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ABSTRACT 

The paper is offered a mathematical study to establish the error estimate of the numerical solution by applying 

discontinuous Galerkin (DG) finite element method of the second order time dependent parabolic equation. The 

DG method is an exciting numerical method with much mass compensation and more flexible meshing than 

other numerical methods. This study is stated a general introduction and discuss about the discontinuous 

Galerkin Method for the time dependent parabolic scheme. The method is well suited for large scale time-

dependent computations in which high accuracy is required. The discontinuous Galerkin (DG) method has been 

extensively studied and applied to a wide range of parabolic problems. The main objective of this study is to 

theoretically explore the convergence of the solution as well as to adjust the error estimate of the methods and 

display the validity of the results. Two numerical experiments are shown that validate the efficiency of the 

method. 

Keywords: Time Dependent, Parabolic equation, Discontinuous Galerkin, Finite element method. 

1. INTRODUCTION 

This paper provides a theoretical perception to approximate the error of the solutions of second order time 

dependent parabolic differential equation. This study is focused on the weak formulation of the discontinuous 

Galerkin (DG) method. Finite element methods (FEM) have been proven valued in the numerical approximation 

of solutions to parabolic equation. Beatrice Riviere (Riviere, 2008), offered the Discontinuous Galerkin 

Methods for Solving Elliptic and Parabolic Equations; covered theory, implementation and other information of 

this method.  Hesthaven and Warburton (Hesthaven et al, 2008), described the Nodal Discontinuous Galerkin 

Methods; Algorithms, Analysis and also described various applications of the method.  Lewis and Ward (Lewis 

et al, 1991), provided the general introduction of the Finite Element Method.  Arnold (Arnold, 1982), presented 

an interior penalty finite element method with discontinuous elements.  Becker, Hansbo, and, Larson (Becker et 

al, 2003), provided the energy norm in the case of a posteriori error estimation for discontinuous Galerkin 

methods. Carstensen, Gudi, and Jensen (Carstensen et al, 2009), included the error estimate with discontinuous 

Galerkin(DG) FEM to unifying the theory of a posteriori error approximation.  

Cockburn (Cockburn et al, 1999), published a book on Discontinuous Galerkin methods for convection-

dominated problems and showed in case of higher-order, the methods has been existed vast information. 

Cockburn, Karniadakis, and Shu (Cockburn et al, 1999), explained this DG method in the perception of the 

theory, computation and applications of the problem. Georgoulis (Georgoulis, 2003), comprised the shape-

regular meshes on discontinuous Galerkin(DG) FEM. Sjodin and Bjorn (Sjodin et al, 2016), demonstrated the 

conceptual difference among FEM, FDM and, FVM to give the clear idea about the FEM, FDM, and FVM.  

Cockburn, Karniadakis and, Shu (Cockburn et al, 2000), represented the theoretical and computational 

framework of the DG method. Babu˘ska (Babu˘ska, 1973), provided the mathematical validation of the DG 

method by applying the Lagrangian multipliers. Brenner and Scottfor (Brenner et al, 1994), established the 

mathematical structure of Finite Element Methods. Also, Cockburn, Kanschat, and, Schötzau (Cockburn et al, 

2003), symbolized the local discontinuous Galerkin method for the Oseen equations. Finally, Lax and Milgram 

(Lax et al, 1954), offered the discontinuous Galerkin (DG) FEM for the parabolic equations in their book. The 

focus of this study is to theoretically explore the convergence of the solution as well as to amend the error 

estimate of the methods and shown the validity of the results. 
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2. TIME DEPENDENT PARABOLIC PROBLEM 

Let Ω be a bounded polygonal domain ℝ𝑑 . 𝑑 = 1,2 𝑜𝑟 3 and (0, 𝑇) be a time interval. For 𝑓 ∈ 𝐿2(0,

𝑡;  𝐿2(Ω)), in 𝐿2(0, 𝑡;  𝐻
1

2(∂Ω)) and  𝑢0 ∈ 𝐿2(Ω). Consider the parabolic problem with Dirichlet boundary 

condition. 
𝜕𝑢

𝜕𝑡
− ∇. (∇𝑢) + 𝑐𝑢 = 𝑓 𝑖𝑛 (0, 𝑇) × Ω … … (1) 

With boundary condition, 

𝑢 = 𝑔  𝑖𝑛 (0, 𝑇) × 𝜕Ω … … … … … … … … … (2) 

𝑢 = 𝑢0 𝑜𝑛 {0} × Ω … … … … … … … … … … . . (3) 

This problem reproduction the conduction of heat in Ω over the time period [0, 𝑇] with 𝑢 being the body 

temperature. This problem also models the diffusion of a chemical species of concentration 𝑢 in a porus 

medium. A strong solution of the parabolic problem belongs to 𝐶2([0, 𝑇] × 𝜕Ω) and satisfies (1) to (3) point 

wisely. A weak solution of the parabolic problem belongs to the space  𝐿2(0, 𝑇; 𝐻1(Ω)) ∩ 𝐻1(0, 𝑇;  𝐿2(Ω)) 

and satisfied the variational formulation. 

 (
𝜕𝑡

𝜕𝑡
, 𝑣)

Ω
+ (∇𝑢, ∇𝑣)Ω = (𝑓, 𝑣)Ω ;   ∀  𝑡 > 0, ∀ 𝑣 ∈ 𝐻0

1(Ω),  

 (𝑢(0), 𝑣) Ω = (𝑢0, 𝑣)Ω ;   𝑣 ∈ 𝐻0
1(Ω). 

2.1 SEMI DISCRETE SOLUTION 

This section is approximated the solution 𝑢(𝑡) by a function 𝑈ℎ(𝑡) that belongs to the finite dimensional space 

𝐷𝑘(𝜀ℎ) for all 𝑡 ≥ 0 .The solution 𝑈ℎ is referred to as the semidiscrete solution or sometimes as the continuous 

in time solution. Let 𝑣 ∈ 𝐻𝑠(𝜀ℎ) for 𝑠 >
3

2
 , multiply (1) by 𝑣 , integrate over one mesh elements, use Green’s 

theorem and sum over all elements to obtain, 

∀  𝑡 > 0 , ∫
𝜕𝑢

𝜕𝑡
 𝑣

Ω

+ ∑ ∫ ∇𝑢(𝑡). ∇𝑣
𝐸

−

𝐸∈𝜀ℎ

∑ ∫ {∇𝑢(𝑡). 𝒏𝑒}[𝑣]
𝑒𝑒∈Γℎ∪𝜕Ω

+ 𝜀 ∑ ∫ {∇𝑢. 𝒏𝑒}[𝑣(𝑡)]
𝑒𝑒∈Γℎ∪𝜕Ω

+ ∑
𝛿𝑒

0

|𝑒|𝛾0
∫ [𝑢(𝑡)][𝑣]

𝑒𝑒∈Γℎ∪𝜕Ω

+ ∫ 𝑐𝑢𝑣
Ω

= 𝐿(𝑡; 𝑣) … … … … … … … … … … … … … … … … … … … … … … … … … … … . … (4) 

Where,         𝐿(𝑡;  𝑣) = ∫ 𝑓(𝑡)𝑣
Ω

+ ∑ ∫ 𝑔(𝑡)(𝜀(∇𝑣. 𝒏𝑒)
𝑒𝑒∈𝜕Ω +

𝛿𝑒
0

|𝑒|𝛾0
𝑣)   

Define the energy norm for the parabolic problem 

‖𝑣‖𝜀 = (∑‖∇𝑣‖
𝐿2(𝐸)
2

𝐸

+ ∑
𝛿𝑒

0

|𝑒|𝛾0

𝑒∈Γℎ∪𝜕Ω

‖𝑣‖
𝐿2(𝑒)
2 )

1
2

 

Denote the bilinear form by 𝑏𝜀 

𝑏𝜀(𝑤, 𝑣) = ∑ ∫ ∇𝑤. ∇𝑣
𝐸𝐸∈𝜀ℎ

− ∑ ∫ {∇𝑣. 𝒏𝒆}[𝑣]
𝑒𝑒∈Γℎ∪𝜕Ω

+ 𝜀 ∑ ∫ {∇𝑣. 𝒏𝒆}[𝑤]
𝑒𝑒∈Γℎ∪𝜕Ω

+ ∑
𝛿𝑒

0

|𝑒|𝛾0
∫ [𝑤][𝑣]

𝑒𝑒∈Γℎ∪𝜕Ω

 

And, assume the coercivity of 𝑏𝜀 holds true for some 𝜏 > 0. 

 𝜏‖𝑣‖𝜀
2 ≤ 𝑏𝜀(𝑣, 𝑣);  ∀ 𝑣 ∈ 𝐷𝑘(𝜀ℎ), … … … … … … … … … … … … … … … … … … … . … … … … . . … . . (5) 

Thus, the semidiscrete variational is as follows: For all 𝑡 ≥ 0, find 𝑈ℎ(𝑡) ∈ 𝐷𝑘(𝜀ℎ) such that 

∀ 𝑡 > 0 , ∀ 𝑣 ∈ 𝐷𝑘(𝜀ℎ), (
𝜕𝑈ℎ

𝜕𝑡
, 𝑣) + 𝑏𝜀(𝑈ℎ(𝑡), 𝑣) = 𝐿(𝑡; 𝑣) … … … … … … … … … … . (6) 
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              ∀ 𝑣 ∈ 𝐷𝑘(𝜀ℎ),       (𝑈ℎ(0), 𝑣)Ω = (𝑢̃0, 𝑣)Ω … … … … … . … … … … … … … … … … … … (7) 

The initial condition 𝑢̃0 can be chosen to be 𝑢0 if 𝑢0 belongs to the discrete space 𝐷𝑘(𝜀ℎ), or it can be chosen to 

be 𝑢̃0(0) ,where 𝑢̃ is an approximation of 𝑢 to be specified later. Using the global basis function, expand the 

semidiscrete solution  

 𝑈ℎ(𝑡, 𝑥) = ∑ ∑ 𝜂𝑖
𝐸(𝑡)𝜁𝑖

𝐸(𝑥)

𝑁𝑙𝑜𝑐

𝑖=1𝐸∈𝜀ℎ

;   ∀ 𝑡 ∈ (0, 𝑇), ∀ 𝑥 ∈ Ω … … … … … … … … … … … … … … (8) 

The degree of freedom  𝜂𝑖
𝐸′𝑠  are functions of time. Let 𝑁𝑒1 denote the number of elements in the mesh. Rename 

the basis functions and the degree of freedom such that 

{𝜁𝑖
𝐸 : 1 ≤ 𝑖 ≤ 𝑁𝑙𝑜𝑐 , 𝐸 ∈ 𝜀ℎ} = {𝜁𝑗: 1 ≤ 𝑗 ≤ 𝑁𝑙𝑜𝑐𝑁𝑒1}, 

{𝜂𝑖
𝐸: 1 ≤ 𝑖 ≤ 𝑁𝑙𝑜𝑐 , 𝐸 ∈ 𝜀ℎ} = {𝜂̃𝑗: 1 ≤ 𝑗 ≤ 𝑁𝑙𝑜𝑐𝑁𝑒1} 

Plugging (8) into (6-7) yields a linear system of ordinary differential equations with the vector of 

unknowns  𝜂̃ = (𝜂̃𝑗)𝑗: 

𝑀
𝑑𝜂̃

𝑑𝑥
(𝑡) + 𝐴𝜂̃(𝑡) = 𝐹(𝑡) 

𝑀𝜂̃(0) = 𝑈0 

The matrices 𝑀 = (𝑀𝑖𝑗)𝑖𝑗 , 𝐴 = (𝐴𝑖𝑗)𝑖𝑗 are called the mass and stiffness matrices, and they are defined by  

𝑀𝑖𝑗 = (𝜁𝑗 , 𝜁𝑖)Ω
 ,   𝐴𝑖𝑗 = 𝑎𝜀(𝜁𝑗 , 𝜁𝑖);   ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑙𝑜𝑐  𝑁𝑒1… ……………..……… (9) 

From (5) the matrix 𝐴 is positive definite. In fact, it is the matrix resulting from the DG method applied to a 

parabolic problem. The matrix 𝑀 is block diagonal, symmetric positive definite and thus it is invertible. The 

vectors 𝐹(𝑡) and 𝑈0 have components (𝐿(𝑡; 𝜁𝑖))
𝑖
and ((𝑢̃0,  𝜁̃𝑖)Ω

)
𝑖
. The existence and uniqueness of 𝜂̅ is 

obtained from the theory of ordinary differential equations. 

2.2 STABILITY OF THE SOLUTION 

This section derived a stability bounds for the numerical solution. Choosing 𝑣 = 𝑈ℎ(𝑡) in (6) and using the 

coercivity result (5) to have: 

From Cauchy-Schwarz’s inequality, the right-hand side is bounded   by  

|𝐿(𝑡; 𝑈ℎ(𝑡))| ≤ ‖𝑓(𝑡)‖𝐿2(Ω)‖𝑈ℎ(𝑡)‖𝐿2(Ω) + ∑ (‖∇𝑈ℎ(𝑡). 𝒏𝑒‖𝐿2(e) +
𝛿𝑒

0

|𝑒|𝛾0
‖𝑈ℎ(𝑡)‖𝐿2(e))

𝑒𝜖𝜕Ω

‖𝑔(𝑡)‖𝐿2(e) 

Next, use the trace inequality and Young’s inequality. As usual the constant 𝐶 is independent of the mesh 

size ℎ . So, 

|𝐿(𝑡;  𝑈ℎ(𝑡))| ≤ ‖𝑓(𝑡)‖𝐿2(Ω)‖𝑈ℎ(𝑡)‖𝐿2(Ω) +
𝜏

2
‖𝑈ℎ(𝑡)‖2

𝜀

+ 𝐶 ∑
1

|𝑒|𝛾0
‖𝑔(𝑡)‖2

𝐿2(Ω)𝑒𝜖𝜕Ω

… … … … … … … … … … … … … … … … … … … … … … … . (10) 

Therefore, obtain the intermediate result  

1

2

𝑑

𝑑𝑡
‖𝑈ℎ(𝑡)‖2

𝐿2(Ω) +
𝜏

2
‖𝑈ℎ(𝑡)‖2

𝜀
≤ ‖𝑓(𝑡)‖𝐿2(Ω)‖𝑈ℎ(𝑡)‖𝐿2(Ω) + 𝐶 ∑

1

|𝑒|𝛾0

𝑒𝜖𝜕Ω

‖𝑔(𝑡)‖2
𝐿2(e)

… … … … … … (11) 
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. Applying Gronwall’s inequality, simply bound  

‖𝑓(𝑡)‖𝐿2(Ω)‖𝑈ℎ(𝑡)‖𝐿2(Ω) ≤
1

2
‖𝑓(𝑡)‖2

𝐿2(Ω) +
1

2
‖𝑈ℎ(𝑡)‖2

𝐿2(Ω)
 

Multiply the equation by 2 and integrate from 0 to t. 

‖𝑈ℎ(𝑡)‖2
𝐿2(Ω) + 𝜏 ∫ ‖𝑈ℎ(𝑠)‖2

𝜀

𝑡

0

≤ ∫ ‖𝑓(𝑠)‖2
𝐿2(Ω)

𝑡

0

+ ∫ ‖𝑈ℎ(𝑠)‖2
𝐿2(Ω)

𝑡

0

+ ‖𝑈ℎ(0)‖2
𝐿2(Ω) + 𝐶 ∑

1

|𝑒|𝛾0

𝑒𝜖𝜕Ω

∫ ‖𝑔(𝑠)‖2
0,𝑒

𝑡

0

 

Then, by the continuous Gronwall’s inequality, conclude that  

‖𝑈ℎ(𝑡)‖2
𝐿2(Ω) + 𝜏 ∫ ‖𝑈ℎ(𝑠)‖2

𝜀

𝑡

0

≤ 𝐶 (∫ ‖𝑓(𝑠)‖2
𝐿2(Ω)

𝑡

0

+ ‖𝑈ℎ(0)‖2
𝐿2(Ω) + ∑

1

|𝑒|𝛾0

𝑒𝜖𝜕Ω

∫ ‖𝑔(𝑠)‖2
0,𝑒

𝑡

0

) … … (12) 

The constant 𝐶 grows exponentially in time; observe that this approach is valid for all primal DG methods with 

zero penalties. By using Poincare’s in inequality and Young inequality to bound ‖𝑈ℎ(𝑡)‖𝐿2(Ω), to have , 

1

2

𝑑

𝑑𝑡
‖𝑈ℎ(𝑡)‖2

𝐿2(Ω) +
𝜏

2
‖𝑈ℎ(𝑡)‖2

𝜀
≤

𝜏

4
‖𝑈ℎ(𝑡)‖2

𝜀
+ 𝐶‖𝑓(𝑡)‖𝐿2(Ω) + 𝐶 ∑

1

|𝑒|𝛾0

𝑒𝜖𝜕Ω

‖𝑔(𝑡)‖2
𝐿2(e) 

After multiplying by 2 and integrating from 0 to 𝑡  it is obtained: 

‖𝑈ℎ(𝑡)‖2
𝐿2(Ω) +

𝜏

2
∫ ‖𝑈ℎ(𝑠)‖2

𝜀

𝑡

0

≤ ‖𝑈0̃‖
2

𝐿2(Ω)
+ 𝐶 ∫ ‖𝑓(𝑠)‖2

𝐿2(Ω)

𝑡

0

+ 𝐶 ∑
1

|𝑒|𝛾0

𝑒𝜖𝜕Ω

∫ ‖𝑔(𝑠)‖2
𝐿2(e)

𝑡

0

 

Which is the same inequality as (12) modulo some multiplicative contains. However, here the constant  𝐶  is 

independent of time. This approach is valid if the penalty value 𝛿𝑒
0 is positive for all faces e. The final result is 

stated in the following lemma. 

Assume that 𝛾0 ≥ (𝑑 − 1)−1 . There exists a positive constant 𝐶 independent of ℎ such that 

‖𝑈ℎ‖
𝐿∞(0,𝑇;𝐿2(Ω))

2 + ∫ ‖𝑈ℎ‖2
𝜀

≤
𝑇

0

𝐶‖𝑈0̃‖

2

+ 𝐶‖𝑓‖
𝐿2(0,𝑇;𝐿2(Ω))

2

+ 𝐶 ∑
1

|𝑒|𝛾0

𝑒𝜖𝜕Ω

‖𝑔(𝑠)‖2
𝐿2(0,𝑇;𝐿2(Ω))

… … … … … … … … … … … … … … … (13)  

It is noticed that, the last term on the right hand-side of (13) blows up as the mesh size h tends to zero. The 

space of test function is then defined as  

𝐷𝑘
0(𝜀ℎ) = {𝑉 ∈ 𝐷𝑘(𝜀ℎ):  𝑉 = 0 𝑜𝑛 𝜕Ω} 

In that case, the stability estimates are  

‖𝑈ℎ‖
𝐿∞(0,   𝑇;  𝐿2(Ω))

2 + ∫ ‖𝑈ℎ‖2
𝜀

≤
𝑇

0

𝐶‖𝑈0̃‖

2

+ 𝐶‖𝑓‖
𝐿2(0,   𝑇;  𝐿2(Ω))  

2  

And the solution is equal to 𝑈ℎ + 𝑔ℎ, where 𝑔ℎ ∈ 𝐷𝑘(𝜀ℎ)  is an interpolant of a lift of the Dirichlet boundary 

condition 𝑔. 

3. ERROR ANALYSIS 

This section has derived error estimates for the numerical error 𝑢 − 𝑈ℎ in the 

   𝐿∞(0, 𝑇;   𝐿2(Ω)) and  𝐿2(0, 𝑇; 𝐻1(𝜀ℎ)) norms. Define the parabolic projection 𝑢̃ of the exact solution 𝑢: 
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𝑎𝜀(𝑢(𝑡) − 𝑢̃(𝑡), 𝑣) = 0 ;  ∀ 𝑡 ≥ 0 ,   ∀ 𝑣 ∈ 𝐷𝑘(𝜀ℎ), … … … … … … … … … … … … … … . . (14) 

Now if 𝑢 belongs to 𝐿2(0, 𝑇; 𝐻1(𝜀ℎ)) for  𝑠 >
3

2
 the following error estimates hold: 

 ‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝜀 ≤ 𝐶ℎmin(𝑘+1,𝑠)−1|‖𝑢(𝑡)‖|𝐻𝑠(𝜀ℎ) ;   ∀ 𝑡 ≥ 0 … … … … … … … … … … … … (15) 

In addition, if Ω is convex, error estimates in 𝐿2 norm are  

∀ 𝑡 ≥ 0 , ‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝐿2(Ω) ≤ 𝐶ℎmin(𝑘+1,𝑠)|‖𝑢(𝑡)‖|𝐻𝑠(𝜀ℎ) 𝑓𝑜𝑟 𝑆𝐼𝑃𝐺 … … … … … … (16) 

∀ 𝑡 ≥ 0 , ‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝐿2(Ω) ≤ 𝐶ℎmin(𝑘+1,𝑠)−1|‖𝑢(𝑡)‖|𝐻𝑠(𝜀ℎ) 𝑓𝑜𝑟 𝑁𝐼𝑃𝐺 𝑎𝑛𝑑 𝐼𝐼𝑃 … (17) 

Under some conditions such as superpenalization (𝛾0 ≥ 3(𝑑 − 1)−1)   the estimates in 𝐿2 norm are optimal. 

What can be saying about the time derivatives of 𝑢(𝑡) − 𝑢̃(𝑡)  using linearity of the bilinear form to have: 

𝑎𝜀

𝑑

𝑑𝑡
((𝑢(𝑡) − 𝑢̃(𝑡), 𝑣))  = 0 ;   ∀ 𝑣 ∈ 𝐷𝑘(𝜀ℎ) 

The time derivative of the parabolic projection is the parabolic projection of the time derivative. 

Now, the following theorem is introduced to state the error analysis.  

3.1 THEOREM 1 

Assume that, 𝑢 belongs to 𝐻1(0, 𝑇; 𝐻𝑠(𝜀ℎ)) and that 𝑈0 belongs to 𝐻𝑠(𝜀ℎ) for 𝑠 >
3

2
. Assume that 𝛾0(𝑑 −

1) ≥ 1 and t 𝛿𝑒
0 is sufficiently large for all 𝑒. Then there is a constant 𝐶 independent of ℎ such that  

 (∫ ‖𝑢(𝑡) − 𝑈ℎ(𝑡)‖2
𝜀

𝑇

0

)

1
2

≤ 𝐶ℎmin(𝑘+1,𝑠)−1‖𝑢‖𝐻1(0,   𝑇; 𝐻𝑠(𝜀ℎ)), 

‖𝑢 − 𝑈ℎ‖
𝐿∞(0 ,𝑇; 𝐿2(Ω))

2 ≤ 𝐶ℎmin(𝑘+1,𝑠)−𝜇‖𝑢‖𝐻1(0,   𝑇; 𝐻𝑠(𝜀ℎ))  

Proof: Since the scheme is consistent, obtain the following orthogonally equation: 

(
𝜕(𝑈ℎ − 𝑢)

𝜕𝑡
, 𝑣)

Ω

+ 𝑏𝜀(𝑈ℎ(𝑡) − 𝑢(𝑡), 𝑣) = 0 ;  ∀ 𝑡 ≥ 0 , ∀ 𝑣 ∈ 𝐷𝑘(𝜀ℎ) 

Defining  𝛹 = 𝑈ℎ − 𝑢̃ , to have for all 𝑡 > 0 and for all 𝑣 ∈ 𝐷𝑘(𝜀ℎ) 

(
𝜕𝛹

𝜕𝑡
, 𝑣)

Ω
+ 𝑏𝜀(𝛹(𝑡), 𝑣) = (

𝜕(𝑢 − 𝑢̃)

𝜕𝑡
, 𝑣)

Ω

+ 𝑏𝜀(𝑢(𝑡) − 𝑢̃(𝑡), 𝑣) … … … … … … … . . . (18) 

Using the definition of parabolic projection, it is obtained, 

(
𝜕𝛹

𝜕𝑡
, 𝑣)

Ω
+ 𝑏𝜀(𝛹(𝑡), 𝑣) = (

𝜕(𝑢 − 𝑢̃)

𝜕𝑡
, 𝑣)

Ω

… … … … … … … … … … … … … … … … … . . (19) 

Choosing 𝑣 = 𝛹(𝑡) and using the coercivity of 𝑏𝜀 and the definition of the parabolic projection, to get, 

∀ 𝑡 > 0,
1

2

𝑑

𝑑𝑡
‖𝛹‖2

𝐿2(Ω) + 𝜏‖𝛹(𝑡)‖2
𝜀

≤ |(
𝜕(𝑢 − 𝑢̃)

𝜕𝑡
, 𝛹(𝑡))

Ω

| 

If the penalty parameters 𝛿𝑒
0 are positive for all 𝑒 , to bound the right -hand side of the equation above as  
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|(
𝜕(𝑢 − 𝑢̃)

𝜕𝑡
, 𝛹(𝑡))

Ω
| ≤ ‖

𝜕(𝑢 − 𝑢̃)

𝜕𝑡
‖

𝐿2(Ω)

‖𝛹(𝑡)‖𝐿2(Ω) ≤
𝜏

2
‖𝛹(𝑡)‖2

𝜀 +
1

2𝜏
‖

𝜕(𝑢 − 𝑢̃)

𝜕𝑡
‖

𝐿2(Ω)

2

 

Therefore, using the error estimates satisfied by the parabolic projection, it is obtained  

1

2

𝑑

𝑑𝑡
‖𝛹‖2

𝐿2(Ω) +
𝜏

2
‖𝛹(𝑡)‖2

𝜀 ≤  𝐶ℎ2min(𝑘+1,𝑠)−2𝜇 |‖
𝜕𝑢

𝜕𝑡
‖|

𝐻𝑠(𝜀ℎ)

2

… … … … … … … … … … . . . (20) 

The parameter 𝜇 is zero unconditionally. By multiplying (20) by 2 and integrate from 0 to  𝑡. 

‖𝛹(𝑡)‖2
𝐿2(Ω) + 𝜅 ∫ ‖𝛹(𝜏)‖𝜀

2
𝑡

0

‖𝛹(0)‖2
𝐿2(Ω) + 𝐶ℎ2min(𝑘+1,𝑠)−2𝜇 |‖

𝜕𝑢

𝜕𝑡
‖|

𝐿2(0 ,𝑇; 𝐻𝑠(𝜀ℎ))

2

 

Conclude by noting that 𝛹(0) = 0 and by using the triangle inequalities in the 𝐿2 norm. 

‖𝑢(𝑡) − 𝑈ℎ(𝑡)‖𝐿2(Ω)‖𝛹(𝑡)‖𝐿2(Ω) + ‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝐿2(Ω). 

The triangle inequalities in every norm, 

 (∫ ‖𝑢(𝑡) − 𝑈ℎ(𝑡)‖2
𝜀

𝑇

0

)

1
2

≤ (∫ ‖𝑢(𝑡) − 𝑈ℎ(𝑡)‖
2

𝜀

𝑇

0

)

1
2

+ (∫ ‖𝑢̃(𝑡) − 𝑈ℎ(𝑡)‖2
𝜀

𝑇

0

)

1
2

 

And the error estimates satisfied by 𝑢̃. 

Now, state the error analysis by introducing the following theorem only in the case of the symmetry of the 

bilinear form. 

3.2 THEOREM 2 

Let  𝜀 = −1. Under the assumptions of Theorem 1, there exists a constant 𝐶 independent of ℎ such that  

‖
𝜕(𝑢 − 𝑈ℎ)

𝜕𝑡
‖

𝐿2(0,𝑡;𝐿2(Ω))

≤ 𝐶ℎmin(𝑘+1,𝑠)‖𝑢‖𝐻1(0,   𝑇; 𝐻𝑠(𝜀ℎ)) 

Proof: In the error equation (19), choose 𝑣 =
𝜕𝜒

𝜕𝑡
 

‖
𝜕𝛹

𝜕𝑡
‖

𝐿2(Ω)

2

+ 𝑏𝜀 (𝛹(𝑡),
𝜕𝛹

𝜕𝑡
) = (

𝜕(𝑢 − 𝑢̃)

𝜕𝑡
,
𝜕𝛹

𝜕𝑡
)

Ω

 

Thus, using the symmetry property of 𝑏𝜀, to have  

‖
𝜕𝛹

𝜕𝑡
‖

𝐿2(Ω)

2

+
1

2

𝑑

𝑑𝑡
𝑏𝜀(𝛹(𝑡), 𝛹(𝑡)) = (

𝜕(𝑢 − 𝑢̃)

𝜕𝑡
,
𝜕𝛹

𝜕𝑡
)

Ω

  ≤
1

2
‖

𝜕(𝑢 − 𝑢̃)

𝜕𝑡
‖

𝐿2(Ω)

2

+
1

2
‖

𝜕𝛹

𝜕𝑡
‖

𝐿2(Ω)

2

 

Integrating from 0 to 𝑡 and using the fact that 𝛹(0) = 0  to obtain, 

∫ ‖
𝜕𝛹

𝜕𝑡
‖

𝐿2(Ω)

2𝑡

0

+
1

2
𝑏𝜀(𝛹(𝑡), 𝛹(𝑡)) ≤

1

2
𝑏𝜀(𝛹(0), 𝛹(0)) + ∫ ‖

𝜕(𝑢 − 𝑢̃)

𝜕𝑡
‖

𝐿2(Ω)

2𝑡

0

 

                                             ≤ 𝐶ℎ2min(𝑘+1,𝑠) ‖
𝜕𝑢

𝜕𝑡
‖

𝐿2(0,𝑇;𝐻𝑠(𝜀ℎ))

2

 

Using coercivity of 𝑏 𝜀 and the triangle inequality,  
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‖
𝜕(𝑢 − 𝑈ℎ)

𝜕𝑡
‖

𝐿2(0,𝑡;𝐿2(Ω))

≤ ‖
𝜕(𝑢 − 𝑈)

𝜕𝑡
‖

𝐿2(0,𝑡;𝐿2(Ω))

+ ‖
𝜕𝛹

𝜕𝑡
‖

𝐿2(0,𝑡;𝐿2(Ω))
 

                        ≤ 𝐶ℎmin(𝑘+1,𝑠) ‖
𝜕𝑢

𝜕𝑡
‖

𝐿2(0,𝑇;𝐻𝑠(Ω))
 

This, conclude the proof. 

4. NUMERICAL EXPERIMENT 

In this section, two numerical experiments are presented to validate the theoretical result of the discontinuous 

Galerkin method for the second order time dependent parabolicscheme. The mesh generation and all 

calculations are done by FreeFem++ (Hecht. 2012). The algorithm of (1-3) is implemented on the uniform 

triangular mesh system. The discrete space 𝐷𝑘(𝜀ℎ)  is assembled by using piecewise polynomials of uniformed 

degree. For the setting of the experiment random extending the values of   𝑐  to identify the proper function 

 𝑓 and exact solution  𝑢(𝑥, 𝑦). The error  and resultant convergence rates are given in Tables-1 and Tables-2   

against the mesh-size. In the numerical experiments, the convergence behavior of errors |𝑢 − 𝑢ℎ| are presented 
with respect to the parameter  ℎ  on uniform meshes. The boundary condition and the proper functions  𝑓,  the 

stability functions 𝜏, 𝑔 and the constant   𝑐 are chosen such that  𝑢(𝑥, 𝑦) is the exact solution. For the 

experiments, the time interval  1 ≤ 𝑡 ≤ 20  is considered. In the numerical test, consider the domain Ω =
(0, 1)2.  

4.1 EXPERIMENT 1 

For the first experiment, we obtained data functions as  𝑔, 𝑓 and  𝑐  so that the exact solution is 

𝑢(𝑡, 𝑥, 𝑦) = 𝑒−5.0(𝑥−0.3𝑡)2+(𝑦−0.3𝑡)2
  

on the domain. The stability parameter is considered as   𝑐 = 2.0  for this experiment. 

 

Table 1: Numerical errors and convergence rate for the experiment 1. 

Mesh |𝑢 − 𝑢ℎ| Order Mesh |𝑢 − 𝑢ℎ| Order 

3 0.000986353  48 8.84292e-006 1.83432 

6 0.000345648 2.10500 96 7.81416e-006 1.90149 

12 6.1426e-005 1.89965 192 6.91215e-006 1.99896 

24 1.61629e-005 1.89424 384 5.11821e-006 2.00000 

4.2 EXPERIMENT 2 

For the first experiment, we obtained data functions as  𝑔, 𝑓 and  𝑐  so that the exact solution is 

𝑢(𝑡, 𝑥, 𝑦) = (1 + 2.0𝑡) (1.0 + sin (
𝜋

8.0
(1.0 + 𝑥)(1.0 + 𝑦))). 

on the domain. The stability parameter is considered as   𝑐 = 1.0  for this experiment. 

Table 2: Numerical errors and convergence rate for the experiment 2. 

Mesh |𝑢 − 𝑢ℎ| Order Mesh |𝑢 − 𝑢ℎ| Order 

3 0.000897063  48 9.01292e-006 1.86732 

6 0.000335648 2.10660 96 8.08141e-006 1.92349 

12 6.1426e-005 1.91965 192 7.11121e-006 1.99896 

24 2.01620e-005 1.93424 384 5.67821e-006 2.00011 

From experiment, it is observed that the error quantity |𝑢 − 𝑢ℎ| also have the convergence rates as our 

theoretical results are described and the computed order of convergence is  𝑂(ℎ2.00000). 

5. CONCLUSIONS 

The paper has explored the error of the numerical solution by applying the Discontinuous Galerkin finite 

element method for the second order time dependent parabolic differential equation. It is a diverse and 
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straightforward methodology to pursue the error analysis from all other finite element systems which are given 

in the literature. The numerical experiments are demonstrated the efficiency of this method.  The procedure used 

in this paper can also be prolonged to achieve the 𝐿2(𝛺)  error estimate of the higher order problems with the 

best order of convergence. 
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