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Abstract 
An attempt was made to forecast the 17 monthly climatic variables for 2005-2012 of Dinajpur using the univariate 
Box-Jenkin’s ARIMA (autoregressive integrated moving average) modeling techniques for 1948-2004. The 8 years 
data for 1973-1980 were missing and those data were replaced with the 4 years monthly forecasted data for 1948-1972 
and 1981-2004 (reversing the years). The well fitted ARIMA (autoregressive integrated moving average) models were 
selected from the possible 16 ARIMA models based on the minimum root mean square forecasting errors (RMSFE) 
with the last 24 observations for all the cases and the residuals followed stationarity and normality. Several outliers 
were detected in the data which were replaced by the forecasted value. The fitted model for sunshine data (1989-2004) 
was found ARIMA (1, 1, 1)(1, 1, 1)12  and for evaporation data (1987-2000) was ARIMA (1, 1, 2)(1, 1, 1)12. . The 
findings supports that the changing term of the climatic variables may have adverse impacts on the crop production in 
this country. 
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Introduction 
Climatic pattern has significant impact on the 
agricultural field, soil moisture regime, crop 
phenology, crop productivity and so on. Climatic 
variables may vary from time to time and from space to 
space and these variations may hamper agricultural crop 
production. 
 

Wheat is the second most important cereal crop after 
rice in Bangladesh and Dinajpur is the highest wheat 
producing district having long tradition of its 
cultivation. Wheat is much sensitive to climatic 
variation and change. So, forecasting of climatic 
variables are necessary for the planning of wheat 
production in this district. The prediction of atmospheric 
parameters is essential for various applications like 
climate monitoring, drought detection, severe weather 
prediction, agriculture and production, planning in 
energy and industry, communication, pollution 
dispersal etc. But the weather prediction is a complex 
process and a challenging task for researchers. The 
accurate prediction of weather parameters is a difficult 
task due to the dynamic nature of atmosphere.  So, for 
proper planning of expected crop yields, the study of 
the temporal rainfall and its forecasting are much 
needed. In this study, it was tried to forecast 17 
climatic variables using the monthly data by fitting the 
ARIMA model. 

Methodology 
Sources of data  
The daily data were taken from Bangladesh 
Meteorological Department, Dhaka. The monthly data 
used in the analyses were total rainfall in millimeter 

(TR), maximum rainfall in millimeter (MXR), total 
frequency of insignificant (<5mm) rain (TFIR), 
average dry bulb temperature in celcius (ADBT), 
average maximum temperature in celcius (AMXT), 
average minimum temperature in celcius (AMNT), 
average range temperature in celcius (ARNT), average 
wet bulb temperature in celcius (AWBT), Average 
difference of dry bulb and wet bulb temperature in 
celcius {AT(D-W)}, average relative humidity in 
percentage (ARH), Average difference of relative 
humidity between morning and evening in percentage 
ARH(0-12), average wind speed in knots (AWS), 
average maximum wind speed in knots (AMWS), 
average sea level pressure in millibar (ASLP) and 
average cloud in octas (AC) were collected for 1948-
1972 and 1981-2004. The monthly data of TR, MXR 
and TFIR were made by accumulating the daily data 
but the monthly data for the rest of the variables were 
obtained from the average of the daily data. The 
missing values for 1973-1976 and 1977-1980 were 
replaced by the forecasted values which were obtained 
from the fitted ARIMA models for 1948-1972 and 
1981-2004 (reversing the year). The average sunshine 
hour (ASH) during 1989-2004 and average 
evaporation during 1987-2000 were collected too. 
Finally, ARIMA models were fitted with the missing 
replaced data taking the 684 monthly observations for 
1948-2004 and the values for 2005-2008 were 
forecasted. Again, the data for 2009-2012 were 
forecasted from the missing replaced and forecasted 
data taking the 780 observations for 1948 - 2008 by the 
similar process. The variables ASH and AE were 
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forecasted for 2005-2008 from the fitted ARIMA model for 1987-2004 and 1989-2000, respectively.  

Methodologies 
In this section, the methodologies used in the analyses 
have been discussed. Univariate Box-Jenkin’s ARIMA 
model was fitted to forecast the monthly data for 
January 2008-December 2012. After confirmed the 
stationary series, an effort was made for an ARIMA 
model to express each observation as a linear function 
of the previous value of the series (autoregressive 
parameter) and of the past error effect (moving average 
parameter). The available data were divided into 
training, validation and test sets. The training set was 
used to build the model, the validation set was used for 
parameter optimization and the test set was used to 
evaluate the model. The adequacy of the above model 
was checked by comparing the observed data with the 
forecasted results. In this study, the data for the last 
two years were used to compare with the fitted model 
forecasts for the years and the models were selected for 
the minimum root mean square forecasting error 
(MRMSFE) of the data set of those two years. The 
diagnostic techniques namely histogram of residuals, 
normal probability plot of residuals, autocorrelation 
function (ACF) and Partial autocorrelation (PACF) 
display of residuals, Time series (TS) plots for residual 
versus fitted values and TS plots for residual versus 
order of the data were used for checking residuals of 
ARIMA models. Box-Cox transformation was used for 
variance stabilization and the transformation of the 
data to get stationary series from non-stationary series, 
Pankraiz (1991). The software package Minitab 13 was 
used to fit the ARIMA models. A detailed description 
of the non-seasonal and seasonal ARIMA models and 
the standardized notation used in this paper is set in the 
Appendix 1. 
 

Box Jenkins modelling strategy and ARIMA model 
Box Jenkins (1976) formalized the ARIMA modeling 
framework in the three steps: (I) Identification, (II) 
Estimation and (III) Verification. In the identification 
stage, it is tried to identify that how many terms to be 
included is based on the autocorrelation function 
(ACF) and partial autocorrelation function (PACF) of 
the differenced and/or transformed time series (Box 
Jenkins, 1976). In the estimation stage, the coefficients 
of the model are estimated by means of the maximum 
likelihood method. The verification of the model is 
done through diagnostic checks of the residuals 
(histogram or normal probability plot of residuals, 
standardized residuals and ACF and PACF of the 
residuals). The performance of the ARIMA models is 
often tested through comparison of prediction with 
observation not used in the fitted model. An 

appropriate ARIMA model provides minimum mean 
squared error forecasts among all linear univariate 
models with fixed coefficients. It can produce point 
forecasts for each time period and interval forecasts 
constructing a confidence interval around each point 
forecast. To have the 95% interval for each forecast the 
formulae f ± 2s is used, where f denotes a forecast and 
s is its standard error. The forecasts for a stationary 
model converge to the mean of the series and the speed 
of converging movement depends on the nature of the 
model. For non-stationary model the forecasts do not 
converge to the mean.  
 

Results and Discussions 

The well fitted ARIMA models for all the variables 
during 1948-1972, 1981-2004 (reversing the years), 
1948-2004 and 1948-2004 were selected from the 16 
possible ARIMA models on the basis of minimum root 
mean square forecasting error (MRMSFE) for the last 
two years of 24 observations. The ACF displays for 
residual autocorrelations for the estimated models were 
fairly small relative to their standard errors for all the 
variables. The histograms of the residuals were 
symmetrical suggesting that the shocks may be 
normally or approximately normally distributed. The 
normal probability plots of the residuals did not 
deviate badly from straight lines (fairly close to a 
straight line), again suggesting that the shocks are 
normal. The outliers of 1981 for AMNT, ARNT, ARH, 
AWS, AWBT and ARH(0-12) were replaced by the 
forecasted value of 1981 from the fitted ARIMA 
models for January 1982-December 2004 by reversing 
the years and those models are presented in the Tables 
1-16. The data for April 1948 of ASLP (989.48) and 
September 1960 of ASLP (978.51) were detected as 
outliers from the two drops in the TS plot of ASLP for 
1948-1972. Firstly, the data for September 1960 of 
ASLP (978.51) was replaced by the forecasted value of 
1000.13 for September 1960 from the well fitted 
ARIMA models for 1961-1972 (reversing the years). 
After replacing the outlier by the forecasted value, 
ARIMA model for 1949-1972 (reversing the years) 
was fitted and the year 1948 was forecasted. 
Afterwards, the data for April 1948 of ASLP (989.48) 
was replaced by the forecasted value of 1006.52 taken 
from the forecasted year 1948. The fitted ARIMA 
Models selected from the possible 16 ARIMA 
(autoregressive integrated moving average) models 
based on minimum root mean square forecasting error 
(RMSFE) with the last 24 observations for all the cases 
are presented in the Tables 1-16 and TS plots of point 
and interval forecasts for the models of the variables 
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are shown in the figures 1-18. Furthermore, some 
obtained point forecasts are presented in the Tables 1-

16 but interval forecasts are not shown.  

 

Table 1. Models for total rainfall (TR) and their results 

Variable Model Equation of Model MRMSFE MSE 

SQ RT of TR(1948-72) ARIMA(1, 0, 1)(0, 1, 1) 
 

(1 -  0.8739B) ∇12yt = -0.00555+(1 - 0.7768B)(1 -  0.9217B12 ) εt 

   5.2150 15.06 

SQ RT of TR(1981-04) ARIMA(1, 0, 0)(1, 1, 1) (1 -  0.0324B) (1 + 0.0449 B12) ∇12 yt = -0.02654 + (1 -  0.9295 B12) ) εt 

 4.8578 15.94 

S QRT of TR(1948-04) ARIMA(1, 0, 0)(1, 1, 1) (1 -  0.089B)(1 -  0.0131B 12) ) ∇12 yt  = 0.037875 + (1 -  0.9616B12) εt 

 3.8943 13.66 

SQ RT of TR(1948-08) ARIMA(2, 0, 0)(1, 1, 1) (1 -  0.0774B)(1 -  0.0777B2)(1 -  0.0287 B 12 ) ∇12 yt  = 0.035531 + (1 -  0.9996 B 12) εt 

 0.0132 12.43 

 * MRMsFE = Minimum root mean square forecasting error                          MSE = Mean square error 

Table 2. Models for total frequency of insignificant rain (TFIR) and their results 

Variable Model Equation of Model MRMSFE MSE 

TFIR (1948-72) ARIMA(1, 0, 0)(0, 1, 1)12 
(1 - 0.1692B) ∇12 yt = 0.05077 + (1 - 0.9348) εt 

 2.6427 6.53 

TFIR(1981-04) ARIMA(1, 0, 0)(1, 1, 1) 12 (1 - 0.0521B) (1 +  0.0654B12) ∇12 yt = 0.01848 + (1 - 0.9327B12) εt 

 2.4707 6.14 

TFIR(1948-04) ARIMA(1, 1, 1)(0, 1, 1) 12 (1 - 0.0758 B) ∇12  ∇ yt = -0.00031 + (1 - 0.9562B)(1- 0.9528B12) εt 

 2.3263 5.70   

TFIR(1948-08) ARIMA(0, 1, 1)(1, 1, 1) 12 
(1 - 0.0303B12) ∇12  ∇ yt = -0.0003176 + (1- 0.9492B) (1 - 0.9925B12) εt 
 0.1755 5.29 

 
Table 3. Models for maximum rainfall (MXR) and their results 

Variable Model Equation of Model MRMSFE MSE 

SQRT of MXR(1948-72) ARIMA(1, 0, 1)(1, 0, 1) 12 (1 -  0.7381B)(1 -  0.9984B12) yt = -0.003462 + (1 - 0.6737B)(1 - 0.9328 B12) εt 
 2.9494 6.16 

SQRT of MXR(1981-04) ARIMA(1, 1, 1)(1, 0, 1) 12 
(1 +  0.0168B)(1 -  0.9986B12) ∇ yt = -0.000099 + (1 -  0.8923 B12) εt 

 3.8419 7.33 

SQRT of MXR(1948-04) ARIMA(1, 0, 0)(1, 1, 1) 12 
(1 -  0.0227B)(1 -  0.0109 B12) ∇12 yt = 0.024318 + (1 -  0.9588 B12) εt 

 2.8846 5.74 

SQRT of MXR(1948-08) ARIMA(1, 0, 0)(1, 1, 1) 12 
(1 -  0.0197B)(1 -  0.0354 B12) ∇12 yt = 0.023802+(1 -  0.9989 B12) εt 

 0.0247 5.23 

 

Table 4. Models for average relative humidity (ARH) and their results 

Variable Model Equation of Model MRMSFE MSE 

ARH(1948-72),(λ=3)  ARIMA(1, 0, 0)(0, 1, 1) 12 (1 - 0.3606B) ∇ 12yt  = -248.19 + (1 - 0.9658B12) εt 
 13987.52 288869809 

ARH (1982-04),(λ=3) ARIMA(0, 1, 1)(1, 1, 1) 12 
(1 - 0.0854 B12) ∇∇ 12yt  = -30.13 + (1 - 0.6956 B)(1- 0.8266 B12) εt 

 18290.84 423950172 

ARH (1981-04),(λ=3) ARIMA(1, 1, 1)(0, 1, 1) 12 
(1 - 0.3959 B) ∇∇ 12yt  = -9.650 + (1 - 0.9771 B)(1- 0.8247 B12) εt 
 16825.02 365751625 

ARH (1948-04),(λ=3) ARIMA(1, 1, 1)(0, 1, 1) 12 
(1 - 0.3956B) ∇∇ 12 yt  = -2.053 + (1 - 0.9415 B)(1- 0.8642 B12) εt 
 25268.87 315734934 

 

Table 5. Models for average maximum temperature (AMXT) and their results 

Variable Model Equation of Model MRMSFE MSE 

Ln of AMXT(1948-72) ARIMA(0, 1, 1)(1, 1, 1) 12 
(1 +  0.0269B12) ∇∇12yt  =  0.000048 +  (1 - 0.776 B) (1- 0.9474B12 ) εt 

 0.0463 0.0013 

Ln of AMXT (1981-04) ARIMA(0, 1, 1)(0, 1, 1) 12 ∇∇12yt    = -0.00005 + (1 - 0.8682 B) (1 - 0.9177 B12) εt  
 1.8907 0.0018 

SQRT of AMXT (1948-04) ARIMA(1, 0, 0)(0, 1, 1) 12 (1 - 0.628B) ∇12yt  = -0.0007 + (1- 0.9084B12 ) εt 

 0.1330 0.0120 

SQRT of AMXT (1948-08) ARIMA(1, 0, 0)(0, 1, 1) 12 
(1 - 0.6281B) ∇12yt   = -0.0007 + (1- 0.9085 B12 ) εt 

 0.00003 0.0112 
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Table 6. Models for average minimum temperature (AMNT) and their results 

Variable Model Equation of Model MRMSFE MSE 

AMNT(1948-72) ARIMA(1, 0, 1) (0, 1, 1) 12 (1 -  0.8234B) ∇12yt   =  0.004446 + (1 -  0.5666B) (1- 0.9606B12 ) εt 0.4539 0.728 

AMNT (1982-04) ARIMA (1, 1, 1)(0, 1, 1) 12 (1 -  0.2559B) ∇∇12yt   =  - 0.0004017 + (1 -  0.9088 B)(1- 0.9129 B12 ) εt 0.6902 0.560 

AMNT (1981-04) ARIMA(1, 0, 0)(0, 1, 1) 12 (1 -  0.3414 B) ∇12 yt  =  -0.025249  +  ( 1 -  0.9388 B12 ) εt 0.3501 0.512 

AMNT (1948-04) ARIMA (1, 0, 1)(1, 1, 1) 12 (1 -  0.85B)(1 +  0.0646 B12) ∇12yt   =  0.001553 + (1 -  0.5812B)(1 - 0.948) εt 0.8889 0.550 

AMNT (1948-08) ARIMA (1, 1, 1)(1, 1, 1) 12 (1 -  0.1925 B)(1 +  0.0849 B12) ∇∇12yt  =  0.000002 +  (1 -  0.864B)(1 -  0.9686 B12) εt 0.0592 0.529 

 

Table 7. Models for average range temperature (ARNT) and their results 

Variable Model Equation of Model MRMSFE MSE 

ARNT(1948-72) ARIMA (0, 1, 1)(1, 1, 1) 12 (1 + 0.0874B) ∇∇12yt  = 0.0024 + (1 - 0.5504B)(1 - 0.9459 B12) εt  2.2115 1.302 

ARNT(1982-04) ARIMA (0, 1, 1)(0, 1, 1) 12 ∇∇12yt  = 0.00099 + (1 - 0.7659B)(1 - 0.9193B12) εt  0.9431 1.034 

ARNT(1981-04) ARIMA (0, 1, 1)(1, 1, 1) 12 (1 + 0.1437B12) ∇∇12yt  = 0.000665 + (1 - 0.8157 B)(1 - 0.9023B12) εt  0.7979 0.980 

ARNT(1948-04) ARIMA (1, 0, 0)(0, 1, 1) 12 (1 - 0.6911B) ∇12yt  = -0.00065 + (1 - 0.8594B12)) εt  0.1062 0.010 

ARNT(1948-08) ARIMA (1, 0, 0)(0, 1, 1) 12 (1 - 0.6939 B) ∇12yt  = (1- 0.8598) εt  0.0002 0.009 
 

Table 8. Models for average wind speed (AWS) and their results 

Variable Model Equation of Model MRMSFE MSE 

SQRT of AWS(1948-72) ARIMA (2, 0, 0)(1, 0, 1)12 (1 - 0.4642B - 0.1508B2)(1- 0.9864B12)yt  =  0.0049 + (1- 0.7602 B12) εt  0.2200 0.0553 

SQRT of AWS(1982-04) ARIMA (0, 1, 1)(0, 1, 1) 12 ∇∇12yt  = -0.00014 + (1- 0.6871B)(1 - 0.8781 B12) εt  0.2251 .01910 

SQRT of AWS(1981-04) ARIMA (1, 0, 1)(1, 1, 1) 12 (1 - 0.9389B)(1- 0.0082 B12) ∇12 yt  = 0.00079 + (1 - 0.6122 B)(1 - 0.8805 B12) εt  0.1320 0.0178 

SQRT of AWS(1948-04) ARIMA (1, 1, 1)(0, 1, 1) 12 (1 - 0.2864B) ∇∇12yt  =  0.00006 + (1- 0.8755B)(1 - 0.8255B12) εt  0.0765 0.0311 

SQRT of AWS(1948-08) ARIMA (0, 1, 1)(0, 1, 1) 12 ∇∇12 yt  =  0.00007 + (1- 0.7376B)(1 - 0.8359 B12) εt  0.0018 0.0306 
 

Table 9. Models for average maximum wind speed (AMWS) and their results 

Variable Model Equation of Model MRMSFE MSE 

SQRT of AMWS (1948-72) ARIMA (1, 0, 0)(1, 1, 1)12 (1 - 0.437B)(1 - 0.0481B12) ∇12yt  = 0.0039 + (1 - 0.9009 B12
 ) εt 1.013 0.541 

Ln of AMWS (1981-04) ARIMA (2, 0, 0)(1, 1, 1) 12 (1 - 0.0452B - 0.26B2)(1+ 0.0189 B12
 ) ∇12yt = 0.0211+ (1 - 0.9107 B12

 ) εt 0.4937 0.161 

SQRT of  AMWS (1948-04) ARIMA(0, 1, 1)(1, 0, 1) 12 (1 - 0.9938 B12) ∇yt = -0.000001 + (1 - 0.8649B)(1 - 0.9317 B12
 ) εt 0.3388 0.424 

SQRT of AMWS(1948-08) ARIMA(0, 1, 1)(1, 0, 1) 12 (1 - 0.994 B12
 ) ∇yt = -0.0000008 + (1 - 0.8645B)(1 - 0.9334 B12) εt 0.0028 0.396 

 

Table 10. Models for average cloud (AC) and their tesults 

Variable Model Equation of Model MRMSFE MSE 

AC(1948-72) ARIMA (1, 0, 0)(0, 1, 1)12 (1 - 0.026B) ∇12yt = -0.0194 + 1 - 0.9417 B12) εt 0.4270 0.340 

AC(1981-04) ARIMA (0, 1, 1)(1, 1, 1) 12 (1 + 0.1167B12) ∇∇12yt = 0.000543 + 1 - 0.9633 B)(1 - 0.8713 B12) εt 0.9452 0.447 

AC(1948-04) ARIMA (0, 1, 1)(1, 1, 1) 12 (1 + 0.0548 B12) ∇∇ 12yt = 0.000183 + (1 - 0.9047B)(1 - 0.9163B12) εt 0.7844 0.375 

AC(1948-08) ARIMA (0, 1, 1)(1, 1, 1) 12 (1 + 0.0532 B12) ∇∇12yt = 0.00018 + (1 - 0.9047B)(1 - 0.9176 B12) εt 0.0024 0.350 

 

Table 11. Models for average dry bulb temperature (ADBT) and their results 

Variable Model Equation of Model MRMSFE MSE 

ADBT(1948-72) ARIMA (1, 0, 1)(0, 1, 1)12 (1 - 0.4814B) yt  = 0.004596 + (1 - 0.2037 B) (1 - 0.9529 B12 ) εt 0.6312 0.761 

ADBT(1981-04) ARIMA (0, 1, 1)(1, 1, 1) 12 (1 - 0.038B12) ∇∇12yt  = -0.00148 + (1 - 0.694 B) (1 - 0.8926 B12 ) εt  1.8147 1.062 

ADBT(1948-04) ARIMA (0, 1, 1)(1, 0, 1) 12 (1 - 0.9997B12) ∇yt  = 0.000181 + (1 - 0.7266 B) (1 - 0.8189 B12 ) εt 0.00003 0.899 

ADBT(1948-08) ARIMA (0, 1, 1)(1, 0, 1) 12 (1 - 0.9997B12) ∇yt  = 0.000181 + (1 - 0.7266 B) (1 - 0.8189 B12 ) εt 0.00003 0.840   
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Table 12. Models for average wet bulb temperature (AWBT) and their results 

Variable Model Equation of Model MRMSFE MSE 

AWBT(1948-72) ARIMA (2, 0, 0)(1, 1, 1)12 (1 - 0.1809B - 0.1303B2)(1 + 0.0974 B12) ∇12yt  = 0.000398 + (1 - 0.9482 B12) εt 0.5422 0.543 

AWBT(1982-04) ARIMA (1, 0, 1)(1, 1, 1) 12 (1 - 0.6488B)(1 + 0.0676 ∇12yt  = -0.00925 + (1 - 0.349B)(1 - 0.8822 B12) εt 0.7175 0.440 

AWBT(1981-04) ARIMA (1, 0, 0)(0, 1, 1) 12 (1 - 0.3423B) ∇12yt  = -0.01649 + (1 - 0.9206 B12) εt 0.3653 0.422 

AWBT(1948-04) ARIMA (1, 0, 1)(1, 1, 1) 12 (1 - 0.7958B) (1 + 0.0443 B12) ∇12yt    = 0.003359 + (1 - 0.5849B)(1 - 0.9164 B12) εt 0.8464 0.428 

AWBT(1948-08) ARIMA(1, 0, 1)(1, 1, 1) 12 (1 - 0.7958B)(1 + 0.0439B12) ∇12yt   = 0.003359 + (1 - 0.5849B)(1 - 0.9165 B12) εt 0.0002 0.400 
 

Table 13. Models for average difference of dry bulb and wet bulb temperature {AT (D-W)} and their results  

Variable Model Equation of Model MRMSFE MSE 

Ln of AT(D-W)(1948-72) ARIMA(2, 0, 0)(1, 0, 1)12 (1 -  0.4213B + 0.0817B2)(1 - 1.0007 B12) yt  = -0.0004 + (1 - 0.9291 B12) εt 0.1630 0.0284 

Ln of AT(D-W)( 1981-04) ARIMA(1, 0, 1)(0, 1, 1) 12 (1 - 0.2865B) ∇12yt  = 0.019375 + (1 + 0.1822B)(1 - 0.9075 B12) εt 0.3660 0.0387 

Ln of AT(D-W)(1948-04) ARIMA(1, 0, 1)(1, 0, 1) 12 (1 - 0.4744B)(1 - 0.9925 B12) yt = 0.002626 + (1 + 0.0287B)(1 - 0.7837 B12) εt 0.2326 0.0327 

Ln of AT(D-W)(1948-08) ARIMA(1, 0, 1)(1, 0, 1) 12 (1 - 0.4855B)(1 - 0.9927 B12) y t= 0.002492 + (1 + 0.0209B)(1 - 0.7885 B12) εt 0.0018 0.0305 

 

Table 14. Models for average sea level pressure (ASLP) and their results 

Variable Model Equation of Model MRMSFE MSE 
ASLP (1960-72) ARIMA(1, 0, 0)(1, 1, 1)12 (1 - 0.1482 B)(1 + 0.1299 B12) ∇12yt  = -0.03685(1 - 0.8997 B12) εt 0.8095 0.912 
ASLP(1949-72)  ARIMA(1, 0, 0)(0, 1, 1) 12 (1 - 0.2325 B) ∇12yt   = 0.023107 + (1 - 0.9253 B12) εt 1.0190 1.024 

ASLP(1948-72) ARIMA(1, 0, 0)(0, 1, 1) 12 (1 - 0.2615B) ∇12yt  = -0.019005 + (1 - 0.9382 B12
 ) εt 0.9884 1.033 

ASLP (1981-04) ARIMA(1, 0, 1)(1, 1, 1) 12 (1 - 0.8405B)(1 + 0.0344 B12) = -0.000162 + (1 - 0.6583B)(1 - 0.9199 B12
 ) εt 1.1241 1.328 

ASLP(1948-04) ARIMA(0, 1, 1)(1, 0, 1) 12 (1 - 0.9999 B12) = -0.0000467 + (1 - 0.8297B)(1 - 0.9620 B12
 ) εt 1.3548 1.033 

 

Table 15. Models for average difference of morning and evening relative humidity (ARH 0-12)) and their results 

Variable Model Equation of Model MRMSFE MSE 
Ln of ARH(0-12)(1948-72) ARIMA(1, 0, 0)(1, 1, 1)12 (1 - 0.287B)(1 + 0.0713 B12) ∇12 yt = 0.00028 + (1 - 0.9404 B12) εt 0.2308 0.029 
ARH(0-12)( 1982-04) ARIMA(1, 0, 0)(0, 1, 1)12 (1 - 0.3191B) ∇12 yt = 0.07771 + (1 - 0.913 B12) εt 3.1082 13.62 
ARH(0-12)( 1981-04) ARIMA(0, 1, 1)(1, 0, 1)12 (1 - 1.0005 B12) ∇ yt = 0.000054 + (1 - 0.8686 B)(1 - 0.9514 B12) εt 2.4036 14.89 
Ln of ARH(0-12)(1948-04) ARIMA(2, 0, 0)(1, 0, 1)12 (1 - 0.2929B - 0.0306B2)(1 - 0.9973B12) yt  = 0.005229+(1- 0.9006 B12) εt 0.2002 0.028 
Ln of ARH(0-12)(1948-08) ARIMA(1, 0, 1)(1, 0, 1)12 (1 - 0.4175 B)(1 - 0.9973 B12) yt  =  0.0045025 + (1 - 0.1276 B)( 1- 0.9008 B12) εt 0.00007 0.026 

 

Table 16. Models for average sunshine-hour (ASH) and average evaporation (AE) and their results 

Variable Model Equation of Model MRMSFE MSE 

ASH(1989-04) ARIMA(1, 1, 1)(1, 1, 1)12 
(1 - 0.1007B)(1 + 0.2393 B12) = -0.0015 + (1 - 0.9487 B)(1- 0.8494 B12) εt 
 1.0670 1.04 

AE(1987-00) ARIMA(1, 1, 2)(1, 1, 1)12 
(1 - 0.2759 B)(1 - 0.0111 B12) ∇ ∇12yt = -0.0105 + (1- 0.774 B - 0.2304B2)(1 - 0.882B12)εt 

 7.6465 27.6 

  

 

 

 

 

 

 



J. Environ. Sci. & Natural Resources, 10(2): 163–170, 2017  ISSN 1999-7361 
 

168 
 

Some residual and TS plots for climatic variables with forecasted values 
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   Fig. 1. Resid. vs order of the SQRT  TR (1948-2004) Fig. 2.  Resid. vs the fitted SQRT TR (1948-2004) 
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  Fig. 3. Np plot of  resid. for SQRT TR (1948-2004)  Fig. 4. ACF plot of  resid. for SQRT TR (1948-2004) 
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     Fig. 5. TS plot of  48 forecasted SQRT TR (1948-2004)       Fig. 6. TS plot of forecasted TFIR (1948-2004) 
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            Fig. 7. TS plot of forecasted MXR (1948-2004)             Fig. 8. TS plot of forecasted ADBT (1948-2004)  
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                     Fig. 9. TS plot of forecasted ORAMNT (1948-2004)        Fig. 10. TS plot of forecasted SQRT of AMXT(1948-2004) 

 
Note: OR-Outlier replaced, SQRT-Square root transformed,  resid.-Residual Fig.-Figure          
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            Fig. 11. TS plot of forecasted ORARNT (1948-2004) Fig. 12. TS plot of forecasted AT(D-W) (1948-2004) 
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            Fig. 13. TS plot of forecasted ORARH (1948-2004)   Fig. 14. TS plot of forecasted ARH(0-12) (1948-2004)   
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           Fig. 15. TS plot of forecasted AC (1948-2004) Fig. 16. TS plot of forecasted AMWS (1948-2004) 
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       Fig. 17. TS plot of ASLP (1948-1972) Fig. 18. TS plot of forecasted ORASLP (1948-2004) 

 

 
Conclusions 

 

The earlier presented ARIMA models for the monthly 
data during 1948-1972, 1981-2004 (reversing the 
years), 1948-2004 and 1948-2008 on the basis of 
minimum root mean square forecasting error. Those 
models were selected from the possible 16 ARIMA 
(autoregressive integrated moving average) models 
based on minimum root mean square forecasting error 
(RMSFE) with the last 24 observations for all the cases 
and all the residuals followed stationarity and 
normality. The 17 ARIMA models of the climatic 
variables (with the required transformations) during 
1948-2004 were selected. These were ARIMA (1, 0, 0) 
(1, 1, 1) 12  for SQRT of TR; ARIMA (1, 1, 1) (0, 1, 1) 12  
for TFIR; ARIMA (1, 0, 0) (1, 1, 1) 12  for SQRT of MXR 

; ARIMA (1, 0, 1) (1, 1, 1) 12  for AMNT; ARIMA (1, 0, 
0) (0, 1, 1) 12  for SQRT of AMXT; ARIMA (1, 0, 0) (0, 
1, 1) 12  for ARNT; ARIMA (1, 1, 1) (0, 1, 1) 12  for ARH 
(λ=3); ARIMA (1, 1, 1) (0, 1, 1) 12  for SQRT of AWS; 
ARIMA (0, 1, 1) (1, 0, 1)  for SQRT of  AMWS; ARIMA 
(0, 1, 1) (1, 1, 1) 12  for AC; ARIMA (0, 1, 1) (1, 0, 1) 12  
for ADBT; ARIMA (1, 0, 1) (1, 1, 1) 12  for AWBT; 
ARIMA (1, 0, 1) (1, 0, 1) 12  for Ln of AT(D-W); ARIMA 
(0, 1, 1) (1, 0, 1) 12  for ASLP; ARIMA (2, 0, 0) (1, 0, 1) 12 
for Ln of ARH(0-12); ARIMA (1989-04) (1, 1, 1) (1, 1, 
1) 12 for ASH and ARIMA (1987-00) (1, 1, 2) (1, 1, 1) 12 
for AE. The data of 1981 for AMNT, ARNT, ARH, 
AWS, AWBT and ARH(0-12) were detected as 
outliers which were replaced by the forecasted value of 
1981 from the fitted ARIMA models for January 1982-
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December 2004 by reversing the years So, the findings 
pinpoints that the changing term of the climatic 
variables may have adverse impacts on the crop 
production in this country. Hence, judicious planning 
is very much essential to suit with the changes for 
sustainable development in agriculture. 
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Appendix 1: Standardized ARIMA Notations 

The ARIMA models have a general form of p, d, q 
where p is the order of the standard autoregressive 
term AR, q is the order of the standard moving average 
term MA, and d is the order of differencing AR 
describes how a variable yt such as evaporation 
depends on some previous values yt-1, y t-2 etc. while 
MA describes how this variable yt depends on a 
weighted moving average of the available data yt-1 to 
yt-n. For example, for a one step ahead forecast 
(suppose: for t being September) with an AR-1, all 
weight is given to the evaporation in the previous 
month (September), while with an AR-2 the weight is 
given to the evaporation of the two immediately 
previous months (September and August). By contrast, 
with a MA-1, MA-2, a certain weight is given to the 
evaporation of the immediately previous month 
(September), a smaller weight is given to the 
evaporation observed two months ago (August) and so 
forth, i.e., the weights decline exponentially. 

 

 The combined multiplicative seasonal ARIMA (p, d, 
q) ×  12 (P, D, Q) model gives the following: 

t
s

Qqt
dD

s
s

pp BBCzBB εθφ )()()()( Θ+=∇∇Φ  

 
The standard expression of ARIMA model where B 
denotes the backward shift operator where  

- p
pp BBBB φφφφ −−−−= ...1)( 2

21  

 
The standard autoregressive operator of order p 

- ps
p

s
p BBBB Φ−−Φ−Φ−=Φ ...1)( 2

21  

 
The seasonal autoregressive operator of order p 

- D
s∇  

is the seasonal differencing operator of order D 

- d∇  is the differencing operator of order d 

-yt is the value of the variable of interest at time t 

- )()( s
pp BBC Φ= µφ  is a constant term, where μ is 

the true mean of the stationary time series being 
modeled. It was estimated from sample data using the 
approximate likelihood estimator approach. 

- q
qq BBBB θθθθ −−−−= ...1)( 2

21  

 
The standard moving average operator of order q 

- QS
Q

s
Q BBBB Θ−−Θ−Θ−=Θ ...1)( 2

2
1

1
 

 
The seasonal moving average operator of order Q 
- 1φ , 2φ ,……, pφ ; 1Φ , 2Φ ,…, pΦ ; 1θ , 2θ , …, qθ ; 

1Θ 2Θ ,…, QΘ  are unknown coefficients that are 

estimated from sample data using the approximate 
likelihood estimator approach. 
 
-εt is the error term at time at time t 

-S is the annual period, i,e. 12 months 

 
Thus, the multiplicative seasonal modeling approach 
with the general form of ARIMA (p, d, q) ×S (P, D, 
Q) has been used in this paper. In this form, p is the 
order of the seasonal autoregressive term (ARS), Q is 
the order of the seasonal moving average term, D is the 
order of the seasonal differencing and s is the annual 
cycle (e.g, s = 12 using the monthly data). ARS 
describes how the variable y depends on yt-12 (ARS-1), 
yt-24 (ARS-2), etc., while MAS describes how y 
depends on a weighted moving average of the 
available data yt-12 to yt-12n. For example, for a one step 
ahead forecast (suppose: for t being September and 
with an ARS-1, all weight is given to the evaporation 
in the previous September while with an ARS-2, the 
weight is given to the September evaporation 1 and 2 
years ago. By contrast, with a MAS-1, MAS-2, the 
model gives a certain weight to September evaporation 
1 year ago, to the September evaporation 2 years ago, 
and so on. These weights decline exponentially. 

 

 


