

Respiratory Distress in Pediatric Dengue Patients: Coinfections, Diagnosis Challenges and Treatment Strategies in an Endemic Setting

Mohammad Ashraful Amin^{1*} Atia Sharmin Bonna² Sabrina Nahin³ Taslima Ahmed Dola⁴
Md. Safiqul Islam⁵ Jannatul Fardous⁶ Mohammad Delwer Hossain Hawlader⁷

ABSTRACT

Background: Respiratory distress complicating pediatric dengue fever cases underscores the significance of timely diagnosis and treatment, especially in endemic settings like Bangladesh. Coinfections with respiratory pathogens add to the complexity of management and treatment. This study aims to shed light on the coinfection and clinical implications of coinfections in pediatric dengue patients.

Case Presentation: We present a case report of two children with dengue fever who were diagnosed with coinfections, including *Salmonella*, *Acinetobacter* species, and *Staphylococcus hominis*. These patients exhibited severe clinical manifestations (Persistent fever, respiratory distress), and positive dengue serology results. Diagnostic workup revealed coinfections, highlighting the need to consider alternative pathogens in dengue patients.

Conclusion: Coinfections in dengue patients present unique challenges due to overlapping clinical features and the potential for delayed or missed diagnoses. The endemic nature of *salmonella* and dengue in Bangladesh increases the likelihood of co-occurrence. Understanding these associations is crucial for accurate diagnosis and timely intervention.

KEY WORDS

Bacteria; Bacteremia; Coinfection; Dengue.

INTRODUCTION

Infectious infections are a leading source of death and illness in underdeveloped countries like Bangladesh.^{1,2} Many different combinations of co-infections have been documented in tropical regions.³ Dengue fever, a virus spread by mosquitoes, has recently become a major cause of death and illness in Bangladesh. The Ministry

- 1.□ Post Graduate Student of Clinical Trials
□ London School of Hygiene and Tropical Medicine
□ United Kingdom (UK).
- 2.□ Research Assistant
□ Public Health Professional Development Society (PPDS)
- 3.□ Lecturer of Physiology
□ Green Life Medical College, Dhaka.
- 4.□ Lecturer of Community Medicine & Public Health
□ East West Medical College, Dhaka.
- 5.□ Associate Professor of Medicine
□ Bikrampur Bhuiyan Medical College, Dhaka.
- 6.□ Registrar of Pediatric Intensive Care Unit (PICU)
□ Anwer Khan Modern Medical College Hospital, Dhaka.
- 7.□ Associate Professor of Public Health
□ North South University, Dhaka.□

*Correspondence □:□ Dr. Mohammad Ashraful Amin
□ Email: mohammad.amin02@northsouth.edu
□ Cell : +88 01616 41 27 80

Date of Submitted □:□ 5.10.2024
Date of Accepted □:□ 2.11.2024

of Health and Family Welfare (MOHFW).⁴ recorded 52,807 instances of dengue fever and 230 deaths from the disease between January 1 and November 20, 2022.⁵

As a result, clinicians face difficulty making a diagnosis of co-infections. Co-infections can be deadly if not treated quickly. Due to the endemic nature of both *salmonella* and dengue in Bangladesh, it is feasible for a child to contract both infections.⁶ Again, Coagulase-negative *Staphylococcus hominis* infects the circulation and frequently forms biofilms on medical devices.⁷ Co-infections with other infectious bacteria are also possible, albeit they are seldom recorded. Coinfections in dengue patients may occur due to the following factors:

- i) the coincidence of two or more infections in countries where infectious diseases are ubiquitous
- ii) the effect of the dengue virus on the immune system, which predisposes to other infections⁸
- iii) pathology in some organ systems caused by dengue virus, which predisposes to superimposed infections.⁹

Here we describe a case series of dengue in two young children with coinfections with *Salmonella enterica* serovar *enteritidis*, multiple coinfections with *Acinetobacter* species, and *Staphylococcus hominis* who developed a persistent fever, diarrhea, low platelet counts and a positive dengue serology test.

CASE PRESENTATION-1

On September 6, 2022, a young boy, aged two years and four months, was brought to the emergency room at Ever Care Hospital in Dhaka, Bangladesh, complaining of a fever and a cough. Since September 9, 2022, he's had loose stools and vomited. On September 9, 2022, dengue NS1 was positive with thrombocytopenia of 63,000 cu mm, but dengue for IgG and IgM was negative. The patient was admitted to the hospital with a temperature of 98.7 degrees Fahrenheit, a blood pressure of 80/50 mmHg, a pulse rate of 120 beats per minute with low volume, a respiratory rate of 30 beats per minute, and a SpO₂ of 100% in the room atmosphere. He also had some dehydration. When the chest was checked, there was only a vesicular breath sound. There were no signs of meningitis or brain injury. Later, he underwent a different investigation (Table I) and was diagnosed with dengue fever, Acute Respiratory Infection (ARI) and invasive diarrhea. Following admission, he received nebulization, Syp. fexofenadine, zinc oxide ointment, paracetamol, and I/V fluid bolus of normal saline and fluid for hydration, in addition to the injections of Ciprofloxacin, ondansetron and esomeprazole that were administered. A continuous 20% human albumin drip was started and lasted till the following night due to low blood pressure the following day (70/40 mmHg on September 10, 2022). Injected ceftriaxone was started on September 13, 2022, after stool C/S indicated the growth of *Salmonella enteritidis* (Table II). On the next day, his loose motion improved, his vital signs remained stable and he became afebrile. He was discharged from the hospital with medicine on September 14, 2022, with instructions to follow up with the Outpatient Department (OPD).

Table I Comparison of Investigation

Sl. No. □ Test □	Patient-1 □	Patient-2 □	Normal Value
01 □ COVID-19 Antigen Test □	Negative □	- □	
02 □ Hemoglobin (Hb) (g/dL) □	11.9→12.7→11.9→ 11.9→12.1→11.4 □	10.30→8.90→10.40→ 11.10→12→12→13.30 □	11-14
03 □ RBC count (10 ¹² /L) □	4.39→4.69→4.38→ 4.37→4.46→4.22 □	3.88→3.41→3.93→4.13→ 4.42→4.44→4.84 □	4.5-6.5
04 □ PCV (Packed Cell Volume) (%) □	35.70→38.90→37.10→ 36.60→37.30→35.20 □	28.60→25.70→30→32.30→ 35.20→35.20→39 □	40-52
05 □ MCV (fl) □	81.30→82.90→84.70→ 83.80→83.60→83.40 □	73.70→75.50→76.30→ 78.20→79.60→	
□ □	□	79.50→80.60 □	75-87
06 □ MCH (pg) □	27.10→27.10→27.20→ 27.20→27.10→27 □	26.50→26.10→26.50→ 26.90→27.10→ 27→27.50 □	
□ □	□	24-30	

CASE PRESENTATION-2

A 6-year-old boy resident in Dhaka was admitted to Pediatric Intensive Care Unit (PICU) of Dr. Sirajul Islam Medical College and Hospital on 24 September 2022 with complaints of fever for 5 days with respiratory distress associated with abdominal pain, and a history of blackish stools. The patient was admitted to the hospital with a temperature of 101 degrees Fahrenheit, dyspnea, chest discomfort, an oxygen saturation of 85% in the room, a pulse of low volume and feeble, a heart rate of 170 beats per minute, a respiratory rate of 64 beats per minute and a blood pressure of 60/30 mmHg. Moreover, on admission, his abdomen was distended while examination. Then the diagnosis of dengue expanded syndrome was made. Ultrasonographic findings showed hepatomegaly, bilateral pleural effusions and mild ascites. Several

investigations were done (Table I) such as CBC, CRP, serum electrolytes, SGPT, SGOT, D-Dimer, urine microscopy and antibiotic sensitivity test (Table II). The patient received four units of whole blood, three units of Fresh Frozen Plasma (FFP) and two units of apheresis platelets. Patient was kept Nothing by mouth (NPO) and received infusions of 5% DNS, 1% KT, 1% dopamine, 1% meropenem, 1% vancomycin, 1% ciprofloxacin and 2% human albumin. To treat pneumonia, 1% meropenem and 1% vancomycin were given. He was discharged from the hospital with the relatively stable condition on 2nd October, 2022, with medicine and instructions to follow up with the OPD.

Sl. No.	Test	Patient-1	Patient-2	Normal Value
07	MCHC (%)	33.30→32.60→32.10→ 32.50→32.40→32.40	36→34.60→34.70→ 34.40→34.10→ 34→34.10	31-37
08	RDW-SD (fl)	40.30→42.70→43.70→ 43.80→43.60→42.80	13.50→13.90→14.10→1 4.30→14.50→14.40→15.40	39-46
09	RDW-CV (%)	13.60→14.20→14→ 14.30→14.30→14	-	11.6-14
10	WBC Count ($10^9/L$)	2.75→5.62→6.51→ 6.30→6.60→5.69	3.2→6.4→5.8→ 6→5.8→7.6→4.4	5-15
11	Platelet Count ($10^9/L$)	130→125→60→110→ 150→150	300→1100→500→540→ 100→1100→740	150-400
12	Neutrophil (%)	28.30→36.80→40.90→ 36.20→31.90→37.40	43→42→29→ 24→29→32→24	20-50
13	Lymphocytes (%)	68→58.70→54.10→ 58.40→61.20→48.30	43→52→61→65→ 59→55→65	40-75
14	Monocytes (%)	3.30→4.10→0.20→4.90→ 5.00→8.30	06→04→06→ 8→9→10→09	2-8
15	Eosinophils (%)	0.40→0.20→0.20→ 0.50→1.70→6	3→2→4→3→ 3→3→2	1-6
16	Basophils (%)	0→0.20→0.20→0.00→ 0.20→0	0→0→0→0 →0→0→0	0-1
17	Absolute Neutrophil Count ($10^9/L$)	0.78→2.07→2.67→2.28→2.11→2.13	-	1.5-8
18	Absolute Lymphocytes Count ($10^9/L$)	1.87→3.30→3.52→3.68→4.04→2.75	-	6-9
19	Absolute Monocytes Count ($10^9/L$)	0.09→0.23→0.30→0.31→0.33→0.47	-	0.2-1
20	Absolute Eosinophils Count ($10^9/L$)	0.01→0.01→0.01→0.03→0.11→0.34	-	0.1-1
21	Absolute Basophils Count ($10^9/L$)	0→0.01→0.01→0→0.01→0	-	0.01-0.1
22	MPV (fl)	11.30→12→11.90→11.30→11.40→10.80	-	8.8-11.3
23	PCT (%)	0.08→0.08→0.02→0.09→0.09→0.10	-	0.19-0.39
24	PDW (fl)	13.40→18.30→9.30→14→16.80→14.90	-	9.3-14
25	C-Reactive Protein (CRP) (mg/dl)	<0.334	-	<0.33
	S. Electrolytes	-	Not Done	
26	S. Sodium (Na)- mmol/L	136	126→136→136→135→137→138→139	135-145
27	S. Potassium (k)- mmol/L	4.2	3.4→3.3→3.1→3→3.3→3.3→3.8	3.5-5
28	S. Chloride (Cl)- mmol/L	104	89→95→95→96→98→99→98	98-108
29	S. Bicarbonate (HC03) - mmol/L	22	-	24-32
30	S. Albumin (gm/dl)	-	2.3→4.2	3.4-5
31	S. Calcium (gm/dl)	-	7→7.8→7.9→8.8	8.1-10.4
32	Stool Routine Microscopy	-	Not Done	
	Color	Greenish	-	
	Consistency	Loose	-	
	Mucus	+	-	
	Blood	Nil	-	
	Pus Cells	Numerous	-	
	RBCs	0-2	-	
	Macrophages	Nil	-	

Sl. No.	Test	Patient-1	Patient-2	Normal Value
	Parasites	Not found	-	
	Vegetable Cells	Nil	-	
	Yeast Cells	Nil	-	
	Fat Droplets	Nil	-	
	Epithelial Cells	Nil	-	
33	Rota Virus and Adenovirus in Stool	□	Not Done	
	Rota Virus	Negative	-	
	Adenovirus	Negative	-	
34	ABO and Rh typing	O Positive	□	
35	Aerobic C/S stool	□	Not Done	
	M	198	-	
36	Prothrombin Time (Seconds)	11.3	25→13	9.8-12.1
37	INR	0.94	□	-
38	Fibrinogen level (mg/dl)	230.7	□	180-350
39	APTT (Sec)	-	97→60→49→53→42	
40	S. Ferritin (ug/L)	-	>3000→>3000→939→517	24-336
41	Procalcitonin (ug/L)	□	25.93	0-0.05
42	SGPT (IU/L)	64	1008→485→327→272→242→204→103	7-56
43	SGOT(IU/L)	-	64→451→353→248→125	
44	D Dimer (mg/L)	□	>10→>10→5.15→2.11	<0.50
45	Urine RME (Physical Examination)	Not done	□	
	Color	-	Dark Brown	Colorless, pale yellow or straw
	Appearance	-	Strongly Turbid	Clear
	Specific Gravity	-	1.028	1.002-1.030
	Chemical Examination	-	□	
	Reaction	-	6	4.5-8
	Protein	-	+	Negative
	Glucose/ Sugar	-	Negative	Negative
	Ketone Bodies	-	+	Negative
	Bilirubin	-	+	Negative
	Urobilinogen	□	Normal	Normal/ Not increased
	Nitrate	□	Negative	Negative
	Leukocyte esterase	□	Negative	Negative
	RBC	□	0-1	0-2
	Pus Cells	□	1-3	0-5
	Epithelial Cells	□	0-1	0-10
46	Screening Test	Not Done	□	
	VDRL	□	Non-Reactive	
	HBsAg	□	Negative	
	HIV 1 & 2	□	Negative	
	HCV	□	Negative	
	MP	□	Negative	

Table II Comparison of Antibiotic Sensitivity

SL	Antibiotic	Patient-1	Patient-2	
No		Salmonella ser.	Acinetobacter	Staphylococcus
		Enteritidis	Species	hominis
1	Ampicillin	R	-	-
2	Cefixime	R	-	-
3	Ciprofloxacin	R	R	S
4	Tetracycline	R	-	-
5	Trimethoprim /			
	Sulfamethoxazole	R	-	-
6	Amikacin	-	R	-
7	Cefepime	-	R	-
8	Cefoperazone/			
	Salbactum	-	R	-
9	Ceftazidime	-	R	-
10	Ceftriaxone	-	R	R
11	Colistin	-	S	-
12	Gentamicin	-	R	S
13	Imipenem	-	I	-
14	Meropenem	-	S	-
15	Piperacillin+			
	Tazobactam	-	R	-
16	Tigecycline	-	S	S
17	Amoxiclav	-	-	S
18	Clindamycin	-	-	S
19	Doxycycline	-	-	S
20	Erythromycin	-	-	R
21	Levofloxacin	-	-	S
22	Linezolid	-	-	S
23	Oxacillin	-	-	R
24	Penicillin G	-	-	R
25	Rifampin	-	-	S
26	Teicoplanin	-	-	S
27	Vancomycin	-	-	S

DISCUSSION

The respiratory system can be significantly affected in dengue fever cases, especially when complicated by coinfections. In our case series, both patients exhibited respiratory distress requiring medical intervention. Respiratory symptoms in dengue fever can range from mild manifestations like cough and sore throat to severe complications such as pleural effusion and Respiratory Distress Syndrome (RDS). These respiratory complications can be exacerbated by concurrent bacterial or viral infections, as seen in our patients who presented with acute respiratory infections alongside dengue fever. One of the primary concerns with respiratory involvement in dengue cases is the potential for fluid accumulation in the lungs, leading to respiratory distress. This fluid accumulation can result from increased vascular permeability, a hallmark of

severe dengue infection. Additionally, pleural effusion, as observed in Case 2, can further compromise respiratory function and necessitate aggressive management strategies.

Dengue fever epidemics occur annually in Bangladesh, a tropical nation, because of the country's high population density, unplanned urbanization, hot and humid climate, frequent rains during the monsoon season, environmental degradation and an inadequate supply of sanitation services.¹⁰ Again, *Acinetobacter* is a member of the gram-negative, opportunistic coccobacilli bacterial family that is linked to a wide range of hospital-acquired infections. It is frequently transmitted to patients by remaining persistent on environmental surfaces and briefly colonizing healthcare personnel's hands.^{11,12} Moreover, salmonellosis, an infection spread through contaminated food, is a serious global health problem. Mild to severe gastroenteritis, which can be fatal, can result from eating foods contaminated with *Salmonella* spp.¹³

Salmonella, including MDR strains, continues to be one of the primary bacterial foodborne causes of death, particularly in LMICs.¹⁴ Recent years have seen a rise in the prevalence of multidrug-resistant *Salmonella* (MDR *Salmonella*), which includes resistance to clinically relevant antimicrobials such as fluoroquinolones and third-generation cephalosporins. *Salmonella* which is resistant to first-line antibiotics like ampicillin, chloramphenicol and trimethoprim-sulfamethoxazole is said to be resistant to multiple drugs. This has given rise to a new concern all over the world.¹⁴ In our case 2, he was resistant to various drugs, including ampicillin, cephalosporin, Ciprofloxacin, tetracycline, and trimethoprim-sulfamethoxazole.

Staphylococcus hominis is a member of the *Staphylococci* genus that is gram-positive and coagulase-negative. Just like the vast majority of other coagulase-negative *Staphylococci*, *S. hominis* is known to cause a wide variety of nosocomial, or hospital-acquired, infections. It also has the potential to cause infection in patients whose immune systems are abnormally compromised.¹⁵

Infection with the dengue virus has been shown to co-occur with the presence of certain microorganisms. Among them were, *Escherichia coli*, *Salmonella* sp., *Streptococcus pneumoniae*, *Mycobacterium tuberculosis*, *Mycoplasma pneumoniae*, *Shigella sonnei*, *Klebsiella pneumonia*, *Klebsiella pneumoniae*, *Enterococcus faecalis*, *Moraxella lacunata*, *Staphylococcus aureus*, *Roseomonas* sp., *Haemophilus influenza*, *Candida tropicalis* and *herpes viruses*.¹⁶ One

possible reason for these co-infections is damage to the digestive epithelial barrier, which could be caused by endothelial damage or intestinal bleeding. This would allow pathogens from the digestive system to get into the bloodstream. In fact, intestinal flora microorganisms seem to be the most common in these cases. Also, physiopathological changes in the vascular and blood-clotting system that can be seen in some organs or systems may make infections worse. Lastly, a bacterial infection happening at the same time as a dengue virus infection could be a simple coincidence of time or, more likely, could be caused by the virus, which is thought to weaken the immune system.¹⁷ Although co-infections of dengue and *Salmonella Enteritidis* and multiple coinfections with *Acinetobacter* species and *Staphylococcus hominis* have been reported in a small number of adult patients, there have been even fewer cases in children. Coinfections with bacterial pathogens, such as *Salmonella enteritidis*, *Acinetobacter* species, and *Staphylococcus hominis*, add another layer of complexity to respiratory management in dengue cases. These coinfections can exacerbate inflammation and compromise lung function, leading to more severe respiratory symptoms and increased mortality risk.

CONCLUSION

Rapid diagnosing respiratory distress in pediatric dengue cases with coinfections is crucial for prompt intervention. Clinicians should prioritize respiratory assessment and tailored antimicrobial therapy to improve outcomes in endemic regions like Bangladesh.

Consent

The patient's parents had written informed consent taken for publishing this case report as well as images, because of patient not adult.

DISCLOSURE

All the authors declared no competing interest.

REFERENCES

1. Luby SP, Brooks WA, Zaman K, Hossain S, Ahmed T. Infectious diseases and vaccine sciences: strategic directions. *Journal of Health, Population and Nutrition*. 2008;26(3):295-310.
2. Noor R, Munna MS. Emerging diseases in Bangladesh: Current microbiological research perspective. *Tzu Chi Medical Journal*. 2015;27(2):49-53.
3. Kaur P, Chakraborti A, Asea A. Enteropathogenic *Escherichia coli*: an emerging enteric food borne pathogen. *Interdisciplinary perspectives on infectious diseases*. 2010;2010.
4. Mutsuddy P, Tahmina Jhora S, Shamsuzzaman AKM, Kaisar S, Khan MNA. Dengue situation in Bangladesh: An epidemiological shift in terms of morbidity and mortality. *Canadian Journal of Infectious Diseases and Medical Microbiology*. 2019;2019.
5. Dengue - Bangladesh WHO: WHO. 2022 [Cited 2022 30/11/2022]. <https://www.who.int/emergencies/diseases-outbreak-news/item/2022-DON424>.
6. Tanmoy AM, Westeel E, De Bruyne K, Goris J, Rajoharison A, Sajib MS, et al. *Salmonella enterica* serovar Typhi in Bangladesh: Exploration of genomic diversity and antimicrobial resistance. *MBio*. 2018;9(6):e02112-02118.
7. Villarreal-Salazar V, Bocanegra-Ibarias P, Villarreal-Treviño L, Salas-Treviño D, Morfin-Otero R, Camacho-Ortiz A, Flores-Treviño S. Improvement of antimicrobial susceptibility testing in biofilm-growing coagulase-negative *Staphylococcus hominis*. *Journal of Microbiological Methods*. 2022;106493.
8. Subekti DS, Lesmana M, Tjaniadi P, Machpud N, Sriwati, Sukarma et al. Prevalence of enterotoxigenic *Escherichia coli* (ETEC) in hospitalized acute diarrhea patients in Denpasar, Bali, Indonesia. *Diagn Microbiol Infect Dis*. 2003;47(2):399-405.
9. Pancharoen C. Coinfections in dengue patients. *The Pediatric infectious disease journal*. 1998;17(1):81-82.
10. Patwary MM, Haque MZ, Bardhan M, Rodriguez-Morales AJ. COVID-19 and Dengue co-epidemic during the second wave of the pandemic in Bangladesh: A double blow for an overburdened healthcare system. *Disaster Medicine and Public Health Preparedness*. 2022;1-7.
11. Peña-Tuesta I, del Valle-Vargas C, Petrozzi-Helasvuo V, Aguilar-Luis MA, Carrillo-Ng H, Silva-Caso W, del Valle-Mendoza J. Community acquired *Acinetobacter baumannii* in pediatric patients under 1 year old with a clinical diagnosis of whooping cough in Lima, Peru. *BMC research notes*. 2021;14(1):1-7.
12. Spellberg B, Bonomo RA. "Airborne assault": A new dimension in *Acinetobacter baumannii* transmission. *Critical care medicine*. 2013;41(8).
13. Khatun MF, Khan MAS, Ahmed MF, Rahman MM, Rahman SR. Assessment of foodborne transmission of *Salmonella enteritidis* in hens and eggs in Bangladesh. *Veterinary Medicine and Science*. 2022;8(5):2032-2039.

14. Jajere SM. A review of *Salmonella enterica* with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. *Veterinary world*. 2019;12(4):504.

15. Mendoza-Olazarán S, Morfin-Otero R, Rodríguez-Noriega E, Llaca-Díaz J, Flores-Treviño S, González-González GM et al. Microbiological and molecular characterization of *Staphylococcus hominis* isolates from blood. *PLoS One*. 2013;8(4):e61161.

16. Araújo SA, Moreira DR, Veloso JMR, Silva JO, Barros VLSR, Nobre V. Case report: Fatal staphylococcal infection following classic dengue fever. *The American journal of tropical medicine and hygiene*. 2010;83(3):679.