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Abstract 
 

The main purpose of gene expression data analysis is to identify the biomarker genes by comparing the 
gene expression levels between two different groups or conditions. There are several methods to select 
biomarker genes and many comparative studies have been performed to select the appropriate method. 
However, they did not consider the problems of outliers in their data sets though it is very essential to 
select the method from robustness point of view due to outliers may occur in the different steps of the 
gene expression data generating process. In this paper, it is evaluated the performance among five 
popular statistical biomarker gene selection methods viz. T-test, SAM, LIMMA, KW and FCROS using 
both simulated and real gene expression data sets in absence and presence of outliers. In the simulated 
data analysis, it was demonstrated the performance of these methods in terms of different performance 
measures such as TPR, TNR, FPR, FNR and AUC and based on these measures, it was found that in 
absence of outliers, for both small-and-large sample cases all the methods perform almost similar. 
Whereas, in presence of outliers, for small-sample case only the FCROS method perform well than 
other methods. From a real colon cancer data analysis, it was elucidated that FCROS method identified 
additional 59 genes that were not detected by the other methods and most of them belongs to the 
different cancer related pathways. 
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Introduction 
Microarrays gene expression data analysis is a promising area of bioinformatics. It allows simultaneous 
measurement of the expression levels of thousands of genes. To generate the gene expression data there 
are many ways, the most popular way is the so called DNA microarray technology. Microarray gene 
expression data can be viewed as a matrix of m × n dimension, organized by m genes versus n samples 
(patients) after completing several steps with the help of biological technology and statistical learning. In 
general m may have 10 - 100 thousands of genes and n can have 3 - 30 samples. This unique data structure 
has discovered as a completely new area of research for both statisticians and biologists. At the same time it 
provides a challenge to researchers because of high dimensionality and its complexity (large m and small n 
problem). The main purpose of the microarray experiments is to select the biomarker genes by comparing 
levels of gene expression between two different groups/conditions (Kaissi et al. 2013). In general, one group 
is known as reference and other is experiment. There are several methods available in the literature in this 
regard and many studies have been performed to select the appropriate method among these methods. For 
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example Cui et al. (2003) performed a comparative study among the popular gene selection methods such 
as T-test, SAM-significance analysis of microarray (Tusher et al. 2001), LIMMA (Efron et al. 2001), F-test 
(Kerr et al. 2000) and Kruskal Wallis (KW) (Kruskal et al.1952). Dembele and Kastner (2014) developed a 
new approach called fold change rank ordering statistic (FCROS) based on the FC ranks between two 
experimental groups. However, most of the approaches discussed above are not robust against outliers. 
Also, most of the comparative studies did not consider the problems of outliers in their datasets. Outliers are 
often occur in the gene expression data due to several steps involved in the data generating process from 
hybridization to image analysis (Shahjaman et al. 2017). Thus in presence of outliers, the results of 
downstream analysis using the popular gene selection methods might be changed. Mollah et al. (2015) 
reported that the assumption of normality of many gene selection methods do not hold for some existing 
microarray datasets in presence of outliers. Though, KW and FCROS are robust against outliers for large 
sample case but they are sensitive to outliers for small-sample case. Furthermore, it is very difficult to identify 
few biomarker genes from the high-dimensional outlying gene expression dataset and there is no precise 
guideline about the selection of methods. Therefore, in this paper, it was evaluated the performance among 
the popular biomarker gene selection statistical methods based on microarray gene expression data set in 
absence and presence of outliers to select the proper method. 

Materials and Methods 

In order to assess the performance of all the gene selection methods, we consider the different measures 
such as true positive rate (TPR), true negative rate (TNR), false positive rate (FPR), false negative rate 
(FNR) and area under the Receiver Operating Characteristics curves (AUC). In a two groups prediction 
problem such as DE (differentially expressed) or EE (equally expressed), the outcomes are divided into four 
categories: (i) truly DE that are reported as DE (True Positives: TP), (ii) truly EE that are reported as DE 
(False Positive: FP), (iii) truly DE that are reported as EE (False Negative: FN) and (iv) truly EE that are 
reported as EE (True Negatives: TN). Then the formulas of all the measures are as follows: 

TPR = TP/TP +FN, TNR= TN/TN +FP, FPR= FP/TN +FP, FNR= FN/FN +TP. 

Three R packages were used as (i) limma, which was proposed by Smyth et al. (2003), (ii) samr, which was 
developed by Tibshirani et al. (2013) and (iii) ROCR to obtain an area under a ROC curve (AUC) by Sing et 
al. (2005). A method will be called good performer that produces the higher values of TPR, TNR and AUC 
and lower values of FPR and FNR. We declared a gene as DE gene with adjusted p-value <0.05. P-values 
are adjusted by the Benjamini and Hochberg (1995) multiple testing correction method. 

Simulated dataset 

We applied five biomarker gene selection methods in the simulated dataset. The simulated dataset was 
generated using the following one-way ANOVA model developed by Kerr et al. (2000): 

                                                                    (1) 

where,  is the kth observed expression of a gene in the jth condition,  is the mean of all expressions of 
a gene in the jth condition and  is the random error term that follows ).The outlying dataset was 
generated by multiplying a constant (say, 5) with the mean of equation (1). 
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Colon cancer real dataset 

To investigate the performance of the five methods as early mentioned, in the real microarray gene 
expression data was used colon cancer data set was used which consists of 22 normal and 40 tumor 
samples. Alon et al. (1999) was used this dataset in their study. This dataset contains 2000 genes. 

Results and Discussion 
To investigate the performance of the five biomarker gene selection methods 100 data sets were generated 
from one-way ANOVA model using equation (1) for both small (n1 = n2 = 3) and large-sample (n1 = n2 = 15) 
cases with two groups. 

 
Fig. 1. ROC curve produced by different methods based on simulated gene expression data set. For small-
sample case (n1 = n2 = 3): (a) in absence of outliers, (b) in presence of outliers. For large-sample case (n1 = 
n2 =15): (c) in absence of outliers and (d) in presence of outliers. 
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In this case, 10000 genes were generated with (n1 + n2) samples for each of the dataset. The number of DE 
gene is set to 300 and the rest of the 9700 genes are considered as the EE genes. The arbitrary values 

and = 0.1 were set. Each dataset for each case were represented the gene 
expression profiles of 10,000 genes and (n1 + n2) samples. Fig.1a and c represents the ROC curve produced 
by different methods in absence of outliers for both small-sample size (n1 = n2 = 3) and large-sample size (n1 
= n2 =15), respectively. It is clear from these figures that in absence of outliers all the methods produce 
similar results, except T-test for small-sample case. But in presence of 5% outliers, for small-sample case (n1 
= n2 =3), the performance of all the methods has significantly deteriorated. 

 
Fig. 2. Box plot of AUC values produced by different methods based on simulated gene expression data. For 
small-sample case (n1 = n2 = 3): (a) in absence of outliers, (b) in presence of outliers. For large-sample case 
(n1 = n2 =15): (c) in absence of outliers and (d) in presence of outliers. 

In this case only FCROS method performed well (Fig.1b). Whereas, for large-sample case (n1 = n2 =15) (Fig. 
1d) with 5% outliers, two methods FCROS and KW performed well. FCROS performed slightly better than 
KW in this case. Fig. 2a and c shows the box-plots of AUC values for each of the methods based on 100 
simulated datasets generated using equation (1) in absence of outliers for small-and-large sample cases, 
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respectively. It is evident from Fig. 2a that, in absence of outliers for small sample case LIMMA, FCROS, 
SAM and KW performed better than T-test. Whereas, in case of Fig. 2c, for large sample case every 
methods performed similar. Fig. 2b and d represents the box-plots of AUC values based on 100 simulated 
datasets in presence of 5% outliers for both small-and large-sample cases respectively. It is apparent from 
Fig. 2b that, for small-sample case, the performance of all the methods has declined significantly except 
FCROS. However, for large-sample case in presence of outliers (Fig. 2d) two methods FCROS and KW 
performed well than the other three methods (T-test, SAM and LIMMA). Table 1 summarizes the average 
values of the different performance measures TPR, FPR, TNR, FNR and AUC based on 100 simulated 
datasets for both small-and-large sample cases in absence and in presence of outliers, respectively. 

Table 1. Performance evaluation based on simulated dataset with 2 groups. 

For small sample size (n1 = n2 = 3) 

In absence of outliers In presence of outliers 

Methods TPR FPR TNR FNR AUC TPR FPR TNR FNR AUC 

T-test 0.748 0.008 0.992 0.252 0.746 0.343 0.02 0.98 0.657 0.342 

SAM 0.892 0.004 0.996 0.108 0.891 0.374 0.019 0.981 0.626 0.373 

LIMMA 0.947 0.002 0.998 0.053 0.947 0.364 0.019 0.981 0.636 0.364 

KW 0.860 0.005 0.995 0.140 0.860 0.351 0.020 0.98 0.649 0.351 

FCROS 0.943 0.002 0.998 0.057 0.943 0.915 0.003 0.997 0.085 0.915 

For large sample size (n1 = n2 = 15) 

In absence of outliers In presence of outliers 

Methods TPR FPR TNR FNR AUC TPR FPR TNR FNR AUC 

T-test 0.939 0.003 0.997 0.061 0.939 0.379 0.019 0.981 0.621 0.379 

SAM 0.939 0.003 0.997 0.061 0.939 0.395 0.019 0.981 0.605 0.395 

LIMMA 0.939 0.003 0.997 0.061 0.939 0.382 0.019 0.981 0.618 0.382 

KW 0.939 0.003 0.997 0.061 0.939 0.855 0.006 0.994 0.145 0.854 

FCROS 0.939 0.003 0.997 0.061 0.939 0.939 0.003 0.997 0.061 0.939 

It is noticeable from this table that, for small-sample case in absence of outliers every method performed well 
except T-test while in presence of outliers, only FCROS performed well than the other four methods (T-test, 
KW, SAM and LIMMA) methods. For example, FCROS produces AUC >0.90 than T-test, KW, SAM and 
LIMMA (AUC <0.40). These results also reflected in the Fig. 1b. On the other hand, for large-sample case in 
absence of outliers all the methods performed similarly. However, in presence of outliers in this case FCROS 
and KW performed better comparing with the others three methods (T-test, SAM and LIMMA). 
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To demonstrate the performance of all the methods in the real colon cancer dataset, firstly five methods were 
directly applied to identify the DE genes in this dataset. DE genes were detected using adjusted p-value 
<0.05. p-values were adjusted using Benjamini-Hochberg (1995) method. Fig. 3a represents the Venn 
diagram of DE genes detected by these five methods. From this Venn diagram, it was revealed that LIMMA 
and SAM performed better than the other three methods (T-test, KW and FCROS) by sharing more genes. 
The number of genes that were detected as DE by T-test, KW, SAM, LIMMA and FCROS, respectively is 
367, 381, 352, 372 and 383. We also noticed that there are 274 genes common between these five methods. 
Fig. 3b shows the heat-map plot using hierarchical clustering analysis based on the common DE genes. 
There are 3, 59 and 14 genes that were identified by the T-test, FCROS and KW independently. Among 
these genes we explored the biological functions of 59 genes detected by FCROS using a web-based gene 
set analysis toolkit (Zhang et al. 2005). Fig. 4 represents the bar chart of the biological process, cellular 
component and molecular function categories. In this figure, biological Process, cellular component and 
molecular function category are represented by a red, blue and green bar, respectively. Using the KEGG 
database, it was found that these genes were involved in different pathways (Table 2 for top 10 pathways). In 
this table the hyper geometric test is used to calculate the p-values. 

 

 
Fig. 3. Comparison of five methods for the selection of biomarker genes in colon cancer data set. (A) Venn 
diagram of DE genes detected by T-test, KW, SAM, LIMMA and FCROS, (B) Heat-map of 274 common DE 
genes detected by these five methods. 
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Table 2. Top 10 KEGG pathways for 59 DE genes detected by FCROS method for colon cancer data set. 

KEGG ID KEGG pathway names for 

Homo sapiens (human) 

No. of genes Adjusted -p-values 

hsa00910 Nitrogen metabolism  10 7.02e-05 

hsa00030 Pentose phosphate pathway 7 2.90e-03 

hsa01230 Biosynthesis of amino acids  5 3.35e-05 

hsa03018 RNA degradation  4 0.0002 

hsa04931 Insulin resistance  3 0.0002 

hsa01200 Carbon metabolism  3 0.0002 

hsa05145 Toxoplasmosis  2 0.0001 

hsa03040 Spliceosome  1 0.0001 

hsa04630 Jak-STAT signaling pathway  1 0.0001 

hsa05152 Tuberculosis  1 0.0001 

 

 
Fig. 4. Functional annotation of 59 DE genes identified by the FCROS method. 

Conclusion 

There are several methods existing in the literature to select biomarker gene and many comparative studies 
have been performed to select the appropriate method. But the choice of proper gene selection method is 
not easy when the gene expression dataset is contaminated by outliers and there is no specific guideline so 
far. In this paper, we evaluated the performance among the five popular gene selection methods using both 
simulated and real gene expression datasets in absence and presence of outliers. From the simulated data 
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analysis results, it was found that, in absence of outliers for both small-and large-sample cases, all the five 
methods performed well (except T-test for small-sample case). But in presence of outliers, for small-sample 
case FCROS method out performs other four methods. On the other hand, for large-sample case, in 
presence of outliers, KW and FCROS perform well. From a real colon cancer data analysis, it is elucidated 
that, FCROS method identified additional 59 genes that were not detected by the other methods. Using the 
KEGG pathway analysis, it is explored that this gene belongs to the different important pathways. 
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