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Abstract 

 

With the rapid development of high-throughput DNA microarray technologies, researchers can measure 
expression profiles of thousands of genes simultaneously with low costs. These massive amounts of 
gene expression (GE) data often contain missing values or outliers due to various reasons of data 
generating process. Most of the statistical methods were developed based on complete dataset. As a 
result, for subsequent analysis using incomplete dataset, these methods strongly suffer and we cannot 
find our target. A numerous methods have been developed to impute missing values and they are 
available in the literature. Albeit, missing values imputation and outliers handling both are equally 
important for analyzing GE, most of the methods perform these tasks separately and produce 
misleading results. Therefore, in this paper, an attempt is made to develop a new hybrid approach which 
is robust against outliers and missing values, simultaneously. We demonstrate the performance of the 
proposed method in a comparison of popular missing value imputation method K-NN while performing 
feature selection using both simulated and real GE datasets. The Results obtain from simulated as well 
as real data studies show that the proposed method outperforms K-NN in presence of different 
percentages of missing values and outliers. On the other hand, in absence of outliers with missing 
values, the proposed method keeps equal performance with the other methods. 
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Introduction 
Microarray technology allows researchers to measure the expression profiles for tens of thousands of 
features/genes in parallel by a single experiment and produce huge amounts of datasets (De Risi et al. 1997, 
Lockhart et al. 2000, Alam et al. 2017). It has been widely used in different biological disciplines such as 
cancer classification, drug discovery, stress response, regulation of cell cycle, clustering to discover the co-
regulated gene groups, cancer prognosis, and identification of important features that are relevant to a 
certain disease etc. (Wang et al. 2006, Colombo et al. 2011). Microarray gene expressions (GE) datasets are 
high-dimensional with small sample sizes, usually n<p. Thus statistical methods that are used to analyze 
these datasets often suffer from computational complexities. One of the most important tasks of microarray 
GE data analysis is to select the most important features/genes from a large number of features (Li et al. 
2004). Feature selection (FS) can enhance the performance of the methods for downstream analyses 
(Shahjaman et al. 2017a). Despite the wide spread use of microarray technology, GE data often contain 
missing values as well as outliers. Missing values and outliers are usually common in the high-dimensional 
OMICS datasets with dozens of variables/features and hundreds of samples/individuals. A variety of reasons 
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involve for missing values in GE data such as corruption of image, scratches on the slides, poor 
hybridization, inadequate resolution, fabrication errors and so on (Schuchhardt et al. 2000, Tuikkala et al. 
2006). Microarray GE datasets typically contain 1-10% missing values that could affect up to 90% of genes 
(Chiu et al. 2013). On the other hand, outliers may also occur in GE datasets due to different steps of data 
generating process from hybridization to image analysis for various reasons (Shahjaman et al. 2017b). 
Outliers can deteriorate the performance of the feature selection methods. Therefore, outlier detection is very 
important for microarray GE data analysis (Nadon et al. 2002, Alam et al. 2016). Furthermore, for 
subsequent analysis, most of the methods were formulated based on complete datasets only. The first and 
simplest way to overcome these problems is to remove the genes corresponding to the missing values or 
outliers. However, in this procedure, we might be lost important information. The second method is the 
replace the missing value by zero (Alizadeh et al. 2000). In this case, researchers may puzzle between 
missing values and the values of real data that are close to zero. Therefore, the methods which replace the 
missing values by their estimated values have been developed. The first and most classical method to 
impute these values is the K-nearest neighbor (KNN) (Troyanskaya et al. 2001). Then the update version of 
KNN were developed which includes sequential K-nearest neighbor (SKNN) and iterative K-nearest neighbor 
(IKNN) (Kim et al. 2004) etc. These are known as local procedures. There are also many global missing 
value imputation procedures such as Bayesian principal component analysis (BPCA) (Fix et al. 1951), 
singular value decomposition (SVD) (Troyanskaya et al. 2001), partial least squares (PLS) and so on. The 
non-parametric random forest (RF) imputation (Stekhoven et al. 2012) and parametric expectation-
maximization (EM) imputation (Dempster et al. 1977) also have been widely used in GE data analysis. Most 
of the traditional missing value imputation approaches cannot deal with outliers. Hence, they produce 
misleading results. Therefore, in this paper, an attempt is made to improve the popular K-NN approach by 
incorporating an IQR rule to detect and modify the outliers, which can deal with both missing values and 
outliers, simultaneously while performing feature selection.  

Materials and Methods 
Improved K-Nearest Neighbors (K-NN) Approach (proposed) 
There are mainly two types of statistical approaches for data analysis when the data are contaminated by 
outliers: one is the application of robust method using original datasets and the other is the application of 
classical method using modified datasets. Modified dataset preserve all the information to select the 
important features. Therefore, in these findings, we use interquartile range (IQR) for outlier modification. If Q1 
and Q3 are the first and third quartiles respectively, then IQR is defined by IQR = Q3-Q1. An observation is 
said to be outlier if it does not belongs to the interval [Q1- β × IQR, β × IQR+Q3], where β = 1.5. K-nearest 
neighbors approach (Troyanskaya et al 2001) dependent on parameter tuning and it works through three 
stages: (i) distance measure, (ii) choice of K and (iii) adaption method. 

(i) Distance measure 
The distance measure sometimes called as dissimilarity measure. Suppose we have two instances 
xi and xj, the smaller distance between them represent the higher similarity. The widely used 
distance measures are Euclidean distance and Manhattan distance. The Euclidean and Manhattan 
distance between xi and xj is defined as  

                (1) 

                                             (2) 

where G denotes the total number of features, and  is the normalized weight of p th feature.  
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(ii) Selection of the neighborhood, K 
An important parameter of K-NN approach is K. In this approach the K-should be given in advance 
and it is also dependent on dataset used for K-NN imputation. Many researchers only consider K=1 
(Walkerden and Jeffery 1999), some others consider K between 1 to 3 (Mendes et al. 2003). The 
best results are found when K=1 to 5 (Li et al. 2009). K can also be found by the square root of the 
number of instances (Kocaguneli et al. 2012). However, the optimal value of K can also be 
determined using a cross-validation approach.  

(iii) Adaption method 
In this stage we obtain estimates for the missing values. There are few common ways of 
adaptations to estimate the missing values: mean, median, inverse distance weighted mean 
(IDWM), inverse rank weighted mean (IRWM) and so on. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Work flow of the proposed procedure. 
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Performance evaluation 
The performance of K-NN and improved K-NN imputation methods were evaluated by most commonly used 
measure normalized root mean squared error (NRMSE). NRMSE is the difference between imputed and true 
values defined as follows: 

 
Where,  is the true data and  is the imputed data. 

We also used t-test as a feature selection method (FS) to evaluate the performance of the proposed missing 
imputation approach with traditional K-NN. Accordingly we used the following performance measures: 

True positive rate (TPR) = TP / TP + FN, False positive rate (FPR) = FP / (FP + TN), Accuracy (ACC) and 
area under the receiving operating characteristics (ROC) curve (AUC). Where, TP, TN, FP and FN are the 
number of true positives, number of true negatives, number of false positives and number of false negatives, 
respectively. The flowchart of the proposed procedure has been shown in Fig. 1. 

Simulated dataset 
We applied K-NN and our proposed improved K-NN method in the simulated dataset. The simulated dataset 
was generated using the following one-way ANOVA model developed by Kerr et al. (2000): 

                                                                              (3) 

where,   is the kth observed expression of a gene in the jth condition,  is the mean of all expressions of 
a gene in the jth condition and  is the random error term that follows  ). The outlying datasets 
were generated by multiplying a constant (say, 5) with the mean of equation (3). We introduced varying 
percentages of missing values (1%, 5% and 10%) under the missing completely at random (MCAR) 
assumption. 

Results and Discussion 
To investigate the performance of the proposed missing value imputation method in a comparison of 
classical K-NN imputation approach, we generated 100 datasets from one-way ANOVA model using 
equation (3) with (n1 = n2 = 10) samples. The gene expression profiles of 1000 genes were generated with 
(n1 + n2) = 20 samples for each of the dataset. The number of DE gene is set to 200 and the rest of the 800 
genes are considered as the non-DE genes. The mean and common variance for each group were set as 

and = 0.1. Here we have considered 1%, 5% and 10% missing values under the 
MCAR assumption for each of the dataset. We also added different percentages of outliers (1%, 5% and 
10%) in the datasets with missing values. We first calculated the average values of NRMSE between original 
and imputed data matrices by K-NN and proposed methods with different rates of missing values in absence 
and presence of outliers. The values of NRMSE against different rates of missing values in absence and in 
presence of outliers have been plotted in Fig. 2. From Fig. 2a we can observe that in absence of outliers with 
different rates of missing values (1%, 5% and 10%) both K-NN and proposed method produces almost 
similar values of NRMSE. However, the 
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Fig. 2. Plot of NRMSE against different rates of missing values. (a) without outliers, (b) in presence of 1% 
outliers, (c) in presence of 5% outliers, and (d) in presence of 10% outliers. 

proposed method outperforms K-NN method in presence of outliers (1%, 5% and 10%) with different rates of 
missing values (Fig. 2b-d). Then we employ t-test for identification of DE genes from each of 100 imputed 
datasets and estimated different performance measures TPR, FPR, AUC, MER and ACC. The ROC curve 
has been presented in Fig. 3 using t-test based on 100 imputed datasets using K-NN and proposed method 
in absence and presence of outliers with 5% missing values. This figure also supports the results of Fig. 2. 
The average values of accuracies (ACC) for detection of 200 DE genes using t-test based on 100 imputed 
datasets by K-NN and proposed method have been summarized in Table 1. In this table the columns 
represent the different conditions of outliers and rows represent the different conditions of missing values. 
From this table we clearly notice that t-test with proposed method has produced larger accuracies (ACC) 
than the t-test with K-NN in presence of outliers (see bold text in Table 1). Nevertheless, in absence of 
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outliers, both methods are performed alike. The boxplot of AUC values estimated by t-test based on 100 
imputed datasets by K-NN and proposed methods has been shown in Fig. 4. From Fig. 4a we observe that in 
absence of outliers both K-NN and proposed method produces almost similar values of AUC at different 
percentages of missing values. Whereas, in presence of 1%, 5% and 10% outliers (Fig. 4b-d) the proposed 
method outperformed K-NN method. Therefore, from this simulation study we may conclude that the 
proposed method outperforms K-NN method in presence of outliers and in absence of outliers it keeps equal 
performance with K-NN while performing feature selection using t-test. 

Table 1. Performance evaluation of K-NN and proposed method based on average ACC for different rates of 
missing values in absence and presence of outliers 
 

Methods with different conditions Without 
outliers 1% outliers 5% outliers 10% outliers 

1% missing values 
K-NN + t 0.991 0.8819 0.7322 0.7327 

Proposed + t 0.991 0.9826 0.9780 0.9776 

      

5% missing values 
K-NN + t 0.982 0.8717 0.7271 0.7183 

Proposed + t 0.982 0.9813 0.9780 0.9780 

      

10% missing values 
K-NN + t 0.978 0.8710 0.7230 0.7051 

Proposed + t 0.978 0.978 0.978 0.978 
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Fig. 3. Performance evaluation between K-NN and proposed method using ROC curve with 5% missing 
values and different conditions of outliers. (a) 5% missing values and no outliers, (b) 5% missing values with 
1% outliers, (c) 5% missing values with 5% outliers, and (d) 5% missing values with 10% outliers. 

 



 Asifuzzaman et al. 38 

Fig. 4. Performance evaluation between K-NN and proposed method using boxplot of AUC values 
associated with varying percentages of missing values and outliers. (a) without outliers, (b) in presence of 
1% outliers, (c) in presence of 5% outliers, and (d) in presence of 10% outliers. The green, blue and yellow 
boxes indicate 1%, 5% and 10% missing values, respectively under MCAR assumption. 
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Breast cancer real dataset 
In this paper we have used 70 signature datasets from 78 patients. This dataset was taken from Buyse et al. 
(2006). Yan et al. (2015) also used this dataset to investigate the performance of their proposed method with 
other traditional methods. We first apply t-test in the original breast cancer dataset to identify DE genes. 
Using this test at 5% level of significance we identified 31 DE genes. We call these DE genes as true DE 
gene set. The heat map in Fig. 5 shows the expressions pattern of these genes. We added different 
percentages of missing values under MCAR assumption and corresponding to each percentage of missing 
values we consider various conditions of outliers (0%, 1%, 5% and 10%). We then employ the K-NN and 
proposed method in this incomplete and contaminated datasets to obtain imputed datasets. Then we 
investigated the true DE genes (31) identification performance of t-test based on imputed datasets by K-NN 
and proposed and calculated AUC values. We summarized these results in Table 2. From this table we 
revealed that in absence of outliers at different rates of missing values the K-NN + t and proposed + t 
performed almost equal. Whereas, in presence of outliers for every percentages of missing values (1%, 5% 
and 10%) the proposed + t out performed K-NN + t. 
 

 
 

Fig. 5. Heatmap of 31 DE genes detected by t-test using original breast cancer dataset. 
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Table 2. Performance evaluation of K-NN and proposed method based on AUC for different rates of missing 
values in absence and presence of outliers for breast cancer dataset 

 

Methods with different conditions Without 
outliers 1% outliers 5% outliers 10% outliers 

1% missing values K-NN + t 0.982 0.783 0.728 0.693 
Proposed + t 0.982 0.971 0.970 0.966 

      

5% missing values K-NN + t 0.985 0.769 0.716 0.644 
Proposed + t 0.985 0.953 0.955 0.952 

      

10% missing values K-NN + t 0.987 0.730 0.684 0.637 
Proposed + t 0.988 0.948 0.933 0.921 

Conclusion 
Microarray GE data often contain missing values or outliers due to several steps of data generating process. 
Missing values and outliers can adversely affect the downstream analysis such as feature selection. There 
are several missing value imputation and outliers handling approaches in the literature. Unfortunately they 
conduct their task without regard to each other. Among the various missing value imputation techniques, K-
NN is the oldest and popular one. However, it cannot deal with outliers. As a result, using K-NN imputed 
dataset for further analysis produces misleading results. Therefore, in the present findings, we have 
introduced an IQR rule for outlier detection and modification. Then we tag this IQR rule with popular K-NN 
approach. We investigated the performance of our proposed method with traditional K-NN approach through 
feature selection. Both simulation and real data analysis results confirmed that the proposed method 
outperforms the K-NN in presence of outliers with any percentages of missing values (1%, 5% and 10%). On 
the other hand, in absence of outliers, it keeps equal performance with K-NN. 
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