

Prevalence of Fosfomycin Resistance among Clinical Isolates of *Klebsiella pneumoniae* at a Tertiary Care Hospital in Bangladesh

Farhana Akter^{1*} S. M. Shamsuzzaman²

Abstract

Background: Fosfomycin, an old antimicrobial has aroused interest for the treatment of multidrug resistant infections. Unfortunately, the prevalence of fosfomycin resistance is increasing. Therefore, this study was done to investigate the presence of fosfomycin resistance and identify the fosfomycin resistance genes by Polymerase Chain Reaction (PCR) among the clinical isolates of *Klebsiella pneumoniae*.

Materials and methods: This cross-sectional study was conducted in the Department of Microbiology of Dhaka Medical College, Dhaka, Bangladesh from January 2021 to December 2021. *K. pneumoniae* was isolated and identified by culture, Gram staining and biochemical tests. Minimum Inhibitory Concentration (MIC) of fosfomycin was determined by agar dilution method. PCR was used to identify fosfomycin resistance genes (*fosA*, *fosA3*, *fosA4*, *fosA5*, *fosB*, *fosC*, *fosC2* and *fosX*).

Results: Among 55 isolated *K. pneumoniae*, 10 (18.18%) were resistant to fosfomycin detected by agar dilution method. MIC of fosfomycin showed a significant rise ranging from 256 to 4096 µg/ml. Out of 10 fosfomycin resistant *K. pneumoniae*, 8 (80%) were positive for *fosA* 5 followed by 5 (50%) for *fosA*, 4 (40%) for *fosA3*, 3 (30%) for *fosA4* and 2 (20%) were positive for *fosB*.

Conclusion: This study showed that fosfomycin resistance has been increasing gradually leading to raised multidrug resistance demanding the implementation of effective antibiotic policy.

Key words: Fosfomycin resistance genes; *Klebsiella pneumoniae*; Minimum inhibitory concentration; Polymerase Chain Reaction (PCR).

Introduction

Older antimicrobials are being considered to be reused due to worldwide increase in antibiotic resistance together with the shortage of new

active drugs.¹ As a result, fosfomycin has recently aroused great interest for the treatment of multidrug resistant infections caused by *K. pneumoniae*.² It is currently used in several countries for treating uncomplicated urinary tract infections caused by *Enterobacteriales* with activity against multidrug resistant *Klebsiella pneumoniae* strains.³ It has a unique bactericidal mechanism which interfere with cell wall synthesis in both gram positive and gram-negative bacteria by inhibiting peptidoglycan synthesis through binding irreversibly to UDP-N-acetylglucosamine enolpyruvyl transferase, murA.⁴ Furthermore, fosfomycin reduces penicillin binding proteins.⁵ The toxicity of fosfomycin is very little and high peak levels can be achieved in serum and urine.⁶

However, microbiological cure rates in patients treated with fosfomycin monotherapy have been low due to the development of fosfomycin resistance.⁷ There are several mechanisms of fosfomycin resistance have been studied:

- Reduced uptake of the drug by the pathogen owing to chromosomal (*glpT* or *uhpT*) gene mutations affecting the hexose-6-phosphate or L-a-glycerophosphate uptake systems
- Target site alteration in *murA* which decreases the affinity of fosfomycin
- Hydrolysis of the drug via diverse fosfomycin hydrolases encoded by *fos* genes, which are the main mechanism of resistance.⁸ The fosfomycin hydrolases are classified into four main types, *fosA*, *fosB*, *fosC* and *fosX* and their subtypes *fosA*, *fosA2*, *fosA3*, *fosA4*, *fosA5* and *fosC2*.⁹ High similarity was found among *fosA5*, *fosA6* and *fosA10* and they were proposed to originate from the *K. pneumoniae* chromosome.¹⁰

FosA (Glutathione S-transferase), the first to be described (in 1988), is a metalloenzyme transferred through plasmids in *Enterobacteriaceae*.¹¹ It catalyzes the reaction between glutathione and fosfomycin to an inactive adduct. All *fos* genes

1. □Lecturer of Microbiology
□Chittagong Medical College, Chattogram

2. □Professor of Microbiology (Retired)
□ Dhaka Medical College, Dhaka.

***Correspondence:** Dr. Farhana Akter
□ Cell : 01627 66 71 06
□ E-mail: farhanadmc952@gmail.com

Submitted on □ 05.10.2024

Accepted on □ 11.11.2024

except fosA2 are located in plasmids. The second enzyme of the glyoxalase superfamily conferring resistance to fosfomycin is fosB which catalyzes the nucleophilic addition of either 1-Cys or bacillithiol to fosfomycin, resulting in a modified compound with no bactericidal properties.^{12,13}

Fosfomycin, being an attractive option for treatment of multidrug resistant infections needs continuous monitoring of its resistance pattern in microbiology laboratory. Therefore, this study aimed to determine the prevalence of fosfomycin resistance among *Klebsiella pneumoniae* and to detect the fosfomycin resistance genes by polymerase chain reaction.

Materials and methods

This cross-sectional study was carried out in the Department of Microbiology of Dhaka Medical College, Bangladesh during January 2021 to December 2021. This research protocol was approved by the Research Review Committee of Dhaka Medical College.

Samples (Urine, wound swab, sputum, blood and endotracheal aspirates) were collected from the laboratory of Microbiology Department, Dhaka Medical College. All samples were inoculated in MacConkey agar and Blood agar media and incubated overnight aerobically at 37°C. *Klebsiella pneumoniae* was identified on the basis of their colony morphology, Gram staining and biochemical tests (Catalase, oxidase, urease, indole test, gas production, motility, lactose fermentation and citrate utilization).

Fosfomycin stock solution was made by adding 150 ml of distilled water with 300 mg base of commercially available Fosfomycin (Beximco Pharma Limited) to make a concentration of 20 mg/ml. For each plate 50 ml Mueller-Hinton media containing 1.25 mg glucose-6-phosphate was impregnated with 80 µl, 160 µl, 320 µl, 640 µl, 1280 µl, 2560 µl, 5120 µl and 10240 µl of fosfomycin stock solution to achieve concentration of 32 µg/ml, 64 µg/ml, 128 µg/ml, 256 µg/ml, 512 µg/ml, 1024 µg/ml, 2048 µg/ml, 4096 µg/ml per plate respectively.

Inoculum preparation: The turbidity of bacterial suspension in normal saline was compared with 0.5 McFarland turbidity standard. As 0.5 McFarland turbidity standard contain 1.5×10^8 CFU/ml, to obtain 10^4 CFU/ml on agar surface

1 µl of 10 times diluted inoculums were placed on Mueller-Hinton agar plate. The plate was then incubated aerobically at 37°C overnight.

MIC of Fosfomycin was determined following EUCAST guideline, 2020.¹⁴

PCR was used to detect fosfomycin resistance genes (*fosA*, *fosA3*, *fosA4*, *fosA5*, *fosB*, *fosC*, *fosC2* and *fosX*). Genomic DNA extraction was done by boiling method¹⁵.

Table I Primers used for detection of colistin resistance genes in this study.^{15,16,17}

Genes	F	R	Sequence (5'-3')	size (bp)
<i>fosA</i>	F	R	ATC TGT GGG TCT GCC TGT CGT	271
			ATG CCC GCA TAG GGC TTC T	
<i>fosA3</i>	F	R	CCT GGC ATT TTA TCA GCA GT	221
			CGG TTA TCT TTC CAT ACC TCA G	
<i>fosA4</i>	F	R	CTG GCG TTT TAT CAG CGG TT	230
			CTT CGC TGC GGT TGT CTT T	
<i>fosA5</i>	F	R	TAT TAG CGA AGC CGA TTT TGC T	177
			CCC CTT ATA CGG CTG CTC G	
<i>fosB</i>	F	R	CAGAGATATTAGGGCTGACA	312
			CTCAATCTATCTTCTAAACTTCCTG	
<i>fosC2</i>	F	R	TGG AGG CTA CTT GGA TTT G	209
			AGG CTA CCG CTA TGG ATT T	
<i>fosX</i>	F	R	TGT CCC TCA CCT TCG ACT CT	
			TTG CTG GTC TGT GGA TTT GC	

The following cycling parameters were used: After initial denaturation at 94°C for one minute, the reaction was subjected to 32 cycles (Annealing at 57°C for 45 seconds and elongation at 72°C for one minute) followed by final extension at 72°C for 10 minutes. The amplified DNA was analyzed by 1.5% agarose gel-electrophoresis at 100 volts for 35 minutes, stained with 1% ethidium bromide and visualized under ultraviolet light (Figure 1).

Figure 1 Photograph of gel electrophoresis of fosfomycin resistance genes showing amplified DNA of 271 bp of *fosA* gene (Lane 4) DNA of 177 bp for *fosA5* gene (Lane 5) DNA of 230 bp for *fosA4* gene (Lane 6) 100 bp DNA ladder (Lane 7) DNA of 312 bp for *fosB* gene (Lane 8) and DNA of 221 of *fosA3* gene (Lane 9)

Statistical analysis was performed with SPSS software, versions 22.0 (IBM SPSS Statistics for Windows, Version 22.0, Armonk, NY: IBM Corp.). Continuous data that were normally distributed were summarized in terms of the mean, standard deviation, median, minimum, maximum and number of observations. Categorical or discrete data were summarized in terms of frequency counts and percentages.

All procedures of the present study were carried out in accordance with the principles for human investigations (i.e., Helsinki Declaration) and with the ethical guidelines of the Institutional research ethics. This research protocol was approved by the Research Review Committee and Ethical Review Committee of Dhaka Medical College (Reference number: MEU-DMC/ERC/2021/144). All participants were informed about the procedure and purpose of the study and confidentiality of information provided. All participants consented willingly to be a part of the study during data collection periods.

Results

A total of 340 samples were included in this study out of which 226 (66.47%) samples yielded growth in culture. Among the culture positive samples, 55 (24.34%) were identified as *K. pneumoniae* (Table II).

Table II Distribution of organisms isolated from different samples (n= 226)

Organisms	Number (%)
<i>Escherichia coli</i>	74 (32.74)
<i>K. pneumoniae</i>	55 (24.34)
<i>K. ozaenae</i>	1 (0.44)
<i>K. oxytoca</i>	1 (0.44)
<i>Pseudomonas</i>	32 (14.16)
<i>Acinetobacter</i>	11 (4.87)
<i>Enterobacter</i>	13 (5.75)
<i>Proteus mirabilis</i>	6 (2.65)
<i>Proteus vulgaris</i>	3 (1.33)
<i>Citrobacter</i>	4 (1.77)
<i>Salmonella typhi</i>	1 (0.44)
Gram positive bacteria	25 (11.06)
Total	226 (100.00)

Out of 55 isolated *K. pneumoniae*, 10 (18.18%) were resistant to fosomycin detected by agar dilution method. MIC of fosfomycin resistant isolates ranged from 256 to 4096 µg/ml (Table III).

Table III MIC of fosfomycin among fosfomycin resistant *K. pneumoniae* (n=10)

MIC of fosfomycin (µg/ml)	Number (%)
≥ 4096	1 (10.00)
2048	2 (20.00)
1024	4 (40.00)
512	2 (20.00)
256	1 (10.00)
128	0 (0.00)
64	0 (0.00)
32	0 (0.00)
Total	10 (100.00)

Among 10 fosfomycin resistant *K. pneumoniae*, 8 (80%) were positive for fosA5, 5 (50%) were positive for fosA, 4 (40%) were positive for fosA3, 3 (30%) were positive for fosA4 and 2 (20%) were positive for fosB. NofosC, fosC2 and fosX genes were found in any isolates (Table IV).

Table IV Distribution of fosfomycin resistance genes among fosfomycin resistant *K. pneumoniae* in different samples (n= 10)

Genes	Wound swab n=3	Urine n=5	Sputum n=1	ETA n=1	Total n=10
					n (%)
fosA	1 (33.33)	3 (60.00)	0 (0.00)	1 (100.00)	5 (50.00)
fosA3	1 (33.33)	2 (40.00)	0 (0.00)	1 (100.00)	4 (40.00)
fosA4	0 (0.00)	2 (40.00)	0 (0.00)	1 (100.00)	3 (30.00)
fosA5	2 (66.67)	4 (80.00)	1 (100.00)	1 (100.00)	8 (80.00)
fosB	0 (0.00)	1 (20.00)	0 (0.00)	1 (100.00)	2 (20.00)
fosC	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)
fosC2	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)
fosX	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)

N= Total number of fosfomycin resistant *K. pneumoniae* in different samples.

n= number of different samples positive for different fosfomycin resistance genes.

*ETA= Endotracheal Aspirates.

Discussion

Drug resistant *K. pneumoniae* has become a global threat causing pneumonia, septicemia, infections of wound, urinary tract and central nervous system with high mortality rates and warrants the search for alternative therapeutic option like fosfomycin.¹⁸ However, the emergence of fosfomycin resistance has been increased.

In this study, out of 226 (66.47%) culture positive samples most of the organisms were *Escherichia coli* (32.74%) followed by *Klebsiella pneumoniae* (24.34%). A study in India reported *Escherichia coli*

(36.11%) as the most common organism followed by *K. pneumonia* (26.79%).¹⁹ This similarity may be attributed to the fact that these two studies were conducted in same geographic areas.

In the present study, among the isolated *Klebsiella pneumoniae*, 10 (18.19%) fosfomycin resistant *K. pneumoniae* were identified. A study in India reported 22% fosfomycin resistance in *K. pneumoniae*.²⁰ There are a limited number of studies on fosfomycin resistance and the prevalence of resistance can vary and change over the time within and between the countries. In developing countries, owing to poor diagnostic facilities, circulation and co-circulation of resistance genes may remain undetected, underreported and poorly characterized.²¹

In the present study, MIC of fosfomycin among the fosfomycin resistant *K. pneumoniae* ranged from 256 to ≥ 4096 $\mu\text{g}/\text{ml}$ which is in accordance with the study in Dhaka Medical College Hospital who reported MIC value of fosfomycin ranging from 512 to ≥ 4096 $\mu\text{g}/\text{ml}$.²² Elliot et al. reported that *K. pneumoniae* isolates carrying fosA genes were associated with higher MIC distribution.²³

In this study, among 10 fosfomycin resistant *K. pneumoniae*, fosA5 was the most prevalent resistance gene (80%) followed by fosA (50%) fosA3 (40%), fosA4 (30%) and fosB (20%). Huang et al. reported 100% prevalence of fosA5 in fosfomycin resistant *Klebsiella pneumoniae*.²⁴ According to a previous study, fosA5 showed high similarity to the chromosomal fosA^{Kp} of the *K. pneumoniae*, which can be found in most of *K. pneumoniae*.²⁵ The prevalence of fosA3 was reported as 36.3% among KPC-Kp in China.⁸ Another study showed 60% fosfomycin resistant *K. pneumoniae* harbouring fosA.²⁶

Limitation

All other genes responsible for fosfomycin resistance could not be detected due to time and resource constraints.

Conclusion

This study shows an increasing rate of fosfomycin resistance among the clinical isolates of *K. pneumoniae*. Plasmid mediated dissemination of fosfomycin resistance genes from one species to another is a major concern for public health. Implementation of antibiotic stewardship programme along with surveillance of fosfomycin

resistance is necessary to control the spread of resistance genes.

Recommendation

Further study can be done to evaluate the efficacy of fosfomycin based antibiotic combination against fosfomycin resistant *K. pneumoniae*.

Acknowledgement

We thank the faculties and staff of Department of Microbiology, Dhaka Medical College, Dhaka for providing the opportunity to conduct this study.

Contribution of authors

FA-Design, acquisition of data, analyzed the data, interpreted the results, draft manuscript & final approval.

SMS-Analysis of data, critical revision & final approval.

Disclosure

Both the authors declared no conflict of interest.

References

1. Ballesteros-Tellez M, Docobo-Perez F, Rodriguez-Martinez JM, Conejo MC, Ramos-Guelfo MS, Blazquez J et al. Role of inoculum and mutant frequency on fosfomycin MIC discrepancies by agar dilution and broth microdilution methods in Enterobacteriaceae. Clin Microbiol Infect. 2017; 23 (5): 325-331.
2. Abbott IJ, Meletiadis J, Belghanch I, Wijma RA, Kanioura L, Roberts JA et al. Fosfomycin efficacy and emergence of resistance among Enterobacteriaceae in an in vitro dynamic bladder infection model. J Antimicrob Chemother. 2018; 73 (3): 709-719.
3. Veve MP, Wagner JL, Kenney RM, Grunwald JL, Davis SL. Comparison of fosfomycin to ertapenem for outpatient or step-down therapy of extended-spectrum β -lactamase urinary tract infections. Int J Antimicrob Agents. 2016; 48 (1): 56-60.
4. Suarez JE, Mendoza MC. Plasmid-encoded fosfomycin resistance. Antimicrob Agents Chemother. 1991; 35 (5): 791-795.
5. Dijkmans AC, Zacarias NVO, Burggraaf J, Mouton JW, Wilms EB, Van Nieuwkoop C et al. Fosfomycin: Pharmacological, Clinical and future perspectives. Antibiotics (Basel). 2017; 6 (4).
6. Falagas ME, Rafaillidis PL, Matthaiou DK, Virtzili S, Nikitite D, Michalopoulos A. Pandrug-resistant *Klebsiella pneumoniae*, *Pseudomonas aeruginosa* and *Acinetobacter baumannii* infections: Characteristics and outcome in a series of 28 patients. Int J Antimicrob Agents. 2008; 32: 450-454.

7. Neuner EA, Sekeres J, Hall GS, Van DD. Experience with Fosfomycin for treatment of urinary tract infections due to multidrug resistant organisms. *Antimicrob Agents Chemother*. 2012; 56 (11): 5744-5748.

8. Huang L, Cao M, Hu Y, Zhang R, Xiao Y, Chen G. Prevalence and mechanisms of fosfomycin resistance among KPC-producing *Klebsiella pneumoniae* clinical isolates in China. *Int J Antimicrob Agents*. 2021; 57 (1): 1-5.

9. Sastry S, Doi Y. Fosfomycin: Resurgence of an old companion. *J Infect Chemother*. 2016; 22(5):273-280.

10. Zurfluh K, Treier A, Schmitt K, Stephan R. Mobile Fosfomycin resistance genes in Enterobacteriaceae : An increasing threat. *Microbiologyopen*. 2020; 9: e1135

11. Arca P, Reguera G, Hardisson C. Plasmid encoded fosfomycin resistance in bacteria isolated from the urinary tract in a multicentre survey. *J Antimicrob Chemother*. 1997; 40 (3): 393-399.

12. Takahata S, Ida T, Hiraishi T, Sakakibara S, Maebashi K, Terada S et al. Molecular mechanisms of fosfomycin resistance in clinical isolates of *Escherichia coli*. *Int J Antimicrob Agents*. 2010; 35: 333-337.

13. Zhao JY, Zhu YQ, Li YN, Mu XD, Xu C et al. Coexistence of SFO-1 and NDM-1 beta-lactamase genes and fosfomycin resistance gene fosA3 in an *Escherichia coli* clinical Isolate. *FEMS Microbiol Lett*. 2015; 362 (1): 1-7.

14. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 0.1, valid from 2020-05-15. EUCAST: <http://www.eucast.org>

15. Benzerara Y, Gallah S, Hommeril B, Genel N, Rottman M, Arlet G et al. Emergence of plasmid mediated fosfomycin resistance genes among *Escherichia coli* isolate, France. *Emerg Infect Dis*. 2017; 23 (9): 1564-1567.

16. Ho PL, Chan J, Lo WU, Lai EL, Cheung YY, Chow KH et al. Prevalence and molecular epidemiology of plasmid mediated fosfomycin resistance genes among blood and urinary *Escherichia coli* isolates. *J Med Microbiol*. 2013; 62 (11): 1707-1713.

17. Wang X, Zhang Z, Hao Q, Wu J, Xiao J, Jing H. Complete genome sequence of *Acinetobacter baumanii* ZW85-1. *Genome announcements*. 2014; e01083-13.

18. Maczynska B, Paleczny J, Oleksy-Wawrzyniak M, Choroszy-Krol I, Bartoszewicz M. In vitro susceptibility of multidrug resistant *Klebsiella pneumoniae* strains causing nosocomial infections to Fosfomycin. A comparison of determination methods. *Pathogens*. 2021; 10 :512.

19. Sony P, Nerurkar A, Gandhi V. *Klebsiella pneumoniae*, an important uropathogen: Prevalence and Antimicrobial susceptibility pattern. *Tropical Journal of Pathology and Microbiology*. 2019; 5 (3):171-176.

20. Imtiaz W, Syed Z, Rafaque Z, Andrews SC, Dasti JI. Analysis of Antibiotic Resistance and Virulence Traits (Genetic and Phenotypic) in *Klebsiella pneumoniae*: Identification of Significant Levels of Carbapenem and Colistin Resistance. *Infect Drug Resist*. 2021; 14: 227-236.

21. Sah RSP, Dhungel B, Yadav BK, Adhikari N, Shrestha UT, Lekhak B et al. Detection of TEM and CTX-M Genes in *Escherichia coli* isolated from clinical specimens at tertiary care heart hospital, Kathmandu, Nepal. *Diseases*. 2021; 9(1): 15.

22. Kawser Z, Shamsuzzaman SM. Association of virulence with antimicrobial resistance among *Klebsiella pneumoniae* isolated from hospital settings in Bangladesh. *Int J Appl Basic Med Res*. 2022; 12(2): 123-129.

23. Elliot ZS, Barry KE, Cox HL, Stoesser N, Carroll J, Vegesana K et al. The role of fosAin challenges with Fosfomycin susceptibility testing of multispecies *Klebsiella pneumoniae* carbapenemase producing clinical isolates. *J Clin Microbiol*. 2019; 57 (10): 00634-00619.

24. Huang L, Hu YY, Zhang R. Prevalence of Fosfomycin resistance and plasmid-mediated Fosfomycin-modifying enzymes among carbapenem-resistant Enterobacteriaceae in Zhejiang, China. *J Med Microbiol*. 2017; 66 (9): 1332-1334.

25. Ma Y, Xu X, Guo Q, Wang P, Wang W and Wang M. Characterization of fosA5, a new plasmid-mediated fosfomycin resistance gene in *Escherichia coli*. *Lett. Appl. Microbiol*. 2015;60: 259-264.

26. MashalyGES. Activity of Fosfomycin in extended-spectrum beta-lactamase producing *Klebsiella pneumoniae* from hospital acquired urinary tract infections. *Open Journal of Medical Microbiology*. 2016; 6(3): 104-110.