dr. Debashish Bar, Senior Consultant of Surgery, OSD DGHS, Mohakhali, Dhaka, Bangladesh
- b. Prof. A.B.M. Khurshid Alam, Former Director General DGHS, Mohakhali, Dhaka, Bangladesh
- c. Prof. Md. Mohsen Chowdhury, Professor and Chairman, Department of Hepatobiliary Pancreatic & Liver Transplant Surgery, BMU, Shahbagh, Dhaka, Bangladesh
- d. Prof. Bidhan Chandra Das, Professor, Department of Hepatobiliary Pancreatic and Liver Transplant Surgery, BMU, Shahbagh, Dhaka, Bangladesh
- e. Dr. Ashik Mahmud, Associate Professor, Dept. of Surgery, Brahmanbaria Medical College, Brahmanbaria, Bangladesh
- f. Dr. Nawreen Suzana, Assistant Registrar, Department of Surgery, Colonel Maleque Medical College Hospital, Manikganj, Bangladesh

Address of Correspondence: Dr. Debashish Bar, Senior consultant of surgery, OSD – DGHS, Phone no: 01768676354, e-mail: debashishbar01@gmail.com

Received: 12 June, 2024 Accept: 20 August, 2025

The most commonly used markers like CA 19-9 and CEA are very nonspecific and not so specific to be used as screening investigation.⁶ Ultrasonography is most frequently the initial diagnostic study with a sensitivity and specificity of 85% and 80%, respectively; however, in early disease, ultrasound examination often fails to detect any abnormality, particularly when the tumour is flat or sessile and is associated with cholelithiasis. 6 The most common evaluative imaging in gallbladder cancer is the CT scan, with 75.9% specificity and 82.5% sensitivity. 7 MRI is superior to CT scan for differentiating T1a lesions from T1b or greater and as such may be useful in preoperative management planning.^{7,8} Image-guided FNA including ultrasoundguided or CT-guided biopsy has the potential for a diagnostic accuracy of 80–90%.8

Improved outcomes greatly depend on the recognition of the major risk factors, accurate initial staging, and meticulous surgical excision. Improved imaging modalities as well as accurate diagnostic markers will potentially help outcomes as early diagnosis is imperative and surgery can be curative. A vast amount of work has been done on gall bladder carcinoma in the western world but in Bangladesh very few studies paid attention to diagnose this disease at an early stage. This study was conducted to identify the demographic factors responsible for delayed diagnosis of carcinoma gallbladder in Bangladesh and to find out its early clinical features, sensitive tumour marker and imaging investigations to detect the early stages of this malignancy so that we can diagnose the disease in an early curative stage in our country.

Materials and methods:

This analytical cross-sectional study was conducted at the department of Hepatobiliary Pancreatic and Liver Transplant surgery of Bangabandhu Sheikh Mujib Medical University. Study period was twelve months from July 2022-June 2023. During the study period, a total 110 patients diagnosed preoperatively or postoperatively as carcinoma gallbladder was included in this study, and all the gallbladder carcinoma patients who received chemotherapy, pregnant patients and patients with incomplete data were excluded from the study. After taking informed written consent, detailed clinical history and relevant physical examination was done in each patient. After that, all relevant investigations were checked and appropriate biochemical reports were recorded. Furthermore, a new set of investigations were advised to each patient for proper evaluation of the current disease status and for study purpose. The diagnosis was confirmed on the basis of FNAC or core biopsy in case of patients who were not operated and by histopathology report who underwent surgical resection. Then the patients were staged into stage I, II, III, IV on the basis of imaging report in case of patients who were not operated and by histopathology report in case of postoperative patients. Then the patients were grouped into, early (stage I,II) and advanced (stage III,IV) carcinoma gallbladder.

All the variables related to diagnosis of carcinoma gallbladder were evaluated and factors related to delayed diagnosis were found out by comparing the early and advanced group. Statistical analyses of the results was done by using computer based statistical software SPSS version 25. Means, percentage and frequencies was determined as indicated. The comparison between the two groups was made using Chi-square (χ^2) test and Fischer Exact test as required for categorical variables. A p-value of less than 0.05 was considered significant.

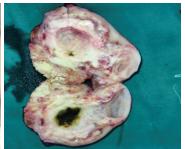



Figure 1: Pictures of gallbladder carcinoma

Liver metastasis

Bisected specimen

Results

Among the 110 patients of this study group 28 (25.5%) patients were diagnosed incidentally by postoperative biopsy report of gallbladder operated due to a benign cause. The rest of the patients were either in the early gallbladder carcinoma group (n-16; stage I- 6, stage II-10) or in the advanced gallbladder carcinoma group (n-66; stage III- 44, stage IV- 22).

Table-I

Different study group of patients of gallbladder cancer with staging $(N=110)$		
Group	Number of patients n (%)	
Early Gallbladder Carcinoma	44 (40)	
Stage I	26 (24)	
Stage II	18(16)	
Advanced Gallbladder Carcinoma	66 (60)	
Stage III	44 (40)	
Stage IV	22 (20)	
Total	110	

Table-II

Difference in patients clinico-pathological variables between early and advanced gallbladder carcinoma (N=110)

Variables	Early	Advanced	P
	Gallbladder	Gallbladder	Value
	Carcinoma	Carcinoma	
	n (%)	n (%)	
Family history			
Positive	16 (36)	5(8)	0.162a
Negative	28 (64)	61 (92)	
Exposure			
No exposure	26 (59)	31 (47)	
Smoking	8(18)	17 (26)	0.092^{a}
OCP	10(23)	18 (27)	
Total	44 (40)	66 (60)	

^a Chi-square test was done to measure the level of significance.

Table-III

Association of gallbl in early and advan			_
Variables	Early	Advanced	P
	Gallbladder	Gallbladder	value
	Carcinoma	Carcinoma	
	n (%)	n (%)	
Gallbladder & biliary			
pathologies			
None	12 (27)	31 (47)	
Gallstone	16 (36)	20 (30)	
GB polyp	8 (18)	5(8)	
Porcelain GB	2(5)	2(3)	0.604 ^b
Choledochal cyst	0(0)	3 (4)	
Pancreatico-biliary	y 6(14)	5(8)	
Maljunction			
Total	44 (40)	66 (60)	

^b Fisher's Exact test was done to measure the level of significance.

Figure within parenthesis indicates in percentage.

Most of the patients of this study group were aged between 45-54 years (35%), most were female (55%) and highest proportion were residing in rural area (70%). 82% of advanced carcinoma gallbladder patients reported from rural area, rural residence was a significant factor for delayed diagnosis (p<0.05). Low educational level and poor economic status of the patient was significantly different between early and advanced carcinoma gallbladder group (p<0.05). Most of the patients in advanced group had history of exposure to OCP (18:2) or smoking (17:2) and were overweight (23:6) but they were not significant risk factors for delayed diagnosis. Gall stone (n=36), GB polyp (n=13), porcelain GB (n=4), choledochal cyst (n=3) and pancreatico-biliary maljunction (n=11) were associated with carcinoma gall bladder but there was no significant difference in their presence between early and advanced gallbladder carcinoma group (p>0.05).

Figure within parenthesis indicates in percentage.

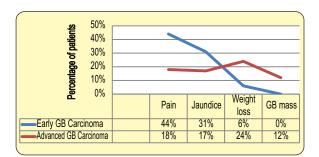
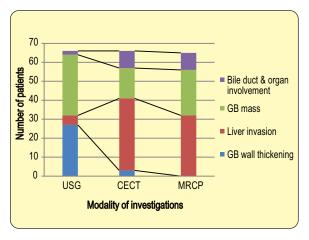


Figure 2: Line diagram shows difference in common presenting feature between early and advanced gallbladder carcinoma

There was significant difference in clinical presentation between early and advanced carcinoma gallbladder group, early gallbladder carcinoma mainly presented with pain (44%) and jaundice (31%) in comparison to advanced group who presented with weight loss (24%), pain (18%), jaundice (17%) and GB mass (12%).


Table-IV

Difference in tumour marker (CA 19-9 & CEA) elevation between early and advanced stage of carcinoma gallbladder (N=110)

Varia	bles	Early	Advanced	P
		Gallbladder	Gallbladder	value
		Carcinoma	Carcinoma	
		n (%)	n (%)	
Tumo	our marker			
CA	19-9			
	Normal (<37)	30 (68)	33 (50)	0.072a
	Raised (>37)	14(32)	33 (50)	
CEA				
	Normal (<3)	33 (75)	52 (79)	0.690a
	Raised (>3)	11 (25)) 14(21)	
Total		44 (40)	66 (60)	

^a Chi-square test was done to measure the level of significance, Figure within parenthesis indicates in percentage.

Tumour marker CA 19-9 was raised in 43% patients with a better sensitivity than CEA which was raised in 23% patients.

Figure 3: Column diagram showing the role of different imaging modalities to identify different morphological feature of advanced gallbladder carcinoma

Imaging findings of early stage disease were GB wall thickening and GB mass; on the other hand advanced diseases were reported as liver invasion, Bile duct and visceral involvement, GB mass with or without GB wall thickening. MRI is better than CECT and USG to diagnose GB mass in early stage gall bladder carcinoma (15:10:2), CECT was better than MRCP and USG to detect liver invasion (38:32:5) and Bile duct and visceral involvement is better delineated by CECT and MRCP than USG (9:9:2).

Table-V

	in tumour locations in allbladder carcinoma	00 0 1 0
Variables	Early	Advanced P Value
	0 111 1 1 1	C 111.1 1.1

Variables	Early	Advanced	P value
	Gallbladder	Gallbladder	
	Carcinoma	Carcinoma	
	n (%)	n (%)	
Tumour location			
Fundus	8(18)	32(48)	
Body	12 (27)	23(35)	0.001 ^a
Neck	24 (55)	11(17)	
Total	44 (40)	66 (60)	

^b Chi-square test was done to measure the level of significance.

Figure within parenthesis indicates in percentage.

Tumour locations were significantly different between early and advanced gallbladder carcinoma group. Gallbladder neck was the predominant tumour location in early group (55%) and in advanced group the tumour was mainly located in fundus (48%) followed by body (35%) and neck (17%).

Discussion

Gallbladder malignancy is a rare entity, but common in the gastrointestinal tract. Most are diagnosed at advanced stage with dismal prognosis having 5 years survival rate of less than 5.0%. Detection at early stage has excellent prognosis increasing up to 90.0-100.0% 5 years survival rate. However, early detection is not possible due to delayed onset of symptoms or is masked off by chronic cholecystitis, and is usually detected during simple cholecystectomy as incidental finding. Lack of preoperative clinical suspicion, absence of definitive clues on history and physical examination at early stage, lack of specific features on radiology and absence of sensitive serological markers are likely contributing factors for advanced stage diagnosis of this disease. 10,11

Higher incidence of this carcinoma is reported in relation to poor socioeconomic condition, low level of education and lifestyle factors like smoking, tobacco chewing and alcohol consumption.² In this study, 82% of advanced carcinoma gallbladder patients reported from rural area. The reason behind this might be the lack of health care facility in the rural area and lack of proper referral system fails to diagnose the disease at early stage. In advanced carcinoma gallbladder group a major proportion of patients' educational level was not up to the mark and most of the patients were from low income family (n=36, 54%). As gallbladder carcinoma does not become symptomatic in the early stages and the poor illiterate people of our country ignores mild health problems, presents late to appropriate health care provider and at that time their disease becomes advanced.

Persistent insult to gallbladder mucosa is the reason upheld for association of gallstone disease with carcinoma gallbladder. Presence of gallstone, duration of gallstone disease, number of gallstones, and size of gallstones are various factors which are directly associated with chronic insult to gallbladder mucosa. Gallbladder polyp of≥10 mm is considered a risk factor for malignant transformation. ^{12,13} In this study we found

that gall stone, gallbladder polyp, porcelain gallbladder, choledochal cyst and pancreatico-biliary maljunction were associated with gallbladder carcinoma but not significantly different between early and advanced group.

Symptoms related to gallbladder cancer are usually non-specific and include jaundice, abdominal pain, nausea, GB mass and weight loss. Due to non-specific symptoms, most of the patients present in an advanced stage with metastasis. ¹⁴ In this study early gallbladder carcinoma mainly presented with pain and jaundice in comparison to advanced group who presented with weight loss, pain, jaundice and GB mass.

Tumor markers such as CEA, and CA 19-9 have been widely used for the diagnosis of different types of cancer (e.g., liver, gastric, colorectal, and pancreatic) but inconsistent results were observed when these markers were used individually for the diagnosis of gall bladder carcinoma.⁵ In this study we observed that CA 19-9 and CEA level were not significantly different between early and advanced carcinoma group and CA 19-9 had a better sensitivity than CEA to diagnose gall bladder carcinoma. As CA 19-9 is not specific for GBC and it should be combined with other imaging tests to diagnose GBC.

Differentiation of the cause of gallbladder wall thickening remains a challenging task even with advances in imaging modalities. USG is sensitive for evaluation of the gallbladder mural thickening or mass and local extension into liver but its role in staging is limited as it is less reliable for detection of lymph nodes and peritoneal metastasis. In this study we found that MRI is better than CECT and USG to diagnose GB mass in early stage gall bladder carcinoma.

Tumour location in the gallbladder is an important factor to produce symptoms before its progression to an advanced stage. ¹⁴ In this study gallbladder neck was the predominant tumour location in early group and in advanced group the tumour was mainly located in fundus and body. Tumour located in the in the neck of gall bladder produces symptoms at early stage and helps in early diagnosis of the disease.

Conclusion

Several factors are strongly related to delayed diagnosis of gall bladder carcinoma at advanced stage. Patient related factors like rural residence, low educational level and poor economic status; disease related factor like lack of specific symptom at early stage of the disease and diagnosis related factor like lack of sensitivity of most commonly performed imaging (USG) and lack of sensitive tumour marker at early stage is responsible for delayed diagnosis of the disease.

Recommendation

We should be very suspicious to diagnose gall bladder carcinoma at early stage. As the early stage disease presents with symptoms like benign biliary disease, they should be investigated with caution. When there will be suspicious gallbladder wall thickness, tumour marker and advanced imaging (CECT or MRCP) should be warranted. Furthermore no gallbladder specimen should be discarded without doing histopathology. This study was conducted in a single centre with small sample size, future multicenter large scale study will generate more convincing data.

Conflict of Interests

The authors declare that they have no conflict of interest.

References

- Vijayakumar A, Vijayakumar A, Patil V, Mallikarjuna M. Early Diagnosis of Gallbladder Carcinoma An Algorithm Approach. Clin Imaging. 2013; 37(2): 327-333.
- Kumar S, Gupta P, Sharma V, Mandavdhare H, Bhatia A, Sinha S. Role of Ultrasound-Guided Fine-Needle Aspiration Cytology of Omentum in Diagnosis of Abdominal Tuberculosis. Surg Infect (Larchmt). 2019; 20(1): 91-94.
- Agarwal AK, Kalayarasan R, Javed A, Gupta N, Nag HH.
 The role of staging laparoscopy in primary gall bladder cancer—an analysis of 409 patients: a prospective study to evaluate the role of staging laparoscopy in the management of gallbladder cancer. Ann Surg. 2013; 258(2): 318-323.
- Ahamed ZR, Shah J, Agarwala R, Kumar MP, Mandavdhare HS, Gupta P. Controversies in classification of peritoneal

- tuberculosis and a proposal for clinico-radiological classification. Expert Rev Anti Infect Ther. 2019; 17(8): 547-555.
- Valle JW, Borbath I, Khan SA, Huguet F, Gruenberger T, Arnold D. ESMO Guidelines Committee. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and followup. Ann Oncol. 2016; 27(suppl 5): 28-37.
- Chaudhari VA, Ostwal V, Patkar S, Sahu A, Toshniwal A, Ramaswamy A. Outcome of neoadjuvant chemotherapy in "locally advanced/borderline resectable" gallbladder cancer: the need to define indications. HPB (Oxford). 2018; 20(9): 841-847.
- Creasy JM, Goldman DA, Dudeja V. Systemic Chemotherapy Combined with Resection for Locally Advanced Gallbladder Carcinoma: Surgical and Survival Outcomes. J Am Coll Surg. 2017; 224(5): 906-916.
- Zhang D, Yu M, Xu T, Xiong B. Predictive value of serum CEA, CA19-9 and CA125 in diagnosis of colorectal liver metastasis in Chinese population. Hepatogastroenterology. 2013; 60: 1297-1301.
- Engineer R, Goel M, Chopra S, Patil P, Purandare N, Rangarajan V. Neoadjuvant Chemoradiation Followed by Surgery for Locally Advanced Gallbladder Cancers: A New Paradigm. Ann Surg Oncol. 2016; 23(9): 3009-3015.
- Ghosh M, Sakhuja P, Singh S, Agarwal AK. p53 and betacatenin expression in gallbladder tissues and correlation with tumor progression in gallbladder cancer. Saudi J Gastroenterol. 2013;19: 34-39.
- Glazer ES, Liu P, Abdalla EK, Curley SA. Neither neoadjuvant nor adjuvant therapy increases survival after biliary tract cancer resection with wide negative margins. J Gastrointest Surg. 2012; 16(9): 1666-1671.
- Gupta P, Kumar S, Sharma V, Mandavdhare H, Dhaka N, Sinha SK. Common and uncommon imaging features of abdominal tuberculosis. J Med Imaging Radiat Oncol. 2019; 63(3): 329-339.
- Gupta P, Rana S, Agarwal P. Peritoneal tuberculosis or carcinomatosis: A diagnostic conundrum. Int J Mycobacteriol. 2018; 7(2): 198-199.
- 14. Hundal R, Shaffer EA. Gallbladder cancer: epidemiology and outcome. Clin Epidemiol. 2014; 6: 99-109.