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Abstract: The importance of contact and surface problems in industrial machining requires specific studies by 
tribological researchers to help engineering developments. During cyclic rolling, mechanical components may 
fail from wear fatigue and it is necessary to develop numerical tools based on simplified approaches to quantify 
their life time. Numerous wear equations reported in literature have shown that the wear rate is in most cases 
linked to the traction and the velocities which occur in the contact area. The knowledge of these parameters at 
every time enables us to follow the wear evolution in the softer material. In this paper, we suggest a stepping 
method to solve the non steady rolling contact problems. This method is based on the well known approach 
Fastsim of Kalker and integrates a numerical finite difference scheme to describe the evolution of transient 
phenomena occurring during non steady rolling contact. 
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INTRODUCTION 
 The progressive degradation of the bodies 
rolling on each other under normal loads generates 
wear. Considering industrial applications such as 
cam and roller for example, it is obvious that the 

surface degradation affects the mechanical efficiency 
of the mechanisms and may lead to deterioration of 
the machinery. In order to quantify the loss of 
material, many investigations were carried out to 
determine the wear types and their mechanisms.

 

    

Nomenclature  t Time (s) 
C The CFL number wx Sliding velocity along x (m/s) 
E Young’s modulus (Pa) wy Sliding velocity along y (m/s) 
F       Normal contact load (N)  x, y, z      Spatial coordinates 

L Equivalent flexibility (Pa-1) yi 
Local geometry of the elliptic contact 
area along y (m) 

L1 Flexibility associated to νx (Pa-1) φ Spin (m-1) 
L2 Flexibility associated to νy (Pa-1) μ  Friction ratio 
L3    Flexibility associated to φ (Pa-1) νx           Longitudinal creepage 
Mx Spatial discretization along x  νy            Lateral creepage 
My Spatial discretization along y τ Shear forces (Pa) 
N Discretization number υ Poisson’s ratio 
P Contact pressure ((Pa)  ω1           Roller rolling rotation (Rad/s) 
Pl Dissipated power per unit length (W/m)  ω2           Path rolling rotation (Rad/s) 

R1x,y 
Roller radius curvature respectively in the 
planes (xoz) and (yoz) (m) 

 Δx           Spatial step along x (m) 

R2x,y 
Path radius curvature respectively in the 
planes (xoz) and (yoz) (m) 

 Δy           Spatial step along y (m) 

V Rolling velocity (m/s)  Δt           Temporal step (s) 
a Semi axis of the contact ellipse along x (m)  c  Creepage vector (m/s) 

ai   
Local geometry of the elliptic contact area 
along x (m) 

 s  Sliding velocities vector (m/s) 

b Semi axis of the contact ellipse along y (m)    



On a Stepping Method for the Non Steady Rolling Contact Resolution 132 

Journal of Mechanical Engineering, Vol. ME 40, No. 2, December 2009 
Transaction of the Mech. Eng. Div., The Institution of Engineers, Bangladesh 

Bi-dimensional and tri-dimensional models were 
suggested to compute the wear rate, that is, the worn 
volume per unit area of surface per unit time1. In this 
context, we can mention the works of Ding et al.2 in 
which a numerical approach to simulate fretting wear 
is developed, the studies of Yang3 which aim to 
predict a standard steady state wear coefficient, the 
analysis of Enblom et al.4 to simulate the railway 
wheel profile due to wear in a steady state case, etc. 
It has been shown in Chevalier et al.5, for instance, 
that the wear rate can be linked to the dissipated 
power per unit length in the contact area formed by 
the contacting bodies. This parameter is computed by 
summing the product of shear forces by the sliding 
velocities in a strip of the contact area along the 
rolling direction. The determination of tangential 
forces and the slip requires the resolution of the 
complete rolling contact problem. In the particular 
case of quasi identity, the resolution of normal and 
tangential problems of contact can be done 
separately6. First, we determine the contact area and 
the pressure distribution and then we can solve the 
tangential problem using the algorithm “Fastsim” of 
Kalker to compute tangential forces and the slip 
occurring during rolling.  

The theory of “Fastsim” is essentially based on 
kinematic equations of the contact problem and it 
was shown its accuracy by comparison with the exact 
theory of contact7. Most researchers treat the problem 
assuming steady state conditions, omitting the 
transient terms in the kinematical equations. In 
industrial problems, transient phenomena are 
common and should be considered for a realistic 
estimation of wear evolution in machinery. This will 
allow industrialists to predict the life time of their 
systems and seek for solutions to make use of them 
as much as possible. 
 In this paper, we present a stepping approach to 
solve a transient rolling contact problem. Based on 
the finite differences method and the algorithm 
“Fastsim”, this approach is efficient to describe the 
evolution of normal pressure, tractions and slip 
velocities which occur in the contact path versus 
time. Tested on a severe contact case, the transient 
simulation gives good results by comparison with 
Fastsim. 
 
STATEMENT OF THE TRANSIENT ROLLING 
CONTACT PROBLEM 
       We consider two elastic bodies in contact under 
a normal load F. The lower solid of a radius Rx2 is in 
rotation around the axis y, and the upper one is 
carried to rotation by adherence. Rx and Ry are 
respectively the curvatures radii in the planes (xoz) 
and (yoz). The contact renewal velocity of the path V 
in the x-direction is equal to Rx2ω2 where ω2 is the 
angular velocity.  
       It was shown by kalker7 that in a general way, 
the sliding velocity components wx and wy are given 
by:  
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Where νx, νy and φ are respectively the longitudinal 
creepage, transversal creepage and the spin. u and v 
are the elastic displacement respectively along the 
directions x and y.  
        When the normal load is applied, the contacting 
bodies are deformed and a contact path is generated 
in the tangential plane (xoy). If the contacting bodies’ 
curvatures remain constant in vicinity of contact, the 
contact area and pressure distribution can be easily 
determined by the Hertz theory8. Otherwise, the semi 
hertzian approach with diffusion (SHAD for short) 
developed in a previous work9-11 can be used. This 
simplified method aims to the resolution of the 
stationary contact problem between two solids of 
unspecified geometry.  
         Kalker6 supposes that in the contact area 
relative displacements are proportional to shear 
forces by a flexibility L depending on the rigidity 
module of solids and the coefficients Cij of the linear 
theory of Kalker6. This is called the “bed springs” 
hypothesis. The comparison of the total tangential 
forces given by the linear theory and the simplified 
approach Fastsim11,12 showed that we can distinguish 
three flexibilities L1, L2 and L3 associated 
respectively to the creepages νx, νy and φ. Thus, Eq. 
(1) becomes: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−−=

t
L

xL
x

L
VL

xL
y

L
VL

yzyzy
y

xzx
x

ττφν

τφν

32

31

w

w  
(2) 

τxz and τyz are the tractions in the contact area and L 
the mean flexibility of the contact given by: 
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System (2) can be written in a compacted way:  
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Where s, c and τ are vectors defined as follow:  
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The unknown parameters of Eq. (4) are s  and τ . 
These quantities should be determined at each time 
step and for each position x  in order to estimate the 
dissipated power at the interface and to simulate 
wear. 
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Next, we will use the finite difference scheme to 
solve Eq. (4) of partial derivatives. 

 Numerical resolution 
In the following, we consider that x is the 

spatial coordinate of the problem since we put νy = φ 
= 0. The finite difference method is used to 
approximate the sliding velocities and tractions at 
each point of coordinates (x, t) belonging to a finite 
discretised space (Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Grid space / time 
 

 

Validation 

Description of the rolling case 
 To illustrate this scheme, we consider two 
revolution bodies (Roller/Path) in contact under a 
normal load F equal to 1500 N. We impose the 
rotation velocity of the roller starting from zero and 
increasing with an important slope until the velocity 
reaches a constant value, that is the stationary rolling 
final state (Fig. 2). 

 
Figure 2. Transient rolling velocity 

 
 
Geometric and elastic characteristics of both 
contacting solids are given in table 1. 
 
 
 

Table 1. Geometric and elastic characteristics  
of contacting bodies 

 
Results and discussion 
 The contact area is elliptic of semi axis lengths a 
and b equal respectively to 0.229 mm and 2.627 mm. 
The pressure distribution is ellipsoidal with a 
maximum at the centre of the contact area equal to 
1190 MPa (Fig. 3). 

 
Figure 3(a). Normal problem results: contact area 

 
 

 
 
 

Figure 3(b). Normal problem results: pressure 
distribution 

 
The local geometry of the contact area and the 
pressure distribution expressions are given by: 
 
 
 

 Roller Path 

Geometry Rx1 = 20 mm 
Ry1 = 500 mm 

Rx2 = 25 mm 
Ry2  ∞ 

Elastic 
characteristics 

E = 210 000 MPa 
υ = 0.28 

x 

t 

xj xj+1

tn 
tn+1 

τ(xj,tn+1) 
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Now it is required to solve the tangential contact 
problem. So, let’s consider a constant longitudinal 
creepage νx equal to 0.001 so that slip occurs only in 
the x direction. To solve Eq. (4), we make use of the 
algorithm Fastsim to determine tangential forces and 
sliding velocities at a given moment. The resolution 
procedure can be summarised as follow: 
 First, we put at t = t1 all the tractions and the slip 

to zero. 
 Second, we cut the contact area into stripes 

along x and y and we assume the adherence at 
the leading edge (Fig. 4). Consequently, the slip 
is zero and tractions at t = t2 can be found using 
the approximation: 2

2( , ) jx tτ τ≈ . 
 The Coulomb law is then used to check the 

tractions saturation: 

 Once tractions are determined in the contact area 
at the time t2, Eq. (4) allows us to calculate the 
sliding velocities s(x,t2) and we can go to the 
next time t3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Discretization of the contact area into 
strips 

 
These steps remain unchanged for the determination 
of tractions and slip at each time step. We develop by 
this way a Stepping Approach for transient rolling 
contact problems (Satran for short) in the following. 
We present below some results of this method in the 
case of the present transient contact example.  
Tractions and dissipated power evolutions are 
depicted in Figs. 5 and 6 at different time steps. We 
can notice the increase of tangential forces along 
time starting from nearly zero to reach an invariant 
shape when the rolling velocity becomes steady.  
 

It’s also the case for the distribution of the dissipated 
power per unit length which is very small at the 
beginning and increasing progressively. This 
quantity is calculated by integrating the product of 
tangential forces and sliding velocities along a strip. 

 
 
 

Figure 5(a). Different time steps 
 

 

Figure 5(b). Evolution of tractions versus time steps 
 
 

The evolution of tangential forces allows us to 
distinguish two phases. In one phase, tractions are 
linear; this corresponds to the adhesion state with no 
slip. The second phase is characterised by an elliptic 
distribution similar to the pressure one, slip is then 
occurring. In fact, when tractions increase linearly, 
the Coulomb’s bound could be exceeded and we 
have to set the great tractions to μp (μ is the friction 
coefficient). 
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Stepping approach (final step) FASTSIM stationary 

  

  

 

Figure 6(a). Different time steps Figure 6(a). Evolution of dissipated power 
per unit length 

Figure 7. Comparison Satran at final step/Fastsim  
(1st row: contact areas, 2nd row: Tractions, 3rd row: Dissipated power) 
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The time step Δt used in the calculation is equal to 
2.10-6 s so that the CFL condition is satisfied. The 
numerical cost of time is of a few seconds. For 
instance, in this calculation we consider a spatial 
discretisation Mx x My = 80 x 80 respectively along x 
and y and N = 200 for temporal discretisation that is 
128.104 calculation steps and the CPU time is equal 
to 42 s. This observation is one of the advantages of 
this method mainly when it’s required to carry out 
many calculations taking into account the dispersion 
of problem parameters. 
When rolling velocity is no longer transient and 
steady state rolling is reached, we expect to have the 
same results by both Satran and Fastsim. In Fig. 7, 
we present the results of Satran at the last time step 
in comparison with those of Fastsim in case of 
stationary rolling contact. 
Results of the stepping approach Satran show a 
favourable agreement with the steady solution of 
Fastsim. The contact areas are divided similarly into 
a stick region on the right and a slip region in black). 
In the stick region, tractions present a linear aspect as 
it was mentioned above. We can notice that tractions 
distributions are the same by both approaches, theirs 
magnitudes are also identical.  
The sliding velocity given by Fastsim is zero in the 
stick area but is singular in the region of the trailing 
edge (it increases asymptotically to infinity). This is 
due to the ellipsoidal distribution pressure chosen in 
the modeling and discussed in a previous work 
Eddhahak9. The total dissipated power found by both 
approaches is of the same magnitude and equal to 
0.29 watt.  
In this example, inertia of the roller has not been 
taken into account. As the roller is initially in rest 
and suddenly compelled to follow the path motion a 
great rotating acceleration is transmitted to the roller 
via the tangential component of the contact load. 
Therefore, rolling appears progressively after a first 
step of sliding. In this step, the tangential forces 
acting in the contact area are saturated and equal to 
Coulomb’s traction bound μp. 
  
CONCLUSIONS 
       Friedrisch numerical scheme to solve the non 
steady rolling contact problem in a short CPU time 
has been developed. Validation of this method was 
proved in the particular case of a steady state rolling 
by comparison with Fastsim. The presented method 
is efficient to describe the evolution versus time of 
the sliding velocities and the tractions distributions 
generated by revolution bodies in contact under load. 
This finding enables us to estimate the dissipated 
power during rolling. The latter parameter is often 
met in the literature dealing with the wear models to 
estimate the variation of the wear rate under different 
wear mechanisms. This approach gives access to 
follow the evolution of the worn profile of the softer 
material with time and therefore to predict the life 
time of the technological component. 
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