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Abstract— In this paper one dimensional (1D) quantum 
confinement in a Finite Quantum Well (FQW) is 
analyzed through a simulator using MATLAB. A 
particle behavior inside a FQW is discussed and 
analyzed. The effect of various parameters such as well 
boundary thickness, depth of the well and width of the 
well are discussed. The results are compared with the 
Infinite Quantum Well (IQW). Different types of 
potential structure’s behavior can be analyzed by using 
this simulator which is very useful before fabrication. 
Keywords—Finite quantum well, infinite quantum well, 
quantum confinement, quantum tunneling.  

I. INTRODUCTION 
ow a day, the buzzing word is the quantum 
confinement. Quantum effect that is designed to trap 

carriers within a very small space is known as quantum 
confinement. For certain application or research we need to 
change the electrical or optical property of a material and 
the efficient way to do so is the quantum confinement. 
When the diameter of a particle is the same as the 
magnitude of the electron wave function only then the 
quantum effect is observed. When the size of the confining 
structure is comparable with the wavelength of the particle 
the electronic and optical properties are changed. Quantum 
confining can be done in three different ways such as three 
dimensional (3D) when confined in a quantum dot, two 
dimensional (2D) when confined in a quantum wire and one 
dimensional (1D) when confined in the quantum well. 1D 
quantum well (QW) is well discussed theoretically in [1]. In 
this paper the particle (electron) behaviour in a finite 
quantum well is analysed quantitatively through 
simulations. Here different parameters of a 1D finite 
quantum well such as the thickness, depth and width are 
varied and the behaviour is observed. These parameters 
variations are done quantitatively, which is very useful to 
consider prior to any fabrication. Finally the results are 
compared with the infinite quantum well.       

II. QUANTUM WELL (QW) 
A potential well having only discrete energy values is 
known as a quantum well (QW). 1D confinement is possible 
in QW. When the QW thickness is comparable to the carrier 
wavelength only then the confinement is possible. 

A. Infinite Quantum Well (IQW) 
When the depth of the potential well is infinite it is called 
infinite quantum well (IQW). An IQW can be defined 
(Fig.1) mathematically as- 
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Figure 1. Infinite Quantum Well [1]. 

An infinite QW is shown in Fig.1 where 1E and 2E are the 

stationary energy states, 1ψ and 2ψ are the corresponding 
wave functions and the QW is infinite in depth. From the 
definition of a QW we know that the electrons in the 
potential well or QW have only certain discrete values of 
allowed energies. These energies can be found through the 
formula as [1]- 
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Where nE  is the electron energy, m is the mass of the 
electron, L is the width of the well, n is the electron energy 
state. The wave function of the electron in QW is defined as 
[1]- 
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B. Finite Quantum Well (FQW) 
When the depth of the potential well is finite it is called 
finite quantum well (FQW). An FQW can be defined (Fig.2) 
mathematically as- 
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Figure 2. Finite Quantum Well [1]. 

A finite QW is shown in Fig.2 where 1E and 2E are the 

stationary energy states, 1ψ and 2ψ are the corresponding 
wave functions and the QW is finite in depth. In case of the 
FQW the discrete energy states can be represented as in [1]- 
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Alternately we can represent the equation as in [2]-  
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Where- 
Outside of the well the wave function is not zero but for 
infinite case it is zero. So we have- 

Lx finite >∆  
And from the uncertainty principle we have- 

xpxp finite ∞∆<∆  

As described in [2] for FQW the average value of 
momentum is less than IQW. As a consequence the kinetic 
energy inside the well is less for FQW than IQW. Moreover, 
due to the non-zero value of wave function outside of the 
FQW there exist the possibility to find the particle there and 
this is the result of tunneling. 

III. SIMULATION & RESULTS 
The simulation is done by calculating the stationary states 
for an electron particle with an effective mass of 10% of the 
rest mass with certain width and depth by using MATLAB. 
The algorithm for this simulation is shown in Fig.3. 

 
Figure 3. Simulation algorithm flowchart. 
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Figure 4. Analyzed Finite Quantum Well. 

 

 
Figure 5. Resonances & transmissions. 

For the simulation purpose first of all the potential structure 
is defined as FQW. Then discretization of the structure is 
done for calculable transfer matrix as a product of individual 
propagation matrix as well as the interface matrix. Here it is 
considered that the particle wave (unit wave function) is 
coming from right to left. After that the local maxima for 
relative energy detection was done by bisection method. 
Finally the resonances and transmissions are detected. The 
steps of the algorithm are given in Fig.3. The energy values 
corresponding to the local maximas of the transmission are 
considered as the stationary states. The structure that was 
analyzed is given in Fig.4. 
In Fig.4 the analyzed finite QW is shown where the finite 
depth of the well is 1000 meV and the width is in nm size. 
This FQW structure was varied in depth as well as the 
boundaries to check the effect on energy states.  
In Fig.5 the resonances and corresponding transmissions are 
shown. In the FQW when there is a resonance inside the 

QW there will be a corresponding transmission. Here to find 
the corresponding resonance peak, bisection method was 
used. As the transfer matrix approach is used for this 
analysis, so the approximation of an arbitrary potential field 
is done through step wise approximation. The time 
independent Schrodinger equation with a constant potential 
( 0V ) is-  
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Equation (7) is an ordinary differential equation and the 
characteristic equation is-  
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Where E is the energy, m is the mass of the particle. So 
there are two conditions to consider for the solution- 

0VE >  and 0VE < . The general solutions will be- 
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In (8) the first term of the right hand side is called forward 
propagating wave and the second term is called the 
backward propagating wave. Similarly for (9) the right hand 
side’s first term is known as forward decaying field and 
second term is known as backward decaying field 
respectively. In this analysis we are considering 
multilayered structures. 

 

Figure 6. Matrix formation of thm layer structure. 
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Considering Fig. 6, using the boundary conditions and the 
continuity at the interface it can written- 
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 with mD is the interface matrix. 

Now in case of wave propagation in multilayered structure 
again we consider similar two conditions as it was in 
constant potential case. Now the potential is multilayered 
which is denoted as mV  so for first case ( mVE > ) – 

mikd
mL eAA =  and mikd

mL eBB −=  

Where md  is the thickness of the layer m. If we write the 
above equation in matrix form we get- 
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Similarly for the second case ( mVE < ) – 
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Where P is the propagation matrix. So for the complete 
structure we can write- 
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Where transfer matrix- 

211332211 .... +++= nnn PDPDPDPDPT  

So the transfer matrix is the combination of propagation 
matrix and interface matrix. When the energy is determined, 
using the transfer matrix we obtained the normalized 
squared modulus of wave functions of different modes 
which are shown in Fig. 7.   
The mode number and their corresponding energies are 
given in Table I. It is observed that when the mode number 
is increasing at the same time the energies are also 
increasing. These energies also depend on the QW structure. 
The effects of various parameter of the well will be 
discussed in the following section. 

TABLE I.  MODES & ENERGIES 

Mode Number Energy (meV) 
0 28.9999 
1 116.4999 
2 261.9374 
3 464.8749 

 
Figure 7. Normalized squared modulus of wave 

functions of different modes. 

A. Effect of Boundaries Thickness 
For this analysis the values of depth and width of the FQW 
was fixed i.e. depth & width were constant. The result of 
this boundaries thickness change is shown in Table II. 

TABLE II.  THICKNESS VARIATION 
Boundaries 

Thickness (nm): 0.2 0.5 1 

Eigen Values (meV)  

1E  65 83 93 

2E  348 361 371 

3E  903 867 828 

From the result it is clear that the change of boundaries 
thickness affect a lot on energy states. For the initial states 
the energy is increasing but for higher energy states the 
energy is decreasing.  
B. Effect of Well’s Depth 
For the next analysis the boundaries thickness and width 
were constant and the depth was varied. The result is given 
in Table III. 

TABLE III.  DEPTH VARIATION 

Depth (meV): 100 500 1000 

Eigen Values (meV)  

1E  41 75 93 

2E  - 315 371 

3E  - - 828 
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When the depth is just 100 meV, only one energy state 
exists. But with the increment of the depth the number of 
energy states is also increasing. 

C. Effect of Well’s Width 
Finally the boundaries thickness and depth were made 
constant and the width of the FQW was varied. The result is 
shown in Table IV. 

TABLE IV.  WIDTH VARIATION 

Width (nm): 1 3 5 

Eigen Values 
(meV)  

1E  666 198 93 

2E  - 779 371 

3E  - - 828 

From the analysis we can see that the same type of effect is 
observed for the width variation as it was for depth variation. 
But the difference is that there is a change in the value of the 
energy. The result is similar as it is described in [3]. 

D. Comparison 
For the comparison purposes we have compared the FQW 
with IQW as mentioned in Table V. From the comparison we 
can see that for the IQW each state’s energy is higher than 
the FQW. And the result is similar that was found in [2]. One 
more comparison is the quantum tunneling effect. The 
quantum mechanical phenomenon where a carrier or a 
particle tunnels through a barrier which is not explainable by 
classical physics is known as the quantum tunneling (as 
example the working principle of the tunnel diode). For the 
case of IQW there is no quantum tunneling but for FQW 
there is quantum tunneling. In Fig. 2 the quantum tunneling 
is shown for FQW. Moreover the wave functions of the 
FQW are more spread than the wave functions in IQW [4]. 
This is another consequence of the quantum tunneling.   

TABLE V.  COMPARISON: FQW & IQW 

Well: FQW 
(Simulated) 

IQW 
(Calculated) 

Boundaries 
Thickness (nm): 1.5 ∞  

Depth (eV): 10 ∞  
Width (nm): 5 5 

Eigen Values (meV)  

1E  128.5 150.5 

Well: FQW 
(Simulated) 

IQW 
(Calculated) 

2E  514 602 

3E  1154.5 1355 

4E  2047 2409 

5E  3187.5 3764.5 

6E  4567 5403 

7E  6169.75 7378 

8E  7961.75 9637 

IV. APPLICATIONS 
By using this simulator a lot of quantum well based devices 
can be simulated before the fabrication. Highly flexible 
implementation of different structures can be realized 
through this simulator.  

V. CONCLUSION 
The simulation is done through MATLAB. From the 
analysis of FQW we have the following observations- 
increasing the thickness of the boundaries the eigen energies 
changes, by increasing the depth, the values of bound 
energies increase and by increasing the width, the eigen 
energies increase but their values decrease. As the whole 
analysis is done quantitatively it is very much useful to 
consider before any fabrication. Because the fabrication 
process of any device based on QW is so difficult and 
costly. So it will be a great help for them to have an idea, 
what happens if the parameters are varied in case of finite 
quantum well and what are the effects due to this. As a 
result the fabrication or design of any QW based device can 
be done precisely.   
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