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Abstract: Temperature dependent thermal conductivity on magnetohydrodynamic (MHD) free convective flow 

of viscous incompressible fluid with Joule heating along a uniformly heated vertical wavy surface has been 

investigated numerically. The governing nonlinear boundary layer equations are mapped into a domain of a 

vertical flat plate and solved by an implicit finite difference method known as Keller-box scheme. The skin 

friction coefficient, the rate of heat transfer in terms of local Nusselt number, the stream lines and the isotherms 

are reported for different parameter combinations.  
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INTRODUCTION 

Joule heating effect of the laminar free convection 

flow of an electrically conducting fluid and heat 

transfer problem has been presented by many 

investigators because of its considerable practical 

applications. It is also necessary to study the heat 

transfer from an irregular surface because irregular 

surfaces are often present in many applications, such 

as radiator, heat exchangers and heat transfer 

enhancement devices. The thermal conductivity of 

the fluid to be proportional to a linear function of 

temperature, two semi-empirical formulae which was 

proposed by Charraudeau
1
. Yao

2,3
 first investigated 

the natural convection heat transfer from an 

isothermal vertical wavy surface and used an 

extended Prantdl’s transposition theorem and a 

finite-difference scheme. He proposed a simple 

transformation to study the natural convection heat 

transfer for an isothermal vertical sinusoidal surface. 

These simple coordinate transformations method to 

change the wavy surface into a flat plate.  Moulic and 

Yao
4
 also investigated also investigated natural 

convection along wavy surface with uniform heat 

flux. Alam et al.
5
 have also studied the problem of 

free convection from a wavy vertical surface in 

presence of a transverse magnetic field. On the other 

hand, the combined effects of thermal and mass 

diffusion on the natural convection flow of a viscous 

incompressible fluid along a vertical wavy surface 

have been investigated by Hossain and Rees
6
. In this 

paper the effect of waviness of the surface on the 

heat and mass flux has been investigated in 

combination with the species concentration for a 

fluid having Prandtl number equal to 0.7. Hossain 

and Munir
7
 investigated the natural convection flow 

of a viscous fluid about a truncated cone with 

temperature dependent viscosity and thermal 

conductivity. Natural convection with variable 

viscosity and thermal conductivity along a vertical 

wavy cone have been investigated by Munir et al.
8
. 

Hossain et al.
9
 considered natural convection of fluid 

with temperature dependent viscosity from heated 

vertical wavy surface. Wang and Chen
10
 investigated 

transient force and free convection along a vertical 

wavy surface in micropolar fluid. Natural and mixed 

convection heat and mass transfer along a vertical 

wavy surface have been investigated by Jang et al. 
11,12

. Molla et al.
13
 have studied natural convection 

flow along a vertical wavy surface with uniform 

surface temperature in presence of heat 

generation/absorption. Tashtoush and Al-Odat
14
 

investigated magnetic field effect on heat and fluid 

flow over a wavy surface with a variable heat flux. 

Yao
15
 also studied natural convection along a vertical 

complex wavy surface. Rahman et al.
16
 investigated 

the effects of temperature dependent thermal 

conductivity on MHD free convection flow along a 

vertical flat plate with heat conduction. Rahman and 

Alim
17
 considered numerical study of magneto-

hydrodynamic free convective heat transfer flow 

along a vertical plate with temperature dependent 

thermal conductivity. Recently, Parveen and Alim
18
 

investigated Joule heating effect on MHD natural 

convection flow along a vertical wavy surface with 

viscosity dependent on temperature. At the same 

time Parveen and Alim
19
 considered effect of 

temperature dependent thermal conductivity on 

magnetohydrodynamic natural convection flow along 

a vertical wavy surface. It is known that thermal 

conductivity may be change significantly with 

temperature. For a liquid, it has been found that the 

thermal conductivity k varies with temperature in an 

approximately linear manner in the range from 0 to 

400
0
 F (see Kays

20
). 

The above literatures survey it is found that Joule 

heating effect on MHD free convection flow of an 
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electrically conducting fluid variation of thermal 

conductivity with temperature along a vertical wavy 

surface has not been well investigated. Main 

objective of the present study is detailed numerically 

investigation of the temperature dependent thermal 

conductivity on MHD free convection flow with 

Joule heating along a vertical wavy surface. The 

governing partial differential equations are reduced 

to locally non-similar partial differential forms by 

adopting some appropriate transformations. The 

transformed boundary layer equations are solved 

numerically using implicit finite difference scheme 

together with Keller box technique
21
. The surface 

shear stress in terms of local skin friction coefficient 

and the rate of heat transfer in terms of local Nusselt 

number, the stream lines as well as the isotherms are 

shown graphically for different values of thermal 

conductivity parameter γ, Joule heating J, magnetic 

parameter M and the amplitude-to-length ratio of the 

wavy surface α while Prandtl number Pr = 0.73 (air). 

 

MATHEMATICAL FORMULATION  

Consider a steady two dimensional natural 

convection flow of an electrically conducting viscous 

and incompressible fluid with variable thermal 

conductivity along a vertical wavy surface. Over the 

work it is assumed that the surface temperature of the 

vertical wavy surface Tw is uniform, where ∞> TTw . 

The boundary layer analysis outlined below allows 

)(Xσ  being arbitrary, but our detailed numerical 

work assumed that the surface exhibits sinusoidal 

deformations. The wavy surface may be described by 
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L

Xn
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π
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where L is the wave length associated with the wavy 
surface. 

Under the usual Boussinesq approximation, the 

continuity, momentum and energy equations can be 

written as: 

0=
∂
∂

+
∂
∂

Y

V

X

U
 (2) 

UTTgU
X

P

Y

U
V

X

U
U

ρ
βδ

βν
ρ

2

002
)(

1
+−+∇

∂
∂

−=
∂
∂

+
∂
∂

∞

 

(3) 

V
Y

P

Y

V
V

X

V
U 21

∇+
∂
∂

−=
∂
∂

+
∂
∂

ν
ρ

 (4) 

( ) 2
2

00.
1

U
C

Tk
CY

T
V

X

T
U

pp ρ
βδ

ρ
+∇∇=

∂
∂

+
∂
∂

 (5) 

where (X, Y) are the dimensional coordinates along 

and normal to the tangent of the surface and (U, V) 

are the velocity components parallel to (X,Y), 

)//( 22222 yx ∂∂+∂∂=∇  is the Laplacian 

operator, g is the acceleration due to gravity, P is 

the dimensional pressure of the fluid, ρ is the density, 
β0 is the strength of magnetic field, δ0  is the 

electrical conduction,  k(T) is the thermal 

conductivity of the fluid in the boundary layer region 

depending on the fluid temperature, β is the 

coefficient of thermal expansion, ν ( = µ/ρ) is the 
kinematics viscosity, µ is the dynamic viscosity and 

Cp is the specific heat due to constant pressure.  

The boundary conditions relevant to the above 

problem are 

)(,0,0 XYYatTTVU ww σ=====  (6a) 

∞→=== ∞∞ YaspPTTU ,,0  (6b) 

where Tw is the surface temperature, T∞ is the 

ambient temperature of the fluid and p∞ is the 

pressure of fluid outside the boundary layer. 

The geometry of the wavy surface and the two-

dimensional Cartesian coordinate system are shown 

in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. The coordinate system and the physical 

model 

 

 

The variable thermal conductivity chosen in this 

study that is introduced by Charraudeau
1
 and used by 

Hossain and Munir
7
 as follows: 

( )[ ]∞∞ −+= TTkk *1 γ  (7) 

where ∞k  is the thermal conductivity of the ambient 

fluid and 

ff T

k

k








∂
∂

=
1*γ is a constant.   

Using Prandtl’s transposition theorem to 

transform the irregular wavy surface into a flat 

surface as extended by Yao
3
 and boundary-layer 

approximation, the following dimensionless variables 

are introduced for non-dimensionalizing the 

governing equations,  
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where θ is the non-dimensional temperature function 

and (u, v) are the dimensionless velocity components 

parallel to (x,y). Introducing the above dimensionless 

dependent and independent variables into equations 

(2)–(5), the following dimensionless form of the 

governing equations are obtained after ignoring 

terms of smaller orders of magnitude in Gr, the 

Grashof number defined in (8). 
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where 

∞

=
k

C pµ
Pr is the Prandtl number, 

2
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00
 is the Joule heating parameter 

and )(* ∞−= TTwγγ  is the thermal conductivity 

variation parameter. 

It can easily be seen that the convection induced 

by the wavy surface is described by Eqs. (9)–(12). 

We further notice that, Eq. (11) indicates that the 

pressure gradient along the y-direction is )( 4
1−

GrO , 

which implies that lowest order pressure gradient 

along x -direction can be determined from the 

inviscid flow solution. For the present problem this 

pressure gradient ( 0=∂∂ xp ) is zero. Eq. (11) 

further shows that ypGr ∂∂ /4
1

 is )1(O  and is 

determined by the left-hand side of this equation. 

Thus, the elimination of yp ∂∂ /  from Eqs. (10) and 

(11) leads to 
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The corresponding boundary conditions for the 

present problem then turn into  
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Now we introduce the following transformations 

to reduce the governing equations to a convenient 

form: 
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where f(η) is the dimensionless stream function, η is 

the pseudo similarity variable and ψ is the stream 

function that satisfies the continuity equation and is 

related to the velocity components in the usual way 

as  
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Introducing the transformations given in Eq. (15) 

into Eqs. (13) and (12) are transformed into the new 

co-ordinate system. Thus the resulting equations are  
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The boundary conditions as mentioned in Eq. (14) 

then take the form given below: 
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The quantities of physical interested, namely, the 

shearing stress τw in terms of the skin friction 

coefficient Cfx and the rate of heat transfer in terms of 

Nusselt number Nux are prescribed by: 

2
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Using the transformations (15) and Eq. (21) into Eq. 

(20), the local skin friction coefficient Cfx and the 

rate of heat transfer in terms of the local Nusselt 

number Nux takes the following form: 
1
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METHOD OF SOLUTION 

The transformed boundary layer equations are 

solved numerically with the help of implicit finite 

difference method together with the Keller-Box 

scheme
21
. To begin with the partial differential 

equations (17) and (18) are first converted into a 

system of first order differential equations. Then 

these equations are expressed in finite difference 

forms by approximating the functions and their 

derivatives in terms of the center difference. 

Denoting the mesh points in the x and η-plane by xi 

andηj where i = 1, 2,..., M and j = 1, 2,…, N, central 

difference approximations are made, such that those 

equations involving x explicitly are centered at (xi-1/2 

,ηj-1/2) and the remainder at (xi,ηj-1/2), where ηj-1/2 = 

1/2(ηj +ηj--1) etc. The above central difference 

approximations reduces the system of first order 

differential equations to a set of non-linear difference 

equations for the unknown at xi in terms of their 

values at xi-1. The resulting set of non-linear 

difference equations are solved by using the 

Newton’s quasi-linearization method. The Jacobian 

matrix has a block-tridiagonal structure and the 

difference equations are solved using a block-matrix 

version of the Thomas algorithmthe; the details of 

the computational procedure have been discussed 

further by in the book by Cebeci and Bradshaw
22
. In 

the program test, a finer axial step size is tried and 

finds to give acceptable accuracy. A uniform grid of 

201 points is used in x- direction with ∆ x = 0.05, 

while a non-uniform grid of 76 points lying between 

η = 0.0 and 10.02 is chosen. Grid points are 

concentrated towards the heated surface in order to 

improve resolution and the accuracy of the computed 

values of the surface shear stress and rate of heat 

transfer. During the program test, the convergent 

criteria for the relative errors between two iterations 

are less 10
-5
. 

 

CODE VALIDATION 

A comparison of the present numerical results of 

the skin friction coefficient, f ″(x,0) and the heat 
transfer, -θ ′(x,0) with the results obtained by 
Hossain et al.

9
 is depicted in Table 1. Here, the 

magnetic parameter M, thermal conductivity 

parameter γ and Joule heating parameter J are 

ignored with different values of Prandtl number Pr = 

(1.0, 10.0 and 25.0) is chosen. From Table 1, it is 

clearly seen that the present results are excellent 

agreement with the solution of Hossain et al.
9
. 

 

RESULTS AND DISCUSSION 

The present work is to analyze the Joule heating 

effect on MHD free convection flow of viscous 

incompressible fluid with temperature dependent 

thermal conductivity along a uniformly heated 

vertical wavy surface. Numerical values of local 

shearing stress and the rate of heat transfer are 

calculated from equations (22) and (23) in terms of 

the skin friction coefficients Cfx and Nusselt number 

Nux respectively for a wide range of the axial 

distance x. For different values of the aforementioned 

parameters γ, M, α and J, the skin-friction coefficient 

Cfx, the rate of heat transfer in terms of Nusselt 

number Nux, the streamlines as well as the isotherms 

are shown graphically in Figs. 2-8.  

The belongings of thermal conductivity parameter 

γ the local skin friction coefficient Cfx and the rate of 

heat transfer in terms of the local Nusselt number Nux 

against x from the wavy surface while α = 0.3, M = 

0.5, J = 0.02 and Pr = 0.73 are illustrated in Fig. 2(a) 

and 2(b) respectively. From Fig. 2, it is observed that 

the skin friction coefficient and the heat transfer rate 

increases significantly along the upward direction of 

the surface. Here it is concluded that for high thermal 

conductivity fluid the skin friction and the 

corresponding rate of heat transfer is large. The 

highest values of local skin friction coefficient Cfx are 

0.86677, 0.98013, 1.04351 and 1.08529 for γ = 0.0, 
2.0, 5.0 and 10.0 respectively which occurs at x = 0.5 

shown in Fig. 2(a). The maximum values of rate of 

heat transfer are recorded to be 0.31743, 0.53690, 

0.77737 for γ = 0.0, 2.0 and 5.0 respectively which 
occurs at same point of x = 0.5 and 1.10617 for γ = 
10.0 which attain at the surface. Thus the skin 

friction coefficient and the rate of heat transfer 

increase by approximately 20% and 72% 

respectively when γ changes from 0.0 to 10.0. 

The analysis of the effects of Joule heating 

parameter J = (0.0, 0.02, 0.05 and 0.10) on the 

surface shear stress in terms of the local skin friction 

coefficient Cfx and the rate of heat transfer in terms of 

the local Nusselt number Nux against x are exposed 

within the boundary layer with α = 0.3, M = 0.02, γ = 
5.0 and Pr = 0.73 in Fig. 3.  From this figure it can be 

seen that an increase in the Joule heating parameter 

J, the skin friction coefficient increases slowly along 

the upward direction of the surface. But the heat 

transfer rate decreases quickly along the downward 

direction of the surface. Because increasing values of 

Joule heating parameter J decrease the temperature 

gradient at the surface. The maximum values of local 

skin friction coefficient Cfx are 1.12519 and 1.12611 

for J = 0.0 and 0.10 respectively which occurs at the 

same value of x = 0.50. Again the peak values of the 

rate of heat transfer Nux are 0.82074 and 0.81022 for 

J = 0.0 and 0.10 respectively which occurs at 

different position of x. Finally it is seen that the local 

skin friction coefficient increases by approximately 

0.10% and the rate of heat transfer devalues by 

approximately 1.30% as J increases from 0.0 to 0.10.  

The variation of the local skin friction coefficient 

Cfx and local rate of heat transfer Nux for different 

values of the amplitude-to-length ratio of the wavy 

surface α = (0.0, 0.1, 0.2, 0.3) is illustrated in Fig. 4 
for Pr = 0.73, γ = 5.0, J = 0.02 and M = 0.5.  From 

Fig. 4 it can be observed that the amplitude-to-length 

ratio of the wavy surface α leads to decrease the 
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local skin friction coefficient Cfx and local rate of 

heat transfer Nux at different position of x. The skin 

friction coefficient and the rate of heat transfer 

coefficient decrease by approximately 12% and 11% 

respectively as α increases from 0.0 to 0.3. Because 

of increasing the surface waviness the velocity force 

decreases at the local points. 
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Figure 2. Variation of (a) skin friction 

coefficient Cfx and (b) rate of heat transfer Nux 

against x for different values of γ with α = 0.3, 
M = 0.5, J = 0.02 and Pr = 0.73. 

 

Figures 5 and 6 illustrate the effect of thermal 

conductivity parameter γ on the development of 

streamlines and isotherms profile which are plotted 

for the amplitude-to-length ratio of the wavy surface 

α = 0.3, Prandtl number Pr = 0.73, J = 0.02 and M = 

0.5. The maximum values of ψ, that is, maxψ  are 

6.59, 11.37 and 12.36 for thermal conductivity 

parameter γ  = 0.0, 5.0 and 10.0 respectively. It is 
observed from Fig. 5 that as the values of γ increases 
the velocity boundary layer thickness becomes 

higher gradually and the same result observed for the 

thermal boundary layer from Fig. 6. Finally it is 

concluded that for the effect of thermal conductivity 

parameter γ the velocity of the flow and temperature 

of the fluid within the boundary layer increase. 

The effect of Joule heating parameter J equal to 

0.0, 0.05 and 0.10 the streamlines and isotherms 

profile are depicted by the Figs. 7 and 8 respectively 

while Prandtl number Pr = 0.73, amplitude-to-length 

ratio of the wavy surface α = 0.3, thermal 

conductivity parameter γ = 5.0 and magnetic 

parameter M = 0.02. Fig. 7 depicts that the maximum 

values of ψ increases steadily while the value of J 

increases. The maximum values of ψ, that is, maxψ  

is 13.21 for J = 0.0,  maxψ  is 14.16 for J = 0.05 and 

maxψ  is 14.69 for J = 0.10. From Fig. 8, it is noted 

that the temperature of the fluid increases for 

increasing values of J. Joule heating is the heating 

effect of conductors carrying currents. So velocity of 

the fluid flow and the temperature of the fluid 

increase within the boundary layer with the 

increasing values of J. 
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Figure 3. Variation of (a) skin friction 

coefficient Cfx and (b) rate of heat transfer Nux 

against x for different values of J with α = 0.3, 
γ = 5.0, M = 0.02 and Pr = 0.73. 
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Figure 4. Variation of (a) skin friction coefficient Cfx and (b) rate of heat transfer Nux against x for different 

values of α with γ = 5.0, M = 0.5, J = 0.02 and Pr = 0.73. 
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Figure 5. Streamlines for (a) γ  = 0.0 (b) γ  = 5.0 and (c) γ  = 10.0 while α = 03, M = 0.5, J = 0.02 and Pr = 0.73. 
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Figure 6. Isotherms for (a) γ  = 0.0 (b) γ  = 5.0 and (c) γ  = 10.0 while α = 0.3, M = 0.5, J = 0.02 and Pr = 0.73. 
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Figure 7. Streamlines for (a) J = 0.0 (b) J = 0.05 and (c) J = 0.10 while Pr = 0.73, M = 0.02, γ  = 5.0 and α = 0.3. 
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Figure 8. Isotherms for (a) J = 0.0 (b) J = 0.05 and (c) J = 0.10 while Pr = 0.73, M = 0.02, γ  = 5.0 and α = 0.3. 
 

 

 
Table 1. Comparison of the present numerical results for  

M = 0, γ = 0, J = 0. 
f ″(x,0) -θ ′(x,0)  

Pr Hossain et 

al.9 

Present 

work 

Hossain et 

al.9 

Present 

work 

1.0 0.908 0.91084 0.401 0.39914 

10.0 0.591 0.59482 0.825 0.82315 

25.0 0.485 0.48910 1.066 1.06405 
 
 

CONCLUSION 

Temperature dependent thermal conductivity on 

MHD free convection flow with Joule heating along 

a vertical wavy surface has been studied numerically 

in detail. Brief summaries of the major results are 

listed in the following:  

• For increasing values of thermal conductivity 

parameter γ skin friction coefficient Cfx, local rate 

of heat transfer Nux, velocity of the fluid flow and 

the temperature of the fluid significantly increase. 

• The skin friction coefficient, velocity of the fluid 
flow increase and local rate of heat transfer Nux 

decreases over the whole boundary layer for 

increasing values of Joule heating parameter J. But 

the thermal boundary layer grows thick. 

• The skin friction coefficient Cfx and the local rate 

of heat transfer Nux decrease for increasing values 

of the amplitude-to-length ratio of the wavy 

surface. 
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