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ABSTRACT 

A rigorous theoretical investigation has been made on the propagation of nonlinear self-gravito-acoustic shock 

structures (SGASSs) in a quantum plasma system consisting of non-inertial degenerate non-relativistic electron 

species and inertial non-degenerate heavy nucleus species. The nonlinear behaviors for this self-gravitational 

perturbation (SGP) mode in planar geometry has been examined. The Burgers equation has been derived by 

employing the standard reductive perturbation technique. To analyze the Burgers equation numerically, the 

solution of the Burgers equation has been obtained for stationary localized condition. The dissipative force, which 

is effective on heavy elements, plays vital role for the formation of SGASSs in the plasma system under 

consideration. The non-relativistic limit has great effect on the basic properties (amplitude, width, etc.) of the 

SGASSs. The obtained results are applicable in white dwarfs and neutron stars which are the most common 

examples of astrophysical compact objects. 
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1. INTRODUCTION 

Classical plasmas are those in which the macroscopic dynamics of the plasma is not affected by the quantum 

characteristics of the plasma particles. More precisely, the plasmas which shows macroscopic behaviour and also 

abide by the classical mechanical laws are known as classical plasmas. Classical plasmas become quantum plasma 

when the particle number density increases or the temperature of the plasma decreases and in this case the quantum 

behaviour of the plasma particles plays important role for the macroscopic properties and dynamics. Degenerate 

matter, where quantum mechanical effects is the dominating factor, exist in the cores of dead stars. Degenerate 

matter is strictly followed by the Pauli’s exclusion Principle, which gives the rule that two fermionic particles can 

not stay at the same energy (quantum) state. Degeneracy pressure arises during the contraction of a giant star 

because during reduction of volume, particles with same energy forces into the upper state to follow the Pauli’s 

exclusion principle. Such plasmas (which contains degenerate matter) are known as degenerate quantum plasmas.  

In astrophysical compact objects, matter exists under extreme conditions (Chandrasekhar, 1931; Chandrasekhar, 

1931a; Chandrasekhar, 1935; Chandrasekhar, 1939; Chandrasekhar, 1964; Chandrasekhar and Tooper, 1964a). In 

such plasma systems, particle (e.g., electron) number density is very high. The dense stars like neutron star 

prevents gravitational shrinking due to the presence of degenerate pressure. The expression for degenerate 

pressure (Chandrasekhar, 1931; Chandrasekhar, 1931a; Chandrasekhar, 1935) for non-relativistic limit is given 

by 𝑃𝑠 = 𝐾𝑠𝑛𝑠
𝛾
, where 𝛾 = 5/3 and 𝐾𝑠 = 3𝜋ℏ2/5𝑚𝑠 ; Ps  represents degenerate pressure; ns  represents particle 

number density; Ks  represents proportionality constant; 𝑠 = 𝑒 for electron species.  

Many authors (Shukla and Eliasson, 2006; Marklund and Brodin, 2007; Mahmood et al., 2003; Haas, 2007; 

Michael et al., 2007; Misra and Samanta, 2008; Misra et al., 2010; Hossen and Mamun, 2015; Hossen and Mamun, 

2014; Roy et al., 2012; Mamun, 2017; Ema et al., 2015; El-Taibany and Mamun, 2012; Hosen et al., 2016) have 

studied the propagation of nonlinear waves in quantum plasma system. Marklund and Brodin (Marklund and 

Brodin, 2007) generates the expressions for spin- 1/2 electron plasmas. Mahmood et al. (Mahmood et al., 2003) 

investigated the nonlinear propagation of ion acoustic wave in a homogeneous magnetized plasma. Michael et al. 

(Michael et al., 2007) studied ion-acoustic waves in a five component plasma. Misra and Samanta (Misra and 

Samanta, 2008) observed the existence of small but finite amplitude quantum electron-acoustic double layers in a 

magnetized plasma system having two distinct groups of cold and hot electrons by using a quantum 

magnetohydrodynamic model. Hossen and Mamun (Hossen and Mamun, 2015) examined nonlinear structures in 

a dense degenerate plasma. Roy et al. (Roy et al., 2012) have investigated the nonlinear propagation of 

electrostatic waves in a plasma system having cold ion fluid and ultra-relativistic degenerate electrons. Mamun 

(Mamun, 2017) studied nonlinear waves in a three component plasma.   
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So far we know, a plasma system (which describes gravito-nucleus acoustic waves) having inertia-less non-

relativistic degenerate electrons and inertial heavy element has not been considered by any authors. Actually, we 

have first disclosed the concept of gravito-nucleus acoustic wave (self-gravitational wave/perturbation), where we 

have introduced the self-gravitational potential in place of electrostatic potential for the first time (Asaduzzaman 

et al., 2017). In our work, self-gravitational potential is very important because we have studied the self-

gravitational perturbation mode of very large scale length and slow time scale in white dwarfs and neutron stars, 

which are relics of stars and have no thermonuclear burning and therefore thermal pressure is not present here 

(Chandrasekhar, 1931; Chandrasekhar, 1931a; Shukla and Eliasson, 2011) to support the gravitational load of 

their own mass. Since our work based on very long wavelength and low-frequency perturbation mode, all the 

interactions of the particles excluding interaction with the self-gravitational field of such compact stars have been 

neglected.  We have done a series of work based on this model and the present work is also important because no 

authors have investigated the basic characteristic of shock potential by considering only the heavy element as the 

source of dissipation and the non-relativistic electron as the source of restoring force with the consideration of 

self-gravitational potential only. Therefore, in our present work, we have investigated  the SGASSs by considering 

a plasma system consisting of  heavy element and inertia-less non-relativistic degenerate electrons. 

We have organized the paper as follows:  Section 2 contains the governing equations. Section 3 represents the  

methodology. Section 4 includes  the  parametric investigation and results and finally section 5 represents the 

conclusion. 

2. GOVERNING EQUATIONS 

We consider the nonlinear propagation of SGASSs in a degenerate plasma containing non-relativistic electrons 

and inertial heavy element/nuclei. At equilibrium, 𝑛𝑒0 = 𝑍ℎ𝑛ℎ0 (where 𝑛𝑒0 is the electron number density and 𝑛ℎ0 

is the heavy nuclei number density). 

   

The nonlinear propagation of SGASSs  in the plasma system under consideration can be expressed mathematically 

by Equations (1)-(4) as: 

 
𝜕ψ

𝜕𝑥
= −𝐾 

𝜕𝑛𝑒
𝛾−1

𝜕𝑥
,                          (1)  

 
𝜕𝑛ℎ

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑛ℎ𝑢ℎ) = 0,                              (2) 

  
𝜕𝑢ℎ

𝜕𝑡
+ 𝑢ℎ

𝜕𝑢ℎ

𝜕𝑥
= −

𝜕ψ

𝜕𝑥
+ η

∂2𝑢ℎ

𝜕𝑥2 ,                     (3) 

   
𝜕2ψ

𝜕𝑥2 = 4πG[𝑚ℎ𝑛ℎ
∕

+ 𝑚𝑒𝑛𝑒
∕
].                      (4) 

In the above equations, the wave potential (self-gravitational potential) is denoted by ψ; the nucleus fluid speed 

is expressed by 𝑢ℎ; 𝑛𝑒 represents electron number density; heavy nucleus number density is represented by 𝑛ℎ ; 

the rest mass of electron and heavy nucleus are represented by 𝑚𝑒 and 𝑚ℎ respectively; x  represents space 

variable; t represents time variable; η represents kinematic viscosity; 𝐾 =
𝐾𝑒

𝑚𝑒
(

𝛾

𝛾−1
) ; 𝛾 =

5

3
;  𝐾𝑒 = 3𝜋ℏ2/5𝑚𝑒; G 

represents gravitational constant; 𝑛ℎ
∕

= 𝑛ℎ − 𝑛ℎ0 ; 𝑛𝑒
∕

= 𝑛𝑒 − 𝑛𝑒0 ; 𝑛ℎ
∕
 and 𝑛𝑒

∕
 represents perturbed particles; 𝑛ℎ 

and 𝑛𝑒 represents unperturbed particles. 

In the plasma model under consideration, heavy element is the source of inertia and electron (degenerate) is the 

source of restoring force. We have not written the equation of continuity and equation of momentum for electron 

because we get the value of ne directly from Eq. (1).  

3. METHODOLOGY 

To study the fundamental characteristics of shock potential, we need to analyse the solution of the Burgers 

equation which can be derived as follows: 

We consider the stretched coordinates (Shukla and Yu, 1978; Washimi and Taniuti, 1966) 

𝜉 = 𝜖(𝑥 − 𝑉𝑝𝑡) ,                        

𝜏 = 𝜖2𝑡 ,                                       
}                    (5)    
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where 𝜖  measures the weakness of  amplitude or dissipation (0 < 𝜖 < 1);  𝑉𝑝  represents propagation speed (phase 

velocity) of the SGASSs. We can expand 𝑛ℎ, 𝑢ℎ, and ψ in terms of 𝜖 as 

nh= nh0+ϵnh
(1)+ϵ2nh

(2)+ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ , 

uh= 0+ϵ uh
(1)+ϵ2 uh

(2)+ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙,   

ψ= 0+ϵψ(1)+ϵ2ψ(2)+ ∙ ∙ ∙ ∙ ∙ ∙  ∙ ∙ ∙ ∙ ∙ .

}                    (6) 

We can get various sets of equation by using Eqs. (5) and (6) into Eqs. (1) - (4). If we take the lowest order 

coefficient of 𝜖, we obtain 

𝑢ℎ
(1) =

ψ(1)

𝑉𝑝
,                   (7) 

𝑛ℎ
(1) =

𝑛ℎ0

𝑉𝑝
2 ψ(1),                   (8) 

𝑉𝑝 = √
𝛾−1

𝛽𝐹
 ,                   (9) 

where 𝐹 =
1

𝐾𝑛𝑒0
𝛾−1 and 𝛽 =

𝑚𝑒𝑍ℎ

𝑚ℎ
 . 

Here, equation (7) is the momentum equation, Eq. (8) is the first order continuity equation, and Eq. (9) is the 

expression for phase speed.  

For the next higher order coefficient of 𝜖, we obtain a set of equations as 

𝜕𝑛ℎ
(1)

𝜕𝜏
− 𝑉𝑝

𝜕𝑛ℎ
(2)

𝜕𝜉
+

𝜕

𝜕𝜉
[𝑛ℎ0𝑢ℎ

(2) + 𝑛ℎ
(1)

𝑢ℎ
(1)] = 0                              (10) 

𝜕𝑢ℎ
(1)

𝜕𝜏
− 𝑉𝑝

𝜕𝑢ℎ
(2)

𝜕𝜉
+ 𝑢ℎ

(1) 𝜕𝑢ℎ
(1)

𝜕𝜉
+

𝜕ψ(2)

𝜕𝜉
− 𝜂

𝜕2𝑢ℎ
(1)

𝜕𝜉2 = 0,                            (11) 

𝑛ℎ
(2)

−  𝛽𝑛ℎ0
𝐹ψ(2)

(𝛾−1)
+ 𝛽𝑛ℎ0

(2−𝛾)𝐹2

2(𝛾−1)2
[ψ(1)]2 = 0 .             (12) 

We deduce the Burgers equation by using Eqs. (7) – (12) and by performing some mathematical calculation, which 

is expressed as 

𝜕ψ(1)

𝜕𝜏
+ 𝐴ψ(1) 𝜕ψ(1)

𝜕𝜉
= 𝐶

𝜕2ψ(1)

𝜕𝜉2  ,     (13) 

where the nonlinear coefficient A and the dissipation coefficient C are  

𝐴 = [
3

2𝑉𝑝
+

𝑉𝑝(2−𝛾)𝐹

2(𝛾−1)
],                                         (14) 

𝐶 =
𝜂

2
 .                                                  (15) 

Assuming  𝑇 = 𝐶𝜏 and 𝑅 = 𝐴/𝐶 we can write Eq. (13) as 

𝜕ψ(1)

𝜕𝑇
+ 𝑅ψ(1) 𝜕ψ(1)

𝜕𝜉
=

𝜕2ψ(1)

𝜕𝜉2  .                                                (15a) 

4. PARAMETRIC INVESTIGATION AND RESULTS  

We have considered a dissipative plasma system having inertia-less electrons (non-relativistically degenerate) and 

nondegenerate heavy nuclei/element and have also studied the nonlinear propagation of SGASSs in the considered 

plasma system.  

In order to get the shock structure solution of Eq. (13), which is needed for the numerical analysis of the SGASSs, 

we transform 𝜉 and 𝜏 to 𝜁 = 𝜉 − 𝑢0𝜏 (𝑢0 is the constant velocity) and 𝜏 = 𝜏. After using the conditions, viz., 

ψ(1) → 0,  
𝑑ψ(1)

𝑑𝜁
→ 0, at 𝜁 → ∞, the shock structure solution of Eq. (13) with ψ(1) = ψ  can be written as 

 ψ = ψ0  [1 − 𝑇𝑎𝑛ℎ (
𝜁

Δ
)],                                          (16)  
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where ψ0 = 𝑢0/𝐴  and Δ = 2C/𝑢0.                 (17) 

Similarly, Eq. (15a) has the solution 

ψ = ψ𝑚  [1 − 𝑇𝑎𝑛ℎ (
𝜁

Δ1
)],                 (18) 

with ψ𝑚 = 𝑢0/𝑅  and Δ1 = 2/𝑢0.                (19) 

Equation (17) reveals that the amplitude ψ0 of the SGASSs has linear relation with shock speed (𝑢0 ) and has 

inverse relation with nonlinear coefficient (A). The width Δ has inverse (linear) relation with 𝑢0 (C). We have 

analyzed the solution of the Burgers equation for investigating the salient features of the SGASSs. Figs. 1-6 

represents the results which we have found from the numerical calculations.  

 

Figure 1:  Showing the formation of self-gravito-

acoustic shock structures for various 𝑛𝑒0 with  𝜂 = 1, 

where 𝑢0 = 0.05 cm/sec, 𝑍ℎ  =79, and  𝑚ℎ  = 197𝑚𝑝  

(𝑚𝑝  is the mass of proton). 

 

Figure 2: Showing the change of nonlinear profile with 

𝜂 for 𝑛𝑒0= 1038 cm-3, 𝑢0 =  0.05 cm/sec, 𝑍ℎ  =79, and  

𝑚ℎ  = 197𝑚𝑝. 

Equation (16) and (17) clearly discloses that the SGASSs exists when C > 0. Since 𝑈0 has positive values, the 

SGASSs with positive potential exist for positive values of A and the SGASSs with negative potential exist for 

negative values of A. The nonlinear coefficient A has the domonant role for the potential of our plasma model. It 

is obvious from Fig. 1 that the SGASSs are formed due to the presence of nonlinearity and dissipation and the 

strength (amplitude) of the SGASSs increases as the particle (electron) number density increases, which is similar 

to the results of Asaduzzaman and Mamun (Asaduzzaman and  Mamun, 2020), Islam et al. (Islam et al., 2021) 

and Ema et al. (Ema et al., 2015). It is also observed from Fig. 1 that the amplitude of the SGASSs increases 

largely for very large particle number density.  .Fig. 2 clearly indicates that for positive values of self-gravitational 

potential (ψ), the shock strength associated with A > 0 has no variation with the kinematic viscosity but the 

steepness of the SGASSs changes largely with the kinematic viscosity. The steepness of the SGASSs increases 

when the kinematic viscosity decreases, that means the shock potential sharply falls to minimum value for lower 

kinematic viscosity. The result obtained from Fig. 2 has the similarity with the result of Abdelwahed et al. 

[Abdelwahed et al., 2016], Hafez et al. [Hafez et al., 2017], Asaduzzaman and Mamun [Asaduzzaman and 

Mamun, 2020] and Islam et al. [Islam et al., 2021].  

 

Figure 3: A versus 𝑛𝑒0  curve for 𝑍ℎ  =79, 𝜂 = 1 

and  𝑚ℎ  = 197𝑚𝑝. 

 

Figure 4:  Width 𝚫 versus 𝒖𝟎 plot when 𝜼 = 𝟏. 
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Fig. 3 shows the changing of nonlinear coefficient A with the number density of degenerate electron. It is clear 

from Fig. 3 that the nonlinear coefficient A decreases as the electron number density increases. The change of 

width Δ of the SGASSs with the speed of propagation (𝑈0) is shown in Fig. 4 and it is also obvious from Fig. 4 

that 𝑈0 has inverse effect on the width of the SGASSs.  

Fig. 5 displays the variation of the shock potential found from Eq. (18) for 𝐑 > 𝟏 (𝐀 > 𝐂), 𝐑 = 𝟏 (𝐀 = 𝐂) and 

𝐑 < 𝟏 (𝐀 < 𝐂). Fig. 5 reveals that the strength of the shock potential decreases as R increases. We also observed 

from Fig. 5 that the shock potential increases when the dissipation coefficient C becomes larger than the nonlinear 

coefficient A, that means Fig. 5 clearly indicates that the dissipation coefficient C is responsible for the formation 

of the self-gravito-acoustic shock structures. The variation of phase velocity with the electron number density is 

displayed in Fig. 6, which discloses that phase velocity increases exponentially with the electron number density. 

Fig. 6 also indicates that the phase velocity becomes very large for very large particle number density and for a 

certain very large particle number density the phase velocity becomes maximum. After a certain very large particle 

number density the phase velocity becomes larger than the speed of light and which is not acceptable. 

 

Figure 5: Formation of SGASSs for various R with  

𝑢0 =  0.05 cm/sec and 𝜂 = 1. 

 

Figure 6: Phase velocity 𝑉𝑃 versus electron number 

density (𝑛𝑒0) curve with 𝑍ℎ  =79 and  𝑚ℎ  = 197𝑚𝑝. 

5. CONCLUSIONS 

We have studied the propagation of SGASSs associated with the self-gravitational potential in a degenerate 

quantum plasma system consisting of non-relativistically degenerate electrons and inertial heavy nuclei/element. 

We have obtained the solution of the Burgers equation and have also numerically analyzed to found the basic 

properties of SGASSs. The findings of our research work can be pinpointed as follows:  

• the SGASSs have positive potential when the nonlinear coefficient has positive value (i.e., when A > 0).  

• the strength of SGASSs varies linearly with the electron number density that means the amplitude 

(strength) decreases as the number of particles/cm3 decreases.  

• the amplitude of the SGASSs (i.e.,ψ > 0) remains unchanged with kinematic viscosity (𝜂). 

• The SGASSs become more abrupt when 𝜂 decreases. 

• The number density of electron has inverse relation with nonlinear coefficient. 

• the width of the SGASSs and the shock speed are inversely related. 

• when the ratio of nonlinear coefficient and dissipation coefficient increases (i.e., when R increases) then 

the amplitude of the SGASSs decreases. 

• the phase velocity changes exponentially with the electron number density. 

We finally stress that the results obtained from our current study should be helpful for understanding the 

fundamental characteristics of the self-gravitational potential structures in astrophysical compact objects like 

white dwarfs and neutron stars where matters exist under extreme conditions. 
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