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ABSTRACT 

Traffic Simulation has empowered transportation engineers by providing a means of visual interpretation for 

real-life traffic conditions. PTV VISSIM is a well-known microsimulation software used to analyze and predict 

traffic operations and behavior by considering factors such as lane configuration, traffic composition, transit 

stops, etc. A non-laned-based heterogeneous traffic stream characterizes the urban traffic system of Dhaka. This 

makes it burdensome to calibrate and validate VISSIM models to reflect field-obtained traffic flow. To calibrate 

VISSIM-developed simulation models, Weidemann 74 and 99 car-following models are widely adopted. These 

car-following models and other movement parameters, such as lateral movement and lane-changing behavior 

parameters, are usually adjusted to calibrate the microsimulation model. This study aims to develop a new 

approach using sampling and machine learning to calibrate the Weidemann 99 car following model parameters 

in VISSIM microsimulation software for mixed traffic conditions. A portion of Abdul Gani Road, which represents 

the typical characteristics of the traffic system of Dhaka, was chosen to be the epicenter of this study. Latin 

Hypercube Sampling has been used to generate the number of combinations required to properly explore the 

effects of the ten calibration parameters of the Weidemann 99 car following model on the validation accuracy. 

The validation accuracy has been measured by using the GEH statistic. A total number of 500 simulations were 

generated, and from these 500 simulations, 37 combinations were obtained to have acceptable GEH values, which 

is generally considered to be less than 5%. These combinations were further analyzed using a k-means clustering 

algorithm to generate the centroid line of the acceptable parameter combinations. A sensitivity analysis was 

conducted using the obtained simulation dataset to determine the impact of changing values of the parameters on 

traffic flow. The findings of this study will aid future traffic simulation researchers by providing them with a 

guiding framework in calibrating VISSIM simulation models for mixed traffic conditions similar to Dhaka. 
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1. INTRODUCTION 

In recent decades, computational technology has led to the widespread adoption of microscopic traffic simulation 

models as the primary method for evaluating and enhancing road traffic management and control systems 

worldwide. These models have gained popularity among researchers as a valuable tool for assessing various 

alternative design and management strategies for road networks before their real-world implementation. Among 

those, VISSIM is one of the most widely used microscopic traffic simulation tools known for its versatility and 

capabilities in modeling complex traffic scenarios and practical applications in transportation planning and traffic 

management. However, the effectiveness of a traffic simulation model in evaluating scenarios hinges on its ability 

to accurately mirror the local area's network, infrastructure, and driver characteristics. Model calibration can be 

described as the systematic process of aligning the model's initial assumptions with the real-world conditions 

observed in a specific local context. This involves carefully selecting and adjusting the model's input parameters 

to match better the actual traffic conditions measured in the field. The goal is to ensure that the model accurately 

represents the specific local traffic conditions by refining default values and incorporating field-measured data. 

(Park & Schneeberger, 2003). 

The traffic condition of Dhaka city is characterized by non-lane-based heterogeneous traffic. Heterogeneous 

traffic is defined as a mix of vehicles having diverse static (length, width, etc.) and dynamic 

(acceleration/deceleration, speed, etc.) properties. These vehicles include nonconventional and nonmotorized 

vehicles, and their composition is highly transient. Another distinguishing aspect of such traffic is the absence of 

lane marking and lane discipline, resulting in a complex movement of vehicles, especially at intersections. The 

proportion of NMVs can vary widely, and they significantly impact traffic conditions, especially at signalized 

intersections. NMVs reduce road capacity and motorized vehicle speed, contribute to congestion at intersections 

during discharge, and influence queue length and delay times in traffic operations. (Manjunatha et al., 2013; 
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Mashrur & Hoque, 2016). Although studies have found success in somewhat replicating traffic movement of 

Dhaka in simulation models particularly in comparative analysis on the oversaturated signalized intersections 

(Hoque and Naz, 2023), many challenges are yet to be overcome. 

The efficiency of microsimulation depends on how accurately the parameters can be calibrated. Calibrating a large 

set of parameters manually is burdensome work. Various approaches have been taken to produce the optimal set 

of parameters for calibration. Manjunatha et al. (2013) conducted a case study in signalized intersections with 

different traffic characteristics in Mumbai using the Latin Hypercube method to generate scenarios and the 

solution parameter set was determined by using a genetic algorithm (GA). A sensitivity analysis of the parameters 

was conducted, and optimization was introduced to identify a parameter set that minimizes intersection delay. The 

Wiedemann 74 and 99 models were calibrated at three intersections for this study. A two-way analysis of variance 

(ANOVA) was utilized for the calibration process, focusing on five parameters, with the metric of delay serving 

as the measure of effectiveness (MOE) for calibration. The calibration can be repeated at the network and corridor 

levels, and the effectiveness metrics and methodology can be appropriately adjusted. To calibrate the parameters 

of the microscopic simulation, Siam et al. (2018) used an application tool called VISCAL, which is based on three 

heuristic optimization algorithms: genetic algorithm (GA), simultaneous perturbation stochastic approximation 

(SPSA), and simulated annealing (SA). Three objective functions—speed, flow, and speed-flow were utilized to 

test the VISCAL calibration procedures on a 3.26 km freeway in Dhaka, Bangladesh. Dey et al. (2018) proposed 

a procedure that recognized this lack, and that can be used effectively to calibrate and validate the VISSIM model 

for signalized intersections. Another study done by Azam et al. (2019) considered the maximum queue length as 

MOE. Their approach was divided into two stages: system calibration and operational calibration. System 

calibration considered the actual geometry of the roads and the control conditions, whereas operational calibration 

utilized Sensitivity Analysis (SA). This study showed that SA can help determine the most significant parameters 

and their values. Unfortunately, the authors did not mention any specific methodology to calibrate the parameters. 

Mer et al. (2021) developed a methodology to calibrate the parameters in the context of India. They developed a 

VISSIM model, which included 7 intersections. Later, they conducted a one-way ANOVA sensitivity analysis 

using the SPSS tool and determined 11 parameters among 19 sensitive items. These 11 parameters were calibrated 

using Python's Genetic Evolutionary Algorithm Toolbox (GEATPy). This study is only limited to interurban road 

intersections and appropriate modifications are a must to apply this methodology to different traffic facilities.  The 

authors also suggested using stop delay, fuel consumption, capacity, and so on as MOE. Additionally, Chaudhari 

et al. (2021) presented a Wiedemann-99 model calibration procedure based on optimizing trajectory profiles, 

acceleration, and speed as microscopic performance measurements to determine appropriate calibration 

parameters. The procedure was based on root mean square error (RMSE) between simulated and observed 

trajectories of mixed traffic, primarily consisting of motorized two-wheelers and cars. Budhkar & Maji (2022) 

proposed a method to calibrate the simulation model of a merging section, which was then used to estimate the 

capacity of the merging section. They took macroscopic and microscopic parameters to calibrate the model and 

found 8 parameters to be significant. The authors suggested considering the effect of geometric variation and 

traffic composition for better output.  

Maheshwary et al. (2020) attempted to calibrate the VISSIM microstimulator based on the driving behavior 

concerning different vehicle classes. A case study of a traffic corridor was conducted in Kolkata using the Latin 

Hypercube method, and a genetic algorithm (GA) was used to obtain optimal parameter sets for different vehicle 

classes. A one-way analysis of variance (ANOVA) was utilized for the calibration process, with travel time as the 

measure of effectiveness (MOE) for calibration. The limitation of this study was that the findings were highly 

dependent on vehicle class; thus, the authors suggested calibrating the model for other vehicle classes to increase 

its applicability to other non-lane-based heterogeneous traffic scenarios. Bhattacharyya et al. (2020) used a 

Genetic Algorithm (GA) to optimize the parameters considering every mode of a multi-modal traffic network. 

Their proposed methodology performed well when validated against a typical Kolkata city, India road network 

representing non-lane based heterogeneous traffic conditions. Sashank et al. (2020) used a Simulation of Urban 

Mobility (SUMO) instead of VISSIM for model development. They tried to calibrate the model for Indian lane-

less mixed traffic. Using the ANOVA test, they found 14 parameters that can affect the simulation model. These 

parameters were then optimized on a trial-and-error basis and using Genetic Algorithm methods. Prabhash & 

Amarasingha (2021) also took queue length as a performance measure. They used Genetic Algorithms tools in 

MATLAB to select 6 out of 10 parameters and then determined the optimal values. The limitation of this study is 

that the calibrated parameters would perform well in similar sub-urban conditions. Still, it would require more 

calibration to be used in different traffic conditions. 

Significant research gaps have been identified in calibrating the VISSIM model for metropolitan cities like Dhaka, 

where mixed traffic conditions characterize traffic conditions. This mix includes motorized vehicles such as cars, 

buses, trucks, auto-rickshaws, motorbikes, and non-motorized vehicles like rickshaws, bicycles, and vans. 

Although a few researchers have contributed to calibration methodologies for similar conditions, based on the 

research gap, to increase the efficiency as well as the accuracy of calibration of microsimulation models, a new 
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method, including a machine learning approach has been proposed in this study to investigate VISSIM parameters 

and establish a framework for guiding future research in this area in this study.  

2. METHODOLOGY 

2.1 Data Collection  

An urban site with significant transportation mode and flow volume variation was chosen. For this study, Abdul 

Gani Road, with two signalized intersections, was selected considering all the requirements for the calibration 

process. A screenshot from Google Maps is shown in Figure 1. The eastern intersection is marked as 01, and the 

eastern intersection as 02 in Figure 1. 

 
Figure 1: Study Area 

Two types of data were collected from the study site. The first set of data was related to road geometry, such as 

the number and width of the lanes, the number of approaches at each intersection, channelization, and turning 

facilities. This data was collected by field survey. Another type of data related to traffic operation was collected 

by video survey, which also included traffic count data. 2 cameras at each intersection were placed to conduct a 

video survey. Traffic count at intersections, routes, and vehicle composition were found from the video survey. 

After analyzing 24 hours of data, a peak of two hours of data was used for modeling. A few local roads between 

the selected two intersections are mostly used for parking cars of officials or as the entrance of a park. These roads 

do not generate a significant amount of traffic compared to the selected roads. Hence, these roads were not 

considered during modeling. The data obtained from the video survey is presented in Table 1. In the future, using 

Intelligent Transportation Systems (ITS) technologies can significantly improve the quality of collected data (Naz 

and Hoque, 2023).   

Table 1 Traffic Survey Data 

Intersection  Exit No. Number of Lanes Width of Lanes (m) Total Vehicles (All Types) 

1 

1 2 3.2 656 

2 3 3.5 718 

3 2 3.5 707 

2 

4 2 3.3 667 

5 2 3.3 583 

6 2 3.3 614 

2.2 Network Coding 

To develop the microsimulation model, the Graphical User Interface (GUI) of VISSIM was utilized to draw the 

whole network of the study area. An appropriate number of links and connectors were used to represent the roads; 

signal heads were used to implement the signal control system. Vehicle inputs, relative percentage flow, and 

vehicle routes were adequately added to the simulation model. Intermediate points were added to adjust the curves 

of the streets, and data collection points were added to all the exit points of the road network for the calibration 

Exit 2 Exit 1 

Exit 3 

Exit 4 

Exit 6 

Exit 5 
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process. The smaller connecting roads beside the Bangladesh Secretariat were ignored, as very little traffic from 

those roads was approaching the study network. The built-up simulation model is showcased in Figure 2. 

 

Figure 2: VISSIM Simulation Model 

2.3 Latin Hypercube Sampling 

The Latin hypercube sampling (LHS) was first proposed by McKay et al. (1979) and has been further developed 

for different purposes by several researchers, e.g., Iman & Conover (1982) and Olsson et al. (2003). It is a 

technique recommended to make various important sampling methods more efficient when analyzing the 

reliability of structures. In a basic form of importance sampling, where we shift the sampling focus from the 

starting point to the design target, LHS can be used instead of the standard Monte Carlo sampling method for 

better results (Olsson & Sandberg, 2002). LHS optimizes computer processing time in Monte Carlo simulations 

and provides an efficient way of sampling variables from their distributions (Iman and Conover, 1982). It becomes 

particularly valuable when working with slower operating systems and software, as it can significantly enhance 

efficiency. While some argue that advancements in modern computing technology have diminished the 

importance of LHS, it remains a widely used and beneficial approach. This study incorporates a simulation model 

based on Wiedemann 99 car-following model parameters. LHS is used here to create sample sets of all the 10 

parameters associated with this model. Table 2 (PTV VISSIM 2022 User Manual) provides a brief description of 

the parameters (CC0 to CC9). 

Table 2 Car Following Model Parameters 

Parameters Unit Description 

CC0 m 
Standstill distance: It is the desired standstill distance between two vehicles. It has no 

stochastic variation.  

CC1 s 

Gap time distribution: It refers to the distribution of time in seconds from which a 

driver selects the desired time gap to maintain, in addition to the standstill distance 

between vehicles.  

CC2 m 
'Following' distance oscillation: It refers to the maximum extra distance beyond the 

preferred safety distance that a driver tolerates when following another vehicle  

CC3 s 
Threshold for triggering 'BrakeBX': It is the period before reaching the maximum 

safe distance (assuming a constant speed) to a slower-moving leading vehicle. 

CC4 m/s 

Negative speed difference: This represents the minimum relative speed threshold 

compared to the slower leading vehicle during the following process (expressed as a 

negative value).  

CC5 m/s 

Positive speed difference: This denotes the relative speed limit compared to the faster 

leading vehicle during the following process (expressed as a positive value).  

Negative values, on the other hand, lead to the adoption of a deceleration speed that is 

more closely resembling that of the leading vehicle. 

CC6 1/(m*s) 

Distance impact on oscillation: This refers to the influence of distance on the 

boundaries of relative speed limits during the following process: (i) When the value is 

0, distance does not affect these limits. (ii) For larger values, the limits expand as the 

distance increases. 

CC7 m/s2 Oscillation acceleration: Acceleration oscillation during the following process. 

CC8 m/s2 
Acceleration from standstill: The rate of acceleration experienced when a vehicle 

begins moving from a standstill position.  

CC9 m/s2 
Acceleration at 80 km/h: The rate of acceleration exhibited when the vehicle is 

traveling at a speed of 80 km/h.  

Exit 1 

Exit 2 

Exit 3 

Exit 4 

Exit 5 

Exit 6 
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During this study, an exploration of traffic dynamics was conducted through the generation and examination of 

500 unique combinations. The parameters were given a large range for the LHS to generate samples of a large 

variation. These combinations were executed in simulation scenarios with two distinct intersections, each 

featuring three exit points. Subsequently, the simulation runs yielded valuable output data in the form of traffic 

counts. The model accuracy gained from each combination was calculated using the GEH statistic that compared 

the simulated traffic flow and the real-life traffic flow.  

2.4 GEH Statistic 

The GEH statistic establishes the connection between observed and simulated traffic flow. Through calibration 

and validation results, GEH statistics reveal a robust correlation between experimental and simulated flow. This 

statistic effectively tackles the potential challenge posed by a network containing various roadway functional 

classes by determining percentage errors relative to the mean values of both observed and simulated counts 

(Balakrishna et al., 2007). Typically, the GEH statistic is recommended for comparing hourly traffic volumes 

exclusively. It is defined by the equation specified by Dowling (2004): 

√
2(𝑀−𝐶)2

𝑀+𝐶
                               (1) 

Where, M indicates simulated traffic volume, and C indicates the observed traffic count. 

Different GEH values provide insights into the goodness of fit, as explained below: 

• GEH < 5: Flows are deemed a good fit. 

• 5 < GEH < 10: Flows may necessitate additional investigation. 

• 10 < GEH: Flows are not a good fit. 

Dowling (2004) recommends that a minimum of 85% of the observed links in a traffic model should exhibit a 

GEH of less than 5.0. 

In our analysis, which encompassed 500 combinations, only 37 yielded Generalized Exponential Holt-Winters 

(GEH) values below the threshold of 5. The study focuses on two intersections, each featuring three exit points, 

resulting in six GEH values—one for each exit point. Notably, in all 37 validated combinations, the GEH values 

for all six exit points remained below 5. This rigorous validation process enhances the reliability and credibility 

of our findings. 

2.5 Cluster Analysis 

Two terms are associated here - Clustering and Analysis. Clustering is a method of partitioning data sets into 

different groups based on dissimilarities or differences among the data set. These groups are called clusters. 

Cluster analysis is a tool that helps determine each cluster's characteristics and then focuses on a specific cluster 

for in-depth analysis. 

In our study, the K-mean algorithm has been used as a partitioning method. Here, the mean value of a data set 

represents that cluster. In this method, a set of n objects is partitioned into k clusters so that two clusters have low 

similarity or high dissimilarity. In clustering, dissimilarity between data sets is observed by calculating the 

distance between each pair of data sets. The K-mean method utilizes Euclidean distance to calculate the distance. 

Euclidean distance is defined as  

(𝒙, 𝒚)  =  √∑ (𝒚𝒊  −  𝒙𝒊)
𝟐𝒏

𝒊=𝟏                 (2) 

Where, x, y = two n-dimensional data set 

The k-mean algorithm has two steps. In the 1st step, a k centroid is selected randomly, where the k value is fixed 

before selection. Later, each data in the data set is correlated with the nearest centroid. The output is an input-

specified cluster set containing a k cluster (Yadav & Sharma, 2013; Koshti et al., 2022). 

In our study, cluster analysis determines a centroid value of 37 different combinations (Table 2) that met the GEH 

condition. 
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Table 3 Cluster Analysis Input Data  
 

CC0 CC1 CC2 CC3 (- ve) CC4 (- ve) CC5 CC6 CC7 CC8 CC9 GEH Range   

1.4 0.9 2.73 1.69 1.05 2.05 7.34 0.38 3.53 0.76  0.88-4.82 

1.49 0.5 3.98 10.3 2.36 0.9 11.23 0.25 3.08 1.05 3.46-4.91 

1.07 1.5 2.23 13.8 1.31 2.25 8.09 0.32 4.37 2.03 2.42-3.96  

1.67 0.5 2.8 8.26 0.23 1.34 13.81 0.27 2.54 4.78 0.65-4.91  

1.92 0.5 2.28 3.88 0.44 1.2 17.64 0.48 3.82 4.9 1.58-5.00 

1.06 0.9 3 12.3 0.85 0.3 19.42 0.21 1.3 4.21  0.12-4.35 

1.77 0.5 2.4 0.88 1.18 1.13 8.81 0.3 4.24 4.03  1.72-4.91 

1.7 0.6 3.81 1.24 0.87 1.75 18.02 0.23 4.22 0.73 1.09-4.75  

1.85 0.6 2.26 7.58 0.79 2.48 10.85 0.25 2.09 4.33 3.63-5.00  

1.41 0.5 2.69 3.68 2.2 1.61 8.7 0.47 3.39 3.08 3.43-4.91  

1.32 0.5 3.4 13.2 2.11 2.22 17.36 0.43 2.65 1.95 0.48-4.95 

1.68 0.5 2.24 8.58 0.24 1.55 11.25 0.38 1.61 4.42 1.92-4.87 

1.68 0.6 3.2 2.64 1.34 0.28 8.53 0.33 4.51 1.4 3.01-5.00   

1.78 0.6 3.66 9.89 0.74 1.26 6.66 0.25 4.83 0.9 1.71-4.95 

1.14 0.6 3.91 8.53 2.47 2.32 14.19 0.41 4.85 4.18 1.78-4.87 

1.35 0.6 3.1 10 1.63 2.48 9.41 0.22 2.5 4.23 0.95-4.22 

1.29 0.9 3.29 6.32 0.66 2.59 5.98 0.34 1.57 4.16 3.87-4.95 

1.5 0.5 2.15 6.96 1.21 1.97 5.8 0.31 3.25 4.57 0.96-4.91  

1.26 1.5 2.38 5.76 0.75 1.56 12.67 0.29 2.43 2.43 2.17-4.65 

1.51 0.6 2.4 11.7 2.46 1.32 8.34 0.39 4.27 1.32 3.91-4.95  

1.42 0.9 3.07 14.1 2.24 0.47 17.28 0.24 2.92 3.49 2.14-4.91  

1.56 0.6 2.53 3.38 0.8 1.21 7.63 0.32 3.18 4.45 1.84-4.52 

1.53 0.9 2.84 2.3 0.3 1.43 17.23 0.4 4.28 2.7 0.36-4.95 

1.89 0.5 2.81 11.5 1.15 1.73 13.37 0.22 3.49 3.64 4.10-5.00 

1.74 0.5 3.2 12 0.3 2.09 8.16 0.45 3.89 0.37 1.39-4.84 

1.75 0.9 2.74 4.91 0.38 0.26 10.45 0.33 4.39 3.02 1.09-5.00 

1.57 0.5 3.25 5.45 1.73 0.43 19.91 0.34 3.84 2.8 3.91-5.00 

1.87 0.9 2.62 0.51 1.03 0.8 12.99 0.25 3.95 4.06 2.04-4.91 

1.63 0.9 3.99 1.41 0.22 1.58 11.78 0.26 3.97 3.2 2.14-5.00 

1.54 0.9 2.55 9.46 1.41 1.21 6.45 0.36 4.07 2.73 0.99-4.70 

1.59 0.5 3.08 8.78 0.97 2.52 18.86 0.47 4.08 3.96 4.02-4.87 

1.22 0.9 2.81 1.03 2.76 1.57 10.48 0.39 3.85 1.47 1.77-4.82 

1.31 0.9 3.89 13.5 2.54 0.64 11.43 0.38 4.05 2.68 3.98-4.95 

1.42 0.6 3.28 10.6 0.33 1.59 19.29 0.39 1.6 2.12 0.91-4.62 

1.58 0.6 2.25 1.47 0.33 0.44 14.43 0.37 2.89 4.31 0.45-4.82 

1.16 0.6 2.31 12 1.49 1.05 6.34 0.45 0.67 0.71 2.21-5.00 

1.84 0.5 2.11 12.9 1.39 1.29 13.19 0.21 3.65 0.41 1.44-4.82 

The result of the cluster analysis is one single combination that represents the centroid line of the parameters in 

the aforementioned 37 combinations. These values can be estimated to be the starting point for the calibration 

process of VISSIM for mixed traffic conditions.  

Table 4: Cluster Result 

CC0 CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 

1.53 0.90 2.90 -7.52 -1.20 1.41 12.11 0.33 3.34 2.91 

3. RESULTS AND DISCUSSION 

The traffic volume of 6 exits was obtained from the VISSIM model simulation. The optimized parameter 

combination from the cluster analysis has been used as simulation input. The traffic volume from simulation and 

field reading for each exit, along with their GEH value, is shown in Table 5. The purpose of this study is to develop 

a methodology that can be used to calibrate VISSIM parameters for non-lane-based heterogeneous traffic. In 

future studies, researchers can use this method as a standard to calibrate the parameters for similar traffic 

conditions. During calibration, all the simulations can be run manually, or a fraction of the total number of 

simulations can be taken to train a machine-learning model. After the training phase, the model would be used to 

predict the values for the remainder of the combinations. To determine the accuracy of a machine learning model, 

at first, the model was trained using 70% of the total combination and then the model was used to predict the value 
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of the rest of the 30% combinations. The output obtained from the model was compared to the simulation values 

by plotting an actual vs predicted plot. 

Table 5: Final Model Validation 

Exits Field Value Simulated Value GEH 

Exit 1 1784 1622 3.93 

Exit 2 647 547 4.09 

Exit 3 658 522 4.31 

Exit 4 617 536 3.37 

Exit 5 1411 1278 3.63 

Exit 6 537 458 3.54 

 

 
Figure 3: Actual vs. predicted plot 

The accuracy of the prediction can be determined from this plot by considering two values: mean absolute error 

and R2 score. The determined mean absolute error of this plot is found to be 222.84, which is the average distance 

between the actual and predicted data. This can be deemed acceptable as the total traffic count is quite large, and 

this error value is negligible comparatively. On the other hand, our obtained value is 0.958 (near to 1), which 

shows that the plot is a good fit for the predicted line. 

Our obtained values from the cluster analysis can be used directly for future studies. If the given parameter 

combination proves to be inadequate, then the values of the parameters should be adjusted by following the partial 

dependence plots showcased in Figure 4. The output should be verified by determining the GEH value for the 

desired result. If the GEH value exceeds 5%, that particular model should be recalibrated to match the field data. 

Figure 4 presents partial dependence plots, showcasing the sensitivity of total traffic volume to variations in the 

calibration parameters CC0 through CC9. Among these, CC0, CC1, CC2, and CC5 exhibit a decreasing trend in 

total traffic volume with increased values. This suggests that higher values of these parameters correspond to 

reduced traffic volume. Conversely, parameters CC3, CC4, and CC8 indicate an increasing trend in total volume 

as their values rise, suggesting that higher values of these parameters facilitate greater traffic volumes. The clear 

trends observed in these parameters (both increasing and decreasing) validate their significance in traffic dynamics 

and suggest their definitions are well-maintained. 

However, parameters CC6, CC7, and CC9 do not demonstrate a clear trend and primarily reflect micro-level 

behaviors in traffic simulation, and they have a limited observable impact on traffic volume. These findings 

validate the overall calibration approach, confirming the acceptability of the results. Future research should 

explore the less-defined parameters (CC6, CC7, CC9) to better understand their roles in mixed traffic conditions. 

Studies using VISSIM microsimulation for such scenarios can adopt the clustered parameter set as an initial 

calibration point and refine it further using the insights from partial dependence plots. 
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(c)               (d) 

 
(e)                       (f) 

 
(g)            (h) 
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(i)              (j) 

Figure 4: Partial dependence plots of (a) CC0, (b) CC1, (c) CC2, (d) CC3, (e) CC4, (f) CC5, (g) CC6, (h) CC7, 

(i) CC8, (j) CC9 

4. CONCLUSIONS  

The primary objective of this study is to propose a methodology for VISSIM microsimulation model calibration 

for mixed traffic conditions. The proposed methodology can be deemed successful as the output results were able 

to be recreated, thus proving its validity. The accuracy of the predicted value was also found to be within 

acceptable limits.  The progression of this study included field surveying for data collection. The collected data 

was then used to create a microsimulation model in the VISSIM simulation software. The calibration parameters 

were then sampled and put into the simulation to generate output parameters. The acceptable combinations were 

put into a clustering algorithm to determine the centroid line for the parameters that can be useful for future studies. 

Although this study included meticulous steps, there were some limitations encountered while constructing the 

methodology. Pedestrian behavior was not considered at all in the road network, which doesn’t reflect the total 

scenario of the real world inside the simulation model. Besides this, lane-changing behavior.  lateral movement 

parameters and similar variables were kept the default in the model development. Thus, future research should 

address these issues. Also, signals at the intersections were manually controlled, which may result in different 

green times, but for this study, a fixed green time was used by averaging the green time for each approach. Since 

there are some assumptions made to develop this model, it would be better to add more parameters and calibrate 

this model in different traffic conditions to render more applicability of the model. 
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