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Abstract— Both Mod 1 and Mod 2 type Semiconducting 
single wall carbon nanotubes over a wide diameter range 
are studied separately to find their band gap trend. For 
accurate calculation of their band gaps, modification of 
nearest-neighbor hopping parameter of the tight-binding 
model is proposed by considering it as a function of 
nanotube chiral index and mod value. A simple 
empirical equation for the nearest-neighbor hopping 
parameter is presented to produce band gaps of these 
nanotubes that agree well with simulated data. 
Empirical data are also compared with experimental 
data and found to be in excellent agreement with it after 
adding a flat correction. 
Index Terms—Carbon nanotube, band gap, nearest-
neighbor hopping parameter, tight-binding model, chiral 
index. 

I. INTRODUCTION 
he tight-binding (TB) model of π-bands of graphene 
using the zone-folding approximation has been widely 

used for modeling single-wall carbon nanotube (SWCNT) 
due to its simplicity, low computational cost, and good 
qualitative agreement with experimental results [1]. Initially, 
to study the electronic structure of SWCNT in the TB 
approximation, most authors took into account only the first 
neighboring interactions for hopping and overlap for 
simplicity of the model. The band structure of SWCNT from 
improved TB model, which include up to third-nearest-
neighbor interaction and overlap [2] was found to be good 
agreement with the result from first principle ab-initio 
calculations [1]. Nevertheless, TB model with the nearest-
neighbor approximation can correctly predict the first optical 
transition energy, though the higher transition energies are 
strongly overestimated [2]. 
TB model with the nearest-neighbor approximation can 
provide a simple way to calculate band gap of 
semiconducting SWCNT, despite its failure in the overall 
quantitative predictions of the electronic energies [1, 2]. The 
expression for the band gap [3] of semiconducting SWCNT 
with chirality (n,m) is : 

tccg daE /2 0γ=            (1) 

where 0γ  is the nearest-neighbor hopping parameter, 

42.1=cca  Å is carbon-carbon bond length, and td  is 
nanotube diameter in nm, given by 

( ) π/3 22
cct amnmnd ++= . 

A SWCNT with chirality (n, m) is metallic if 
0)3,mod( =−mn , whereas 1)3,mod( =−mn  or 2 

represents semiconducting [4]. This relation is always found 
true except for SWCNT with very small diameter, where 
curvature effect dominates its properties [5]. It is also 
observed from Kataura plot [6] that band gap of 
semiconducting nanotube decreases in general with the 
increase of its diameter. 
The band gap of mod 2 semiconducting SWCNT is always 
found higher than that of mod 1 type with similar or 
comparable diameter [6, 7]. Though this observation is 
explainable within zone-folding picture, it has an apparent 
contradiction with (1) if 0γ  is assumed as a constant. In most 

of the earlier literatures, 0γ  was taken merely as a fitting 
parameter without having any dependency on nanotube 
structure. 7.20 =γ  was chosen as best fitting value [1,2] 
though values ranging from 2.5 to 3.0 are also found in other 
literatures [7, 8].  Later, correction of 0γ  was proposed by 
many authors to include curvature effect [3, 8, 9]. They 
include the effect of CNT diameter on γ0 and do not consider 
the effect of chirality. So, their equations give same γ0 for 
two SWCNTs with same diameter but different chirality. 
Subsequent works revealed that beside curvature or diameter 
effect, CNT chirality also has effect on the value of γ0 [7, 10, 
11]. But, most importantly, those who discussed chirality 
effect on γ0, they mainly meant the effect of chiral angle on γ0 
[7, 10, 11], not directly the chiral indices (n, m).  
In our perception, classifying semiconducting SWCNT in 
mod 1 and mod 2 originates from chirality (n, m), not from 
diameter or chiral angle. So, 0γ  should have some direct 
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dependency on combination of chiral index (n, m) rather than 
diameter directly. Considering this, we are motivated to find a 
simple empirical equation for 0γ  in terms of its chirality (n, 
m) and mod value, which can reflect the precise behavior of 
semiconducting SWCNT as mod 1 or mod 2 type. The 
contribution of our work is that we expressed the chirality 
effect on γ0 directly in terms of chiral indices (n, m) through 
a simple equation without any need of including CNT 
diameter or chiral angle. This can reduce much computational 
complexity in calculating band gap of semiconducting 
SWCNT while giving acceptable accuracy. 
Our objective in this paper is to extend and strengthen the 
capacity of Eqn 1 to calculate the band gap of semiconducting 
SWCNT with good accuracy by proposing a chirality 
dependent simple empirical equation for the nearest-neighbor 
hopping parameter (γ0) over a wide diameter range. 

II. METHODS AND RESULTS 
We considered total 211 samples of zigzag and chiral 
semiconducting SWCNTs. 108 samples were mod 1 type 
and 103 samples were mod 2 type with diameter ranging 
from 0.8 nm to around 5.5 nm and chiral index from (7, 5) 
to (71, 0). All possible combinations of chirality from (7, 5) 
to (20, 19) for semiconducting SWCNTs were taken 
continuously, and after this, only random chiral indices were 
considered up to (71, 0) to see the general trend of data at 
large diameters. For mod 1 type, 63 from its 108 samples 
have continuous chiral indices from (7, 6) to (20, 19) and 
rest 45 are random samples from (21, 5) to (70, 0). 
Similarly, for mod 2 type, 59 from its 103 samples have 
continuous chiral indices from (7, 5) to (20, 18) and rest 44 
are random samples from (21, 4) to (71, 0). In case of 
random samples, both zigzag and chiral SWCNTs were 
considered. In our diameter range, the lowest diameter 
comes from (7, 5) tube which is 0.82 nm and the highest 
diameter comes from (71, 0) tube which is 5.56 nm.  
The diameter and band gap of each of the SWCNT is 
calculated using Virtual NanoLab (VNL), which is a 
graphical user interface of The Atomistix ToolKit (ATK) 
simulation software by Quantumwise [12] that offers a rich 
set of powerful tools for investigating and analyzing the 
properties of nanostructures. It provides built in tools for 
analyzing SWCNT properties as well. 
The Atomistix ToolKit (ATK) simulation software is 
available in two packages: ATK-SE and ATK-DFT. The 
ATK-SE (ATK - Semi-Empirical) program can model the 
electronic properties of closed and open quantum systems 
using both self-consistent and non-self-consistent 
tightbinding models. The implemented tight-binding model 
is based on the extended-Hückel model. ATK-SE program 
closely follows the implementation presented in [13, 14], 
where details mathematical formalism behind this model 
can also be found. 

The Extended-Hückel Model provides a description of the 
electronic structure of the valence electrons of molecules 
and solids. The key parameter in the self-consistent loop is 
the density matrix. For open systems, the density matrix is 
calculated using non-equilibrium Green's functions, while 
for closed or periodic systems it is calculated by 
diagonalization of the Hamiltonian. The Density matrix 
defines the electron density and the electron density sets up 
an electrostatic potential, i.e. the Hartree potential. The 
Hartree potential is obtained by solving the Poisson 
equation in real space.  
Basis Parameters in Extended-Hückel model are:    
{The basis orbitals, The ionization potential for each of the 
given orbitals,  The on-site Hartree shift,  The number of 
valence electrons used to determine the neutral state, The 
Wolfsberg-Helmholtz constant, The energy level of 
vacuum} along with Slater Orbital Parameters: { Principal 
quantum number , Angular momentum, Slater coefficients, 
Weights} 
For calculating CNT bandstructure, the required value of 
Hückel basis parameters are found from [14] which were 
derived by fitting Hückel Basis Parameters to a reference 
band structure of a graphene sheet calculated with DFT-
LDA. 
The Atomistix ToolKit-Density Functional Theory (ATK-
DFT) program can model the electronic properties of closed 
and open quantum systems with Density Functional Theory 
models using numerical basis sets. The key parameter in the 
self-consistent loop is the density matrix. For open systems, 
the density matrix is calculated using non-equilibrium 
Green's functions, while for closed or periodic systems it is 
calculated by diagonalizing the Kohn-Sham Hamiltonian. 
The Density Matrix defines the electron density, and the 
electron density sets up an effective potential, i.e. the 
Hartree and exchange-correlation potential. From the 
effective potential, the Kohn-Sham Hamiltonian is obtained. 
ATK-DFT program closely follows the implementation 
presented in [15] and supported by [16], where details 
mathematical formalism behind this model can also be 
found. 
ATK has 3 different types of basis functions: Confined 
Orbital, Analytical Split and Polarization Orbital. The basis 
orbitals have a number of parameters that determines the 
shape of the orbitals. ATK comes with a number of pre-build 
basis sets for each element which are: Single Zeta, Double 
Zeta, Single Zeta Polarized, Double Zeta Polarized and 
Double Zeta Double Polarized. The default basis set is 
Double Zeta Polarized. 
ATK uses following parameters to generate the basis set 
orbitals which are used to solve the Kohn-Sham equations: 
{The size of the basis set (Default: Double Zeta Polarized), 
The separation between the points used for the radial 
representation of the numerical orbitals (Default: 
0.001*Bohr), The confinement radius of the numerical 
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orbitals (Default: 0.01*Rydberg), The inner radius of the 
soft confinement potential (Default: 0.8), The softness of the 
confined potential (Default: 40.0*Rydberg), Defines the net 
charge of that atom when generating basis orbitals (Default: 
0.0) and The matching radius of an analytical orbital which 
splits the first zeta orbital into a double zeta basis (Default: 
0.15) }. For our purpose of calculating the diameter and 
band gap of each of the SWCNT, we used graphical user 
interface (Virtual NanoLab) of ATK-SE package which is 
based on extended-Hückel model as described before. The 
ATK-SE package is chosen instead of ATK-DFT package 
because of its availability and faster computation process. 
Any DFT based program (first principle method) is usually 
expensive and requires heavy and lengthy computation 
which is dependent on high speed processor. Moreover the 
graphical user interface (Virtual NanoLab) of ATK-SE 
package shows numerical value of band gap in a separate 
window along with graphical representation but that of of 
ATK-DFT package only showed graphical representation. 
So, if bandgap is calculated from graphical representation of 
band structure, there may be some observation error from 
viewer’s side. Theoretically ATK-DFT program should give 
better result than ATK-SE program because of proven 
higher accuracy of first principle method. But, since the 
Hückel parameters used in ATK-SE program have been 
fitted to the correct band structure, so this program also can 
give a correct band structure of semiconductors including 
CNTs with much faster computation than DFT. These are 
the reasons of choosing ATK-SE package for our 
calculation. It is worth mentioning here that diameter of 
SWCNT is directly calculated from chiral index (n, m) 
using the formula mentioned earlier and so calculated value 
of diameter is not dependent on any simulation software 
package. Using VNL of ATK-SE package, we recorded 
simulator generated values of band gaps and diameters for 
all our 211 samples of SWCNTs.  
To find suitable value of γ0 to reproduce VNL simulated data 
from (1), at first we assigned a constant value 2.7 to γ0 
which was preferred in many earlier works [1, 2]. We 
calculated band gaps for all 211 samples from (1) using 
γ0=2.7 and compared that with VNL generated bandgaps. It 
was observed that γ0 =2.7 always overestimate the result for 
mod 1 type and it always underestimate the result for mod 2 
type over the full range with high error for some specific 
chiralities. The observations have been summarized in Table 
I. 
Table I shows that performance with γ0 = 2.7 is very poor in 
the case of zigzag or close to zigzag tubes specially for 
lower diameters. So, we cannot accept γ0 = 2.7 for 
calculating band gap from (1). In fact, no single constant 
value for γ0 is acceptable because in that case (1) gives 
similar bandgap for both mod 1 and mod 2 types for similar 
diameter. But, it was mentioned earlier that the band gap of 
mod 2 type has to be always higher than that of mod 1 type 
for comparable diameter. 

Then, we proceed with two different constant values of γ0 
for mod-1 and mod-2 to reproduce VNL generated data 
from (1). As band gap of mod 2 type is higher than that of 
mod 1 type for comparable diameter, so the chosen value of 
γ0 for mod 2 type should be higher than that for mod 1 type. 
We assigned 2.5 & 2.6 to γ0 for mod 1 type and 2.8 & 2.9 to 
γ0 for mod 2 type. We then calculated band gaps of our 
samples for these four cases using (1) and compared each of 
them with  

TABLE I: OBSERVED ERROR FOR CHIRAL AND 
ZIGZAG TUBES FOR Γ0 =2.7. 

0.8 nm ≤≤ td  5.5 nm MOD 1 
Type 

MOD 2 
Type 

Maximum %error ( E∆% ) for 
zigzag (n, 0) tubes and chiral 
tubes with mn >>  

 
15.1% 

 
12.32% 

Maximum % error ( E∆%  ) 

for chiral tubes with mn ≈  

 
< 5% 

 
< 5% 

TABLE II: OBSERVED ERROR FOR MOD 1 TYPE 
(WITH Γ0 =2.5 & 2.6) AND MOD 2 TYPE (WITH Γ0 =2.8 

& 2.9) CHIRAL AND ZIGZAG TUBES. 

MOD 1 Type MOD 2 Type 0.8 nm ≤≤ td  5.5 nm
γ0 =2.5 γ0 =2.6 γ0 =2.8 γ0 =2.9

E∆% for chiral tubes 
(n,m) where m =n - 1, n 
- 4 or n/2 (mod1)  
m =n - 2 or n - 5 (mod 
2) 

 
>5% 

 
<5% 

 
<5% 

 
>7.6%

E∆% for zigzag or 
zigzag-like tubes, i.e. (n, 
m) with m = 0 or 

mn >>  

 
<5% 

 
>10.8% 

 
>9.1%

 
<5% 

VNL simulated data. The observation is summarized in 
Table II. After analyzing the result, it is clear that two 
separate constant value of γ0  for mod 1 type(2.5 or 2.6) and 
mod 2 type (2.8 or 2.9) also failed to generate close    
replica of VNL data within tolerable error margin as they 
could not show uniform behavior to all type of nanotube 
chiralities. So, any constant value of γ0 produces good result 
for one kind of chirality, but poor result for another kind of 
chirality. This strongly suggests that the value of hopping 
parameter γ0 should have some dependency on chiral index 
(n, m) of SWCNT so that its value varies according to chiral 
combination and remove above discrepancies. This also 
suggests that two different sets of γ0 is required for mod 1 
and mod 2 type for best reproduction of simulated data 
using (1). 
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In this context, we need to find such an empirical equation 
for γ0, which can generate values of γ0 depending on both 
CNT mod value and chirality (n, m). Based on above 
experiences with any constant γ0 , the arrangement of the 
parameters in our desired empirical equation should be such 
that it can generate suitable γ0  for every single chirality 
without making any discrepencies. After scruitinizing some 
earlier attempts for more accurate calculation of bandgap 
using tight binding model, we found that some authors 
proposed the dependency of band gap on an extra term 
added to (1). Some of them made this term proportional to 
cos3θ (θ is the SWCNT chiral angle) [7, 9], some proposed 
it proportional to 1/R2 (R is SWCNT radius, i.e. dt/2) [3, 17] 
and some considered it proportional to both i.e. cos3θ/R2 
[10, 18]. We carefully investigated those proposals and 
simplified the relation used by them in terms of chiral index 
n & m. As γ0 is proportional to Eg.dt from (1), we derived 
from the simplified relation that the variation of γ0 can be 
made proportional to a term   1/(2n-m) [Appendix-1].  

 
Fig. 1. Empirical value of nearest-neighbor hopping parameter ( 0γ ) 

as plotted against nanotube diameter ( td ). Solid line (red) is for 
mod 1 type semiconducting SWCNT and dotted line (blue) is for 
mod 2 type semiconducting SWCNT. 0γ  varies from 2.48 to 2.76 
for mod 1 type and from 2.68 to 2.93 for mod 2 type. 

We found a simple combination of chiral index 1/(2n-m) to 
express γ0, which leads to show the dependency of band gap 
directly on chiral index. By intelligently arranging mod 
value and other constants around this extracted term, we find 
following empirical equation for 0γ to meet our requirement. 

( )
⎭
⎬
⎫

⎩
⎨
⎧

−
−

+
−

+=
−

mn
ka

k

2
1

5
1110

1

00γ       (2) 

Where 0a  is graphene lattice constant ( 246.03 == cca  

nm) and )3,mod( mnk −= . k  is 1 for mod 1 type 
SWCNT and 2 for mod 2 type SWCNT. It can be noted that, 

010a  = 10*0.246 =2.46 ≈ 2.5, which is the lowest limit of 

the value of 0γ  as we mentioned earlier. So, 010a  term sets 

the lowest limit for 0γ  and a small value proportional to 

1/(2n-m) is always added to it to generate suitable 0γ  for 

any (n, m) tube. Putting the value of k in (2) gives following 
individual expression for 0γ  for mod 1 and mod 2 type: 

⎭
⎬
⎫

⎩
⎨
⎧

−
+=

mn
a

2
10.110 00γ         (3) 

⎭
⎬
⎫

⎩
⎨
⎧

−
−=

mn
a

2
12.110 00γ         (4) 

Equation (3) and (4) generate values of 0γ  depending on 
chiral indices (n, m) for mod 1 and mod 2 types SWCNT, 
respectively. Generated 0γ  was found to be varied 
continuously over a set ranging from a minimum value of 
around 2.5 to a maximum value of around 3.0. 

 

(a) 

 

(b) 

Fig. 2.  Energy band gap ( gE ) with respect to nanotube diameter 

( td ). Solid line (black) represents empirical data from (2) and 
dotted line (red) represents simulated data from Virtual NanoLab 
(VNL) of Quantumwise. (a) For mod 1 type semiconducting 
SWCNT. Inset: Enlarged plot for diameter ranging from 0.8 nm to 
2.4 nm for mod 1 type. (b) For mod 2 type semiconducting SWCNT. 
Inset: Enlarged plot for diameter ranging from 0.8 nm to 2.4 nm for 
mod 2 type. 
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Figure 1 shows the plot of 0γ  vs td  for both mod 1 and mod 

2 types, from which we can see that 0γ  varies from 2.48 to 
2.76 for mod 1 and from 2.68 to 2.93 for mod 2. This agrees 
with most of the literatures that always selected 0γ  within 
this range (but as a constant). When we calculate the band 
gap from (1) for any semiconducting SWCNT, using 0γ  
generated from (2), the result was found to be in excellent 
agreement with band gaps found from VNL simulation.  

The plots of band gap ( gE ) versus nanotube diameter ( td ) 
for mod 1 and mod 2 are shown in Fig. 2. Slightly higher 
deviation for initial lower diameters and better matching for 
increasing diameters is visible from these graphs. Enlarged 
portion of the plot (inset) for Mod 1 and Mod 2 show how 
excellently empirical data from our equation are tracing the 
VNL simulated data point by point, specially at the large 
middle part of the curve. For diameter above 2.0 nm, the 
empirical data is always around 0.01 eV lower than VNL data 
for mod 1 type, whereas it is around 0.01 eV higher than 
VNL data for mod 2 type. This means, for diameter above 2.0 
nm, both mod 1 and mod 2 maintain a constant deviation of 
only around 0.01 eV from VNL simulated data. 

TABLE III. DEVIATION OF EMPIRICAL DATA FROM 
VNL DATA FOR MOD 1 AND MOD 2 

SEMICONDUCTING SWCNT. 

0.8 nm ≤≤ td  5.5 nm Mod 1 Mod 2  

Maximum positive 
deviation ( E∆+ ) 0.013 eV 0.079 eV 

Maximum negative 
deviation ( E∆− ) 0.072 eV 0.015 eV 

Average ( E∆ ) 0.013 eV 0.013 eV 

E∆%  3.49% 3.61% 

 After comparing band gap for each sample from VNL 
simulation with that from our empirical equation, it is 
observed that for every kind of chirality, our equation 
produces better result than using any constant value for γ0 that 
we tried initially. We also observed that our equation can 
clearly differentiate between two CNTs with same diameter 
but different chiral indices by generating two different γ0, and 
consequently two different bandgaps for them from (1). 
   The overall comparison between the empirical data and 
VNL simulated data is summarized in Table III for total 211 
experimental samples. Table III shows that average absolute 
deviations for both mod 1 and mod 2 types are very low 
(≈ 0.012 eV). We observed that, the maximum and minimum 
deviations for both type reduce drastically for increasing 

diameters, i.e.  highly improved  performance. For example, 
from our calculation we find that, maximum negative 
deviation for mod 1 which is 0.072 eV for 8.0≈td  nm, 

reduces to 0.02 eV for 2.1>td  nm, which further reduces 

to around 0.01 ev or below for all 4.1>td  nm. Similarly, 
Maximum positive deviation for mod 2, which is 0.079 eV 
for 8.0≈td  nm, reduces to 0.02 eV for 2.1>td  nm, 
which further reduces to around 0.01 ev or below for all 

4.1>td  nm. This observation gives us hints that though we 
carried our analysis for SWCNTs with diameter up to 5.5 nm, 
but this equation may be applied for nanotubes of any higher 
diameters with this very small constant deviation from 
simulated data. 

III. COMPARISON WITH EXPERIMENTAL VALUE OF BAND GAP 
We compared VNL generated bandgaps for our samples of  
SWCNTs with experimentally found band gaps from 
different sources [19, 20, 21, 22]. It is observed that VNL 
generated band gaps underestimate the experimental value 
with a constant difference of about .21 eV for both mod 1 
and mod 2 cases. This may be due to the limitation of semi-
empirical model used by ATK-SE package. So, if all VNL 
data are raised by adding this correction of .21 eV, it was 
then found be a close replica of the experimental band gaps 
value. 

TABLE IV. COMPARISON BETWEEN EXPERIMENTAL 
VALUE OF BAND GAP AND CALCULATED BAND 

GAP FROM OUR EMPIRICAL EQ (2) AFTER ADDING 
THE CORRECTION: 

SWCNT 
chiral index 

(n, m) 

Band gap (Eg) 
(from 

Experiments) 

Bandgap (Eg) 
[from Empirical Eq(2)
+ .21 ev (correction)] 

Mod 1 
(8,4) 1.12 1.12188 
(7,6) 1.11 1.099106 
(9,5) 0.997 0.993731 
(8,7) 0.979 0.971046 

(12,2) 0.901 0.921194 
(11,4) 0.904 0.909671 
(10,6) 0.898 0.892977 
(9,8) 0.877 0.875948 

(12,5) 0.829 0.830076 
(10,9) 0.797 0.800816 

Mod 2 
(12,1) 1.059 1.032803 
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SWCNT 
chiral index 

(n, m) 

Band gap (Eg) 
(from 

Experiments) 

Bandgap (Eg) 
[from Empirical Eq(2)
+ .21 ev (correction)] 

(11,3) 1.036 1.011597 
(10,5) 0.992 0.983234 
(9,7) 0.937 0.920876 

(13,2) 0.949 0.94236 
(12,4) 0.924 0.921005 
(11,6) 0.887 0.889233 
(15,1) 0.87 0.879636 
(10,8) 0.841 0.847376 
(13,5) 0.835 0.848461 

We added this correction and found the resultant data a true 
reflection of experimental data. As our empirical equation 
followed VNL data , so same correction needs to be added 
to our equation also, i.e. after calculating band gap Eg from 
(1) using empirical 0γ  given by (2), following correction 
has to be added to Eg flatly to reflect the true experimental 
value, 

tccg daE /2 0γ=  + 0.21 eV        (5) 

Interestingly, after adding this correction, we found that the 
calculated values of  band gaps from (5) using our empirical 

0γ  reflected experimental data more closely than the VNL 
data.  
Table IV compares experimental value of band gap and 
calculated value of band gap from our empirical Eq (2) for 
10 mod 1 type and 10 mod 2 type SWCNTs after adding the 
.21 ev correction. Table IV shows that after adding the 
correction, band gaps calculated from our empirical 
equation excellently become almost a replica of 
experimental data. 

IV. CONCLUSIONS 
From our analysis, in summery, we can say that band gap of a 
large range of semiconducting nanotubes can be calculated 
with good accuracy using tight-binding model of SWCNT 
with the nearest-neighbor approximation if the nearest-
neighbor hopping parameter 0γ  is taken as a chirality (n, m) 
and mod(n-m, 3) dependent parameter rather than a constant 
or nanotube diameter dependent parameter. We also showed, 
there should be two different sets of 0γ  for mod 1 and mod 2 
semiconducting SWCNT and presented an empirical equation 
to generate that two sets of 0γ . Calculated band gap using 

that equation of 0γ  was found to be in good agreement with 
VNL simulated data. Finally, it was observed that by adding a 

flat correction of .21 eV, our empirical equation can 
excellently predict experimental data. 

V. APPENDIX 
A. Derivation of the Empirical Equation 

H. Yorikawa and S. Muramatsu proposed in their work 
[18] that band gap of SWCNT has a part  which is 
proportional to cos(3θ)/R2 where  θ and R are radius and 
chiral angle of  SWCNT respectively. In our work, we tried 
to simply this term to express it as a linear combination of 
nanotube chiral index n & m. Our objective was to find an 
empirical equation directly in terms of chiral index to 
generate γ0 which will be used to calculate band gap of 
semiconducting SWCNT. 
For a (n, m) tube with chiral angle θ, 

( )222/)2( mnmnmnCos +++=θ .    (A1) 

As, Cos 3θ = 4 Cos3θ – 3Cosθ, after simplifying we get, 

( )( )
⎭
⎬
⎫

⎩
⎨
⎧

++
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++

+
= 2222

2

2

23
mnmn

mnmn

mnmn

mnCos θ   (A2) 

Now, CNT diameter, 

 ( ) π/22
0 mnmnadt ++=         (A3) 

So, radius, ( ) π2/2/ 22
0 mnmnadR t ++== (A4) 

Since Eg is proportional to cos(3θ)/R2 as suggested by [18], 
and γ0 is proportional to Eg*dt as seen from (1), so γ0 is 
proportional to cos(3θ)/R. From (A2) and (A4), the 
expression of the cos(3θ)/R is 

( )( )( )
( ) 0222

/223cos a
mnmn

mnmnmn
R

πθ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

−++
=

  (A5) 
Here, the highest power of n and m in nominator is 3, 
whereas highest power of n and m in denominator is 4. As 
the power of n & m in denominator is lagged by 1 than 
nominator, the above ratio Cos 3θ / R can be approximately 
made proportional to a term 1/(a.n ± b.m) where a & b are 
arbitrary constants to best suit the ratio. So, we can write 

( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧∝

bm an ±
13

R
Cos θ

          (A6) 
Constants a & b can be found by trial and error method to 
best suit the above ratio for different nanotubes. After trial 
and error, we found a = 2 and b = -1 as best fitting integer 
value. So, 

( )
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⎬
⎫

⎩
⎨
⎧∝

m-2n
13

R
Cos θ

        (A7) 
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This right side term is the core term that determined the shape 
of our empirical equation. It is the term that played the main 
role of adjusting proper value for 0γ  to generate the correct 
band gap value for SWCNT of any chirality. We formulated 
our final empirical equation using this term by suitably 
arranging other terms and constants around it in a logical 
manner to best fit the target data. For example, the term a0 
comes in the empirical equation to balance same term in (A5) 
and the multiplying factor 10 comes to set the lowest limit of 
the accepted range of 0γ which is around 2.5 [as 10a0 = 
10*.246 =2.46 ≈ 2.5]. Higher band gap value for mod 2 is 
ensured by incorporating the dependency of band gap on mod 
value k. All the terms and constants are arranged intelligently 
in this way from which we finally formulated following 
empirical equation: 

( )
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⎩
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−

+
−

+=
−

mn
ka
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