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ABSTRACT 

A rigorous theoretical investigation has been carried out on the propagation of non-linear self-gravitational shock 

waves (SGSHWs) in a magnetized super dense degenerate quantum plasma system (DQPS) composed of inertia-

less non-relativistic degenerate electrons and inertial non-degenerate extremely heavy nuclei/element. The 

nonlinear propagation of these SGSHWs in the plasma system under consideration is studied by the standard 

reductive perturbation technique, which is valid for a small finite amplitude limit. The nonlinear dynamics of the 

SGSHWs are found to be governed by the Burgers equation. The Burgers equation is derived analytically and 

solved numerically. It has been found that the considered plasma model supports positive potential shock waves 

only. The fundamental properties (amplitude, steepness, etc.) of these SGSHWs are significantly modified by the 

variation of kinematic viscosity, obliqueness and number density of the plasma species.  The results of our present 

investigation can be applied to astrophysical compact objects like neutron stars. 

Keywords: Degenerate quantum plasma, Shock waves, Nonlinearity, Relativity, Self-gravitational perturbation, 

Compact objects. 

1. INTRODUCTION 

White dwarfs and neutron stars are super-dense astrophysical compact objects, where the number densities are 

extra-ordinarily very high (Chandrasekhar, 1931; Chandrasekhar, 1931a; Chandrasekhar, 1935; Chandrasekhar, 

1939; Chandrasekhar, 1964; Chandrasekhar & Tooper, 1964a; Shapiro and Teukolsky,1983; Koester & 

Chanmugam, 1990; Garcia-Berro et al., 2010). The particle number density in white dwarf is of the order of 

1030cm-3 and in neutron star is of the order of 1038cm-3 or even more (Shapiro and Teukolsky, 1983; Koester and 

Chanmugam, 1990). At this high particle number density, classical plasma enters into the regime of quantum 

plasma (when the quantum nature of its constituent particles starts to affect its macroscopic properties and 

dynamics) and the state of matter becomes degenerate in the case of astrophysical compact objects. A plasma 

system which obeys the laws of quantum mechanics and in which the average inter-particle distance becomes 

comparable to the average de Broglie wavelength of the lightest plasma (viz. electron) particles and the effect of 

quantum degeneracy of electrons becomes significant (Tyshetskiy et al., 2013) due to Pauli’s exclusion principle 

is known as DQPS. According to Heisenberg’s uncertainty principle, as the particle number density increases, the 

particles are confined in a small space that means the position uncertainty becomes very small and the momentum 

becomes very large. This very large momentum is responsible for the generation of outward degenerate pressure 

which prevents dense stars from further gravitational shrinking or collapse. The shock waves are formed due to 

the balance between the nonlinearity and dissipation. Here, the source of dissipation is the viscous force which is 

acting on inertial heavy nuclei species. The self-gravitational effect may become important when the heavy nuclei 

mass is much heavier than the mass of other plasma particles. We should mention here that one may neglect the 

electrostatic force when one is interested in examining the self-gravitational perturbation potential only, and the 

quasi-neutral condition is, in general, applicable. Since we have considered here the self-gravitational potential, 

we have designated the name of the shock wave as self-gravitational shock waves (SGSHWs).  

The equation of degeneracy pressure, which is given by Chandrasekhar (Chandrasekhar, 1931; Chandrasekhar, 

1931a; Chandrasekhar, 1935) for two limits, namely, the non-relativistic and the ultra-relativistic limits, can be 

expressed as 𝑃𝑖 = 𝐾𝑖𝑁𝑖
𝛾
, where 𝛾 = 5/3 and 𝐾𝑖 = 3𝜋ℏ

2/5𝑚𝑖 for non-relativistic limit; 𝛾 = 4/3 and 𝐾𝑖 = 3ℏ𝑐/4 

for ultra-relativistic limit; Pi is the degenerate plasma particle pressure for i-species; Ni  is the degenerate plasma 

particle number density for i-species; Ki is the constant of proportionality.  

A significant number of authors (El-Taibany & Mamun, 2012; Roy et al., 2012; Ema et al., 2015; Hosen et al., 

2016, etc.) have examined the propagation of electrostatic and self-gravitational excitations in DQPS by 
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considering the Chandrasekhar’s degeneracy pressure equation in the case of white dwarfs and neutron stars. 

Hossen and Mamun, (2014) studied the nonlinear propagation of cylindrical and spherical modified ion-acoustic 

waves in a degenerate multispecies plasma and applied their results in astrophysical compact objects.  Ema et al., 

(2015) examined the nonlinear propagation of modified electron-acoustic shock waves in an unmagnetized, 

relativistically degenerate quantum plasma. Hossen and Mamun, (2015) studied the ion-acoustic solitary waves 

in a degenerate dense plasma with stationary heavy nuclei. Recently, Mamun, (2017) examined the self-gravito-

acoustic waves in a three-component degenerate quantum plasma system. 

The presence of strong magnetic field (i.e., about 1 Mega Gauss) in white dwarfs has been predicted by Blackett 

(Blackett, 1947) and also has been observed by Zeeman spectroscopy (Liebert et al., 1977; Euchner et al., 2002). 

El-Taibany and Mamun, (2012) examined solitary waves in a magnetized degenerate electron-positron plasma 

and found that the wave amplitude varies with oblique angle (the angle between external magnetic field and the 

direction of propagation). Shaukat, (2017) studied ion-acoustic solitary waves in an external magnetic field and 

also observed the change in amplitude with the change in oblique angle. Hosen et al., (2016) studied the nonlinear 

properties of the ion acoustic waves in a magnetized degenerate quantum plasma. Abdelwahed et al., (2016) 

studied IASHWs in a pair ion plasma. Haider (Haider, 2016) examined the shock profiles in the presence of    

degenerate inertial ions and inertia-less electrons and positrons. To the best of the author’s knowledge, no 

investigation has been made of by considering a magnetized super dense DQPS having inertia-less non-relativistic 

degenerate electrons and inertial non-degenerate extremely heavy nuclei/element. In order to study the 

fundamental characteristics of the SGSHWs in the plasma system under consideration we have derived here the 

Burgers equation and have also obtained the associated shock wave solutions. 

The manuscript is organized in the following manner: The governing equations of the considered plasma model 

are stated in Sec. 2. The Burgers equation and the associated shock solutions are derived in Secs. 3. The numerical 

observations and results are presented in Sec. 4. Finally, a brief conclusion is provided in Sec. 5. 

2. GOVERNING EQUATIONS 

We have considered a self-gravitating DQPS consisting of extremely high dense degenerate electron 

(Chandrasekhar, 1931a; Fowler, 1994) species and low dense extremely heavy nuclei/element [viz. 5626Fe, 

8537Rd or 9642Mo (Witze, 2014; Vanderburg et al., 2015)] in the presence of an external uniform magnetic field. 

The magnetic field B exists along the direction of z-axis (B = 𝐵0𝑧̂ and 𝑧̂ is the unit vector along the z direction). 

At equilibrium, we have 𝑁𝑒0 = 𝑍ℎ𝑁ℎ0, where Ne0 (Nh0) is the electron (nucleus) number density at equilibrium.   

The propagation of self-gravitational shock waves (SGSHWs) in the DQPS under consideration is governed by 

the following equations: 

 ∇Ψ = −
5

2

𝐾𝑒

𝑀𝑒
∇𝑁𝑒

2

3 ,                                 (1)  

 
𝜕𝑁ℎ

𝜕𝑇
+ ∇(𝑁ℎUh) = 0,                            (2) 

  
𝜕𝐔𝐡

𝜕𝑇
+ (Uh ∙ ∇)Uh = −∇Ψ + η∇

2Uh +
𝐵0

𝑐
(Uh × 𝑧̂),                (3) 

   ∇2Ψ = ω𝐽ℎ
2 [(

𝑁ℎ

𝑁ℎ0
− 1) + 𝛼 (

𝑁𝑒

𝑁𝑒0
− 1),                             (4) 

where 𝑁ℎ (𝑁𝑒) is the heavy nuclei (electron) number density;  Uh is the nucleus fluid velocity; 𝑀ℎ  (𝑀𝑒)  is the 

rest mass of a heavy nucleus (an electron); Ψ is the self-gravitational potential; T is the time variable; 𝜂 is the 

kinematic viscosity; 𝐾𝑒 = 3𝜋ℏ2/5𝑀𝑒; 𝛼 = 𝑀𝑒𝑍ℎ/𝑀ℎ;  𝜔𝐽ℎ = 4𝜋𝐺𝑀ℎ𝑁ℎ0. 

In our considered plasma model, the heavy nucleus provides the inertia and the electron provides the restoring 

force. Since Ne can be directly found from Eq. (1) it is unnecessary to write the continuity and momentum balance 

equation for the electron.  

The explanation for the validity of Eqs. (1) - (4) describing the dynamics of the SGSHWs in the magnetized DQPS 

is given below: 

(i) Eq. (1) is obtained from the pressure balance equation  ∇𝑃𝑒 = −𝑀𝑒𝑁𝑒∇Ψ [gravitational 

shrinking (inward pull due to self-gravitational attraction) counterbalances the outward 

degenerate electron pressure (𝑃𝑒 = 𝐾𝑒𝑁𝑒
𝛾
)].  

(ii) Eq. (2) represents the continuity equation for non-degenerate heavy nuclei/element. 
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(iii) The momentum balance equation for non-degenerate extremely heavy nuclei (where the effects 

of self-gravitational potential, viscous force and static external magnetic field are included) is 

presented in Eq. (3). 

(iv) The Poisson’s equation for the self-gravitational potential is presented in Eq. (4), which is 

obtained from the equation ∇2Ψ = 4𝜋𝐺(𝑀ℎ𝑁ℎ
∕
+𝑀𝑒𝑁𝑒

∕
), where 𝑁ℎ

∕
 and 𝑁𝑒

∕
 are the perturbed 

number densities of the heavy nuclei and degenerate electrons, respectively. 𝑁ℎ
∕
 and 𝑁𝑒

∕
 can be 

written in terms of unperturbed number densities 𝑁ℎ and 𝑁𝑒 as 𝑁ℎ
∕
= 𝑁ℎ − 𝑁ℎ0 and 𝑁𝑒

∕
= 𝑁𝑒 −

𝑁𝑒0. 

3. BURGERS EQUATION 

In order to study the dynamics of SGSHWs, we first assumed the stretched coordinates (Washimi, 1966; Shukla, 

1978) 

𝜉 = 𝜖(𝑙𝑥𝑥 + 𝑙𝑦𝑦 + 𝑙𝑧𝑧 − 𝑉𝑝𝑇) ,

𝜏 = 𝜖2𝑇 ,                                       
}                                       (5)      

where 𝜖  measures the weakness of the amplitude or dissipation (0 < 𝜖 < 1);  𝑉𝑝 is the phase speed of the wave; 

𝑙𝑥, 𝑙𝑦, and 𝑙𝑧are the directional cosines of the wave propagation constant k along the x, y, and z axes, respectively 

(where 𝑙𝑥
2 + 𝑙𝑦

2 + 𝑙𝑧
2 = 1). We can express the dependent variables in power series of  𝜖 as (Washimi, 1966; 

Shukla, 1978;)  

Nh=N h0+ϵNh
(1)+ϵ2Nh

(2)+ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ,   

Ne= Ne0+ϵNe
(1)+ϵ2Ne

(2)+ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙  ,   

 Uhx,y= 0+ϵ2 Uhx,y
(1)+ϵ3 Uhx,y

(2)+ ∙ ∙ ∙ ,    

 Uhz= 0+ϵ Uhz
(1)+ϵ2 Uhz

(2)+ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙,   

ψ = 0+ϵΨ(1)+ϵ2Ψ(2)+ ∙ ∙ ∙ ∙ ∙ ∙  ∙ ∙ ∙ ∙ ∙ .    

  

}
 
 

 
 

              (6) 

Substituting Eqs. (5) and (6) into Eqs. (1) - (4) and equating the coefficients of 𝜖 for the lowest order, we obtain  

𝑈ℎ𝑧
(1) =

𝑙𝑧

𝑉𝑝
 Ψ(1),                  (7) 

𝑁ℎ
(1) =

𝑙𝑧
2𝑁ℎ0

𝑉𝑝
2  Ψ(1),                            (8) 

𝑁𝑒
(1) = −𝛽 Ψ(1),                  (9) 

𝑉𝑝 = 𝑙𝑧√
𝑁𝑒0

𝛼𝛽
 ,                           (10) 

where 𝛽 =
3

5

𝑀𝑒

𝐾𝑒
𝑁𝑒0

1/3. Eqs. (7) – (10) represent the z-component of the momentum equation, first order continuity 

equation, first order electron number density, and the phase speed, respectively. The x- and y-components of the 

first order momentum equation can be written as 

𝑈ℎ𝑦
(1) =

𝑙𝑥𝑐

𝐵0

𝜕Ψ(1)

𝜕𝜉
 ,                          (11) 

𝑈ℎ𝑥
(1) = −

𝑙𝑦𝑐

𝐵0

𝜕Ψ(1)

𝜕𝜉
 .                          (12) 

If we consider the next higher order for ϵ, we can get the next higher order continuity equation, z-component of 

the momentum equation, and Poisson’s equation as  

𝜕𝑁ℎ
(1)

𝜕𝜏
− 𝑉𝑝

𝜕𝑁ℎ
(2)

𝜕𝜉
+ 𝑙𝑥𝑁ℎ0

𝜕𝑈ℎ𝑥
(1)

𝜕𝜉
+ 𝑙𝑦𝑁ℎ0

𝜕𝑈ℎ𝑦
(1)

𝜕𝜉
+ 𝑙𝑧

𝜕

𝜕𝜉
[𝑁ℎ0𝑈ℎ𝑧

(2) +𝑁ℎ
(1)
𝑈ℎ𝑧

(1)] = 0                 (13) 

𝜕𝑈ℎ𝑧
(1)

𝜕𝜏
− 𝑉𝑝

𝜕𝑈ℎ𝑧
(2)

𝜕𝜉
+ 𝑙𝑧𝑈ℎ𝑧

(1) 𝜕𝑈ℎ𝑧
(1)

𝜕𝜉
+ 𝑙𝑧

𝜕Ψ(2)

𝜕𝜉
− 𝜂

𝜕2𝑈ℎ𝑧
(1)

𝜕𝜉2
= 0,             (14) 

1

𝑁ℎ0
[𝑁ℎ

(2)
+

𝑀𝑒

𝑀ℎ
𝑁𝑒
(2)
] = 0 .               (15) 

Now, combining Eqs. (7) – (15) and performing a little mathematics, we obtain the Burgers equation as 
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𝜕Ψ(1)

𝜕𝜏
+ 𝐴Ψ(1) 𝜕Ψ

(1)

𝜕𝜉
= 𝐶

𝜕2Ψ(1)

𝜕𝜉2
 ,                                                                                                (16) 

where the nonlinear coefficient A and the dissipation coefficient C are given by 

𝐴 = [
3𝑙𝑧
2

2𝑉𝑝
+

3

50

𝑀𝑒
3𝑉𝑝

3

𝑀ℎ𝐾𝑒
2𝑙𝑧
2𝑁ℎ0𝑁𝑒0

1/3],              (17) 

𝐶 =
𝜂

2
 ,                           (18) 

where the direction cosine of the wave vector along the z-axis is considered as 𝑙𝑧 = 𝑐𝑜𝑠𝜃 with 𝜃 being the angle 

between the directions of the wave propagation vector k and the external magnetic field B0. Considering 𝑇 = 𝐶𝜏 

and R= 𝐴/𝐶, Eq. (16) can be written as 

𝜕Ψ(1)

𝜕𝑇
+ 𝑅Ψ(1) 𝜕Ψ

(1)

𝜕𝜉
=

𝜕2Ψ(1)

𝜕𝜉2
 .              (19) 

 

4. NUMERICAL OBSERVATIONS AND RESULTS 

Now, we look for the stationary shock wave solution of Eq. (16) for analyzing the SGSHWs numerically. By 

transforming the independent variables 𝜉 and 𝜏 to 𝜁 = 𝜉 − 𝑈0𝜏 and 𝜏 = 𝜏 (where 𝑈0 is the constant speed of the 

nucleus fluid) and applying the boundary conditions, viz., Ψ(1) → 0,  
𝑑Ψ(1)

𝑑𝜁
→ 0, at 𝜁 → ∞, we obtain the steady 

state solution of Eq. (16) with Ψ(1) = Ψ as 

Ψ = Ψ𝑚  [1 − 𝑇𝑎𝑛ℎ (
𝜁

Δ
)],               (20) 

where the amplitude Ψ𝑚 and the width Δ are given by 

Ψ𝑚 = 𝑈0/𝐴  and Δ = 2C/𝑈0.              (21) 

Similarly, we can get the steady state solution of Eq. (19) with Ψ(1) = Ψ as 

Ψ = Ψ0  [1 − 𝑇𝑎𝑛ℎ (
𝜁

Δ1
)],               (22) 

where the amplitude Ψ0 and the width Δ1 are given by 

Ψ0 = 𝑈0/𝑅  and Δ1 = 2/𝑈0.              (23) 

Clearly from Eqs. (20) and (21), the SGSHWs, which are formed due to the balance between the nonlinearity and 

dissipation, exist because 𝐶 > 0. Since 𝑈0 > 0, the SGSHWs with Ψ > 0 (Ψ < 0) exist if 𝐴 > 0 (𝐴 < 0). It is 

also clear from Eq. (21) that the amplitude Ψ𝑚 is directly proportional to the shock speed 𝑈0 and inversely 

proportional to the nonlinear coefficient 𝐴 whereas the width of the SGSHWs is inversely (directly) proportional 

to shock speed 𝑈0 (dissipation coefficient C). The nonlinearity of the plasma medium provides the potential of 

the plasma system. The self-gravitational potential becomes infinite when the non-linear coefficient 𝐴 is equal to 

zero and in this case the reductive perturbation technique becomes invalid.  

It should be mentioned that our current investigation deals with the basic features of SGSHWs in a magnetized 

super dense DQPS composed of non-relativistic degenerate electrons and non-degenerate extremely heavy 

nuclei/element. For numerical analysis, we have used the range of plasma parameters which are comparable to 

neutron star plasma as well as laboratory plasma. 

It should be added here that we have examined the salient features of the self-gravitational shock structures 

(waves) associated with the self-gravitational perturbation mode of extremely long scale length and slow time 

scale in astrophysical compact objects like neutron stars, which are at the endpoint stages of stellar evolution 

(relics of stars), and do not sustain any thermonuclear burning, and therefore can no longer generate thermal 

pressure to support the gravitational load of their own mass (Mamun, 2017; Asaduzzaman et al., 2020). Since the 

effect of electrostatic potential is important for the study of short wavelength and comparatively high frequency 

waves (Mamun, 2017; Asaduzzaman et al., 2020) we have not considered the effect of electrostatic potential for 

our present investigation because we have studied the shock structures of extremely long wavelength and very 

low frequency. 

In our Introduction section, we have mainly discussed about the electrostatic wave (viz., ion acoustic solitary wave 

or ion acoustic shock wave) and self-gravitational wave (or self-gravitational acoustic wave or self-gravitational 

excitations). To form any wave, restoring force and inertia are important parameters. In electrostatic waves, inertia 

comes from ion and restoring force comes from thermal pressure of electron. But in self-gravitational waves, 
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inertia comes from heavy nuclei and restoring force comes from degenerate pressure of light plasma species (like 

electrons). Self-gravitational wave is also known as nucleus acoustic wave (the name nucleus acoustic wave is 

given by the authors A. A. Mamun and M. Asaduzzaman) since heavy nucleus gives the inertia. We have worked 

with the self-gravitational potential (self-gravitational perturbation) for the first time and our first research article 

have been published in the American journal “Physics of Plasmas” (Asaduzzaman et al., 2017). The results of our 

present work are different from other works because our considered particle number density is very high. The 

degenerate pressure, which is counterbalances by self-gravitational attraction, becomes important at this very high 

particle number density. 

To study the fundamental characteristics of SGSHWs, we have analyzed the solution of the Burgers equation 

numerically. Figs. 1 – 5 shows the results obtained from the numerical observation. 

 

Fig. 1:  Varia1tion of shock profile for different values of  𝑁𝑒0 with  𝜂 = 1. The other parameters are  𝑈0  = 0.05 

cm/sec, 𝑍ℎ  =37, 𝑙𝑧  = 1, and  𝑀ℎ  = 85𝑚𝑝  (𝑚𝑝  represents the mass of proton). 

 

The graphical representation of the shock profile for different values of the electron number density is shown in 

Fig. 1. It is obvious from Fig. 1 that the strength (amplitude) of the SGSHWs decreases as the electron number 

density increases. It can be observed from Fig. 2 that the strength of the shock profile (Ψ > 0)  associated with  

𝐴 > 0 is independent to the variation of the kinematic viscosity but the steepness of the self-gravitational shock 

profile (Ψ > 0) is largely dependent on the variation of the kinematic viscosity. The steepness of the shock profile 

decreases with 𝜂 and this result is similar to the result of Hafez et al., (2017) and Abdelwahed et al., (2016). 

 

Fig. 2: Variation of the shock profile for different values of 𝜂  with  𝑁𝑒0= 1030 cm-3. The other parameters are fixed 

at  𝑈0 =  0.05 cm/sec, 𝑍ℎ  =37, 𝑙𝑧  = 1, and  𝑀ℎ  = 85𝑚𝑝.  
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The variation of nonlinear coefficient with electron number density and the variation of width of the SGSHWs 

with shock speed are displayed in Fig. 3. It is obvious from Fig. 3 that the nonlinear coefficient A increases as the 

electron number density decreases (left panel) and the width Δ decreases as 𝑈0 increases (right panel). The 

variation of the self-gravitational shock potential structure with obliqueness 𝑙𝑧 is represented in Fig. 4. It is clear 

from Fig. 4 that the shock potential increases with the decrease of obliqueness 𝑙𝑧 (or with the increase of oblique 

angle 𝜃). Physically, the shock potential associated with 𝐴 > 0 strongly interact with the external magnetic field 

when the oblique angle 𝜃 increases. Figure 5 shows the variation of the shock profile obtained from Eq. 22 for 

𝑅 > 1 (𝐴 > 𝐶), 𝑅 = 1 (𝐴 = 𝐶) and 𝑅 < 1 (𝐴 < 𝐶). Fig. 5 clearly indicates that the amplitude of the SGSHWs 

increases as 𝑅 decreases. 

 

Fig. 3: Plot of A versus 𝑁𝑒0 for 𝑍ℎ  =37, 𝑙𝑧  = 1, 𝜂 = 1 and  𝑀ℎ  = 85𝑚𝑝(left panel) and Δ versus 𝑈0 for 𝜂 = 1 (right 

panel). 

 

Fig. 4: Showing the variation of the shock profile for different values of 𝑙𝑧. The other parameters are fixed at  

𝑈0 =  0.05 cm/sec, 𝑍ℎ  =37,  𝑁𝑒0= 1030 cm-3, 𝜂 = 1 and  𝑀ℎ  = 85𝑚𝑝.  
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Fig. 5: Variation of the shock profile for different values of 𝑅  with 𝑈0 =  0.05 cm/sec. 

 

5. CONCLUSION  

We have studied the salient features of SGSHWs in an extremely high dense DQPS in the presence of a uniform 

external magnetic field.  To obtain the shock structure solution and to perform a numerical analysis, we have 

derived the Burgers equation by utilizing the reductive perturbation method. Some novel features of the SGSHWs 

are identified here. The novelty of the SGSHWs is that they are associated with a special type of acoustic waves 

in which the inertia comes from the heavy nuclear mass density and the restoring force comes from the degenerate 

pressure of non-relativistic electrons. The basic difference between the results obtained from our model and the 

results obtained by other authors is that our model gives special type of SGSHWs which has very long wavelength 

and very low frequency (which has already been shown in Asaduzzaman et al., (2017). The self-gravitational 

shock structures are formed due to the presence of the kinematic viscosity which is seen to act as the source of 

dissipation for our considered plasma system. The findings of our investigation can be summarized as follows:  

• Our considered plasma system supports only positive potential shock structures (i.e.,Ψ > 0)   

associated with  𝐴 > 0 under consideration of non-relativistic electrons. 

• The amplitude of the SGSHWs increases as the electron number density decreases.  

• The strength of the shock profile (i.e.,Ψ > 0)  associated with  𝐴 > 0 is independent on 𝜂. 

• The steepness of the positive potential shock wave decreases with 𝜂. 

• The shock potential increases with the increase of oblique angle 𝜃. 

• The nonlinear coefficient changes linearly with the electron number density. 

• The width of the shock profile decreases with the increase of the shock speed. 

We finally stress that the results obtained from our present investigation concerning the SGSHWs and its basic 

features (amplitude, width, etc.) presented here are correct both numerically and analytically and will be useful in 

understanding the nonlinear features of the localized self-gravitational disturbances in dissipative space (like white 

dwarf, neutron star) as well as in laboratory (viz., solid density plasmas [Drake R. P., 2009; Drake R. P., 2010]) 

degenerate quantum plasmas. 
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