
Viscous Dissipation Effects on MHD Natural Convection Flow  
 

44

VISCOUS DISSIPATION EFFECTS ON MHD NATURAL CONVECTION 
FLOW ALONG A SPHERE 

 
Md. M. Alam1, M. A. Alim2* And Md. M. K. Chowdhury2 

1Department of Mathematics, Dhaka University of Engineering and Technology, Gazipur-1700, Bangladesh. 
2Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh. 

 
 
Abstract: In this paper, we describe the viscous dissipation effects in magnetohydrodynamic (MHD) natural convection flow 
on a sphere. The natural convection laminar flow from a sphere immersed in a viscous incompressible optically thin fluid in 
the presence of magnetic field has been investigated. The governing boundary layer equations are first transformed into a 
non-dimensional form and the resulting nonlinear system of partial differential equations are then solved numerically using 
a very efficient finite-difference method with Keller-box scheme. Here we have focused our attention on the evolution of 
shear stress in terms of the local skin friction and the rate of heat transfer in terms of local Nusselt number, velocity profiles 
as well as temperature profiles for some selected parameters consisting of magnetic parameter M, viscous dissipation 
parameter N and the Prandlt number Pr. 
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INTRODUCTION   

 
A study of the flow of electrically conducting fluid in 

presence of magnetic field is important from the technical 
point of view and such types of problems have received 
much attention by many researches. The specific problem 
selected for study is the flow and heat transfer in an 
electrically conducting fluid adjacent to the surface. The 
surface is maintained at a uniform temperature Tw, which 
may either exceed the ambient temperature T∞ or may be 
less than T∞. With Tw > T∞, an upward flow is established 
along the surface due to free convection; while with Tw < 
T∞ , there is a downward flow. Additionally, a magnetic 
field of strength β0 acts normal to the surface. The 
interaction of the magnetic field and the moving electric 
charge carried by the flowing fluid induces a force, which 
tends to oppose the fluid motioning edge. The velocity is 
very small so that the magnetic force, which is proportional 
to the magnitude of the longitudinal velocity and acts in the 
opposite direction, is also very small. Consequently, the 
influence of the magnetic field on the boundary layer is 
exerted only through induced forces within the boundary 
layer itself, with no additional effects arising from the free 
stream pressure gradient. Kuiken1 studied the problem of 
magnetohydrodynamic free convection in a strong cross 
field. Also the effect of magnetic field on the free 

convection heat transfer has been studied by Sparrow and 
Cess2. MHD free convection flows of visco-elastic fluid 
past an infinite porous plate considered by Chowdhury and 
Islam3. Raptis and Kafousias4 have investigated the 
problem of MHD free convection flow and mass transfer 
through a porous medium bounded by an infinite vertical 
porous plate with constant heat flux. Elbashbeshy5 also 
discussed the effect of free convection flow with variable 
viscosity and thermal diffusivity along a vertical plate in 
the presence of magnetic field. But Hossain6 introduced the 
viscous and Joule heating effects on MHD-free convection 
flow with variable plate temperature. Moreover, Hossain et 
al.7,9 discussed both forced and free convection boundary 
layer flows of an electrically conducting fluid in presence 
of magnetic field. 

 
Molla et al.10 investigated the MHD natural 

convection flow on a sphere in presence of heat generation. 
The problems of free convection boundary layer flow over 
or on bodies of various shapes discussed by many 
researchers. Amongst them, Nazar et al.11, 12 considered the 
free convection boundary layer on an isothermal sphere 
and on an isothermal horizontal circular cylinder in a 
micropolar fluid. To our best of knowledge, viscous 
dissipation effects on MHD free convection flow from an 
isothermal sphere has not been studied yet. 

____________________________________________________________________________________________________ 
 

Nomenclature 

Cp : Specific heat at constant pressure. X : Measured from the leading edge. 
CfX : Local skin friction coefficient. Y : Distance normal to the surface. 
f : Dimensionless stream function x : The dimensionless coordinate. 
g : Acceleration due to gravity y : The pseudo-similarity variable. 
Gr : The local Grashof number. 
N : Viscous dissipation parameter Greek symbols 
NuX : The local Nusselt number coefficient. β : Co-efficient of volume expansion 
Pr : Prandtl number. β0 : Magnetic field strength. 
P : Fluid pressure. ν : Kinematic viscosity 
qw : Surface heat flux. µ : Viscosity of the fluid 
T : Temperature of the fluid. θ : Dimensionless temperature 
Tw : Temperature at the surface. ρ : Density of the fluid inside the boundary layer. 
T∞ : Temperature of the ambient fluid. ψ : Stream function 
U : Velocity component in the X-direction. σ0 : The electrical conduction 
V : Velocity component in the Y-direction. κ : Thermal conductivity of the fluid. 
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The present work considers the natural convection 
boundary layer flow on a sphere of an electrically 
conducting and steady viscous incompressible fluid in 
presence of strong magnetic field. The governing partial 
differential equations (PDE) are reduced to locally non-
similar PDE by adopting appropriate transformations. The 
transformed boundary layer equations are solved 
numerically using implicit finite difference scheme 
together with the Keller box technique. Here, we focused 
on the evolution of the surface shear stress in terms of the 
local skin friction and the rate of heat transfer in terms of 
local Nusselt number, velocity and temperature 
distributions for a set of parameters consisting of viscous 
dissipation parameter N, magnetic parameter M and Prandtl 
number, Pr. 

FORMULATION OF THE PROBLEM 

Natural convection boundary layer flow on a sphere 
of an electrically conducting and steady two-dimensional 
viscous incompressible fluid in presence of strong 
magnetic field and heat generation is considered. It is 
assumed that the surface temperature of the sphere, Tw > 
T∞, T∞ being the ambient temperature of the fluid. Under 
the usual Boussinesq and boundary layer approximation, 
the basic equations are 

       (1) 
 

(2) 
 

(3) 

The boundary conditions for the equations (2) to (3) are 

0 0wU V ,  T T   on Y= = = =  

0   U ,  T T  at  Y  ∞→ → → ∞             (4) 

             (5) 
 
where,  r = r(X), r is the radial distance from the 
symmetrical axis to the surface of the sphere, g is the 
acceleration due to gravity, β is the coefficient of thermal 
expansion, ν is the kinematics viscosity, T  is the local 
temperature, Cp is the specific heat at constant pressure, ρ 
is the density, σ0 is the electrical conduction and Pr is the 
Prandtl number. To non-dimensionalise the above 
equations, the following dimensionless variables are 
introduced:  
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Where  ( ) 23
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θ is the non-dimensional temperature. Thus equation(5) 
becomes, r = a sinx          (7) 
 
Using the above values, equations (1) to (3) take the 
following forms: 
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Where, M = ( )2/122
0 Gra ρνβσ  is the magnetic parameter 

and ( )∞−= TTCaGrN wP
2 , is the viscous dissipation 

parameter. Therefore, momentum and energy equation 
[eq.(9)-(10)] can be written as 
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To solve equations (11) and (12) subject to the boundary 
conditions (13), we assume ψ(x,y) = x r(x)f(x,y), 
whereψ(x,y) is a non-dimensional stream function, which 
is related to the velocity components u and v in the usual 
way as 

u =      and   v        (14) 
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Using the above transformed values in equations (11) and 
(12) and simplifying, we have the following:  
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The corresponding boundary conditions are  

f = f ′(y)= 0 , θ =1 at   y = 0 
f ′(y) → 0, θ  → 0    as y → ∞      (18) 

It has been seen that at the lower stagnation point of the 
sphere ie x ≈ 0, using limiting value equations (16) and 
(17) reduce to the following ordinary differential 
equations: 
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Fig. 1:  Physical model and coordinate system 
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along with the boundary conditions 

f = f ′(y)= 0, θ =1 at   y = 0 
f ′(y) → 0, θ  → 0    as y → ∞      (21) 

In practical application, the physical quantities of principal 
interest are the heat transfer and the skin- friction 
coefficient, which can be written in non- dimensional form 
as 
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Where,      and     , k being  

the thermal conductivity of the fluid. Using the new 
variables (6), we have 
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RESULTS AND DISCUSSION 

Here we have investigated the effects of viscous 
dissipation with magnetohydrodynamic natural convection 
flow on a sphere. Solutions are obtained for the fluid 
having Prandtl number Pr = 1.00, 1.74, 2.00, 3.00, viscous 
dissipation parameter N = 0.10, 0.30, 0.50, 0.70, 1.00 
against y at any position of x and for a wide range of values 
of magnetic parameter M. Also the results for local skin 
friction coefficient and local rate of heat transfer have been 
obtained for fluids having Prandtl number Pr = 1.00, 1.74, 
2.00, 3.00 at different positions of x for a wide range of 
values of magnetic parameter M.  

Here, it is found that from Fig. 2(a), velocity 
distribution increases as the values of viscous dissipation 
parameter N increase in the region y∈ [0, 12] but near the 
surface of the sphere velocity increases significantly and 
then decreases slowly and finally approaches to zero.  The 
maximum values of the velocity are 0.48450, 0.51282, 

0.53527, 0.55384 and 0.56949 for N = 0.10, 0.30, 0.50, 
0.70 and 1.00 respectively which occur at y = 1.23788 for 
the first, second and third maximum values, y = 1.30254 
for the fourth and fifth maximum values. Here it is 
observed that the velocity increases by 17.54179 % as N 
increases from 0.10 to1.00.  From Fig. 2(b), it is seen that 
when the values of viscous dissipation parameter N 
increases in the region 0≤ y ≤ 12, the temperature 
distribution also increases. We also observed that the 
maximum temperature has been found at the surface on the 
sphere. 

The effects of magnetic parameter M for Pr = 0.72 
and N = 0.90 on the velocity and temperature profiles are 
shown in figures 3(a) to 3(b). Figures 3(a) and 3(b) present 
the effects of magnetic parameter M on the velocity and 
temperature profiles. From these figures, it is seen that the 
velocity decreases with the increasing values of magnetic 
parameter M and the temperature increases with the 
increasing values of M. 

 Figs. 4(a) and 4(b) indicate the effects of the Prandtl 
number Pr with M = 0.50 and N = 0.40 on the velocity and 
the temperature profiles. From figure 4(a), it is observed 
that the increasing values of Prandtl number Pr leads to the 
decrease of the velocity. The maximum values of the 
velocity are 0.52815, 0.42524, 0.38592 and 0.36155 for Pr 
= 1.00, 1.74, 2.00 and 3.00, respectively, which occur at y 
= 1.23788 for the first maximum value and y = 0.99806 for 
the second, third and fourth maximum values. Here, it is 
depicted that the velocity decreases by 31.544068 % as Pr 
increases from 1.00 to 3.00. Again from Fig. 4(b) it is 
observed that the temperature decreases with the increasing 
values of Prandtl number, Pr. But near the surface of the 
sphere temperature is maximum and then decreases away 
from the surface and finally takes asymptotic value. 
 
 The effects of magnetic parameter M for Pr = 0.72 
and N = 0.90 on the skin friction coefficient CfX and local 
heat transfer coefficient NuX are shown in figures 5(a) and 
5(b). From figures 5(a) and 5(b), it is observed that the 
increasing values of magnetic parameter M leads to the 
decrease in the skin friction co-efficient CfX and the local 
heat transfer co-efficient NuX. 
 
 Figures 6(a) and 6(b) show that skin friction 
coefficient CfX and heat transfer coefficient NuX decrease 
for increasing values of Prandtl number Pr while magnetic 
parameter M = 0.50 and viscous dissipation parameter N = 
0.40. The values of skin friction coefficient CfX and Nusselt 
number NuX are recorded to be 0.33987, 0.33486, 0.32018, 
0.31108 and 0.27366, 0.25235, 0.15165, 0.02378 for Pr 
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Fig. 2: (a) Velocity and (b) Temperature profiles for different values of viscous dissipation parameter N. 
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=1.00, 1.74, 2.00, 3.00 respectively which occur at the 
same point x = 0.38397. Here, it observed that at x = 
0.38397, the skin friction coefficient decreases by 
8.470885% and Nusselt number NuX decreases by 
91.310385% as the Prandtl number Pr changes from 1.00 
to 3.00.  

In Table 1 are given the tabular values of the local 
skin friction coefficient Cfx and local Nusselt number NuX 
for different values of magnetic parameter M while Pr = 
0.72 and N = 0.90. Here we found that the values of local 
skin friction coefficient CfX decreases at different position 
of x for magnetic parameter M = 0.40, 0.60, 0.80, 1.00. The 

Fig. 3: (a) Velocity and (b) Temperature profiles for different values of magnetic parameter M. 
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Fig. 4: (a) Velocity and (b) Temperature profiles for different values of Prandtl number Pr. 
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Fig. 5: (a) Skin friction coefficient and (b) Local heat transfer coefficient for different values of magnetic parameter M. 
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Fig. 6: (a) Skin friction coefficient and (b) Local heat transfer coefficient for different values of Prandtl number Pr.
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rate of the local skin friction coefficient CfX is decrease by 
14.7153% as the magnetic parameter M changes from 0.40 
to 1.00 and x = 0.80285. Furthermore, it is seen that the 
numerical values of the local Nusselt number NuX decrease 
for increasing values of magnetic parameter M. The rate of 
decrease the local Nusselt number NuX is 9.64356% at 
position x = 0.80285 as the magnetic parameter M changes 
from 0.40 to 1.00. 

CONCLUSIONS 

 The effect of viscous dissipation in 
magnetohydrodynamics natural convection flow on a 
sphere has been investigated for different values of 
relevant physical parameters. The governing boundary 
layer equations of motion are transformed into a non-
dimensional form and the resulting non-linear systems of 
partial differential equations are reduced to local non-
similarity boundary layer equations, which are solved 
numerically by using implicit finite difference method 
together with the Keller-box scheme. From the present 
investigation the following conclusions may be drawn:  

Significant effects of magnetic parameter M on 
velocity and temperature profiles as well as on skin friction 
coefficient CfX and the rate of heat transfer NuX have been 
found in this investigation but the effects of magnetic 
parameter M on the rate of heat transfer is more significant. 

An increase in the values of magnetic parameter M 
causes both the local skin friction coefficient CfX and the 
local rate of heat transfer NuX to decrease, the velocity to 
decreases but the temperature to increases.  

As viscous dissipation parameter N increases, both 
velocity and temperature  increase significantly. 

For increasing values of Prandtl number Pr leads to 
decrease velocity, temperature, local skin friction 
coefficient CfX and also local rate of heat transfer NuX.  
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x CfX NuX CfX NuX CfX NuX CfX NuX

0.00000 
0.10472        
0.20944 
0.40143        
0.50615 
0.80285 
1.01229 
1.20428 
1.30900        
1.50098        
1.57080        

0.00000 
0.08795 
0.17522 
0.33132 
0.41318 
0.62615 
0.75407 
0.85072 
0.89399 
0.95406 
0.96930 

1.02248 
1.02141 
1.01838 
1.00768 
0.99902 
0.96344 
0.92818 
0.88812 
0.86301 
0.81068 
0.78954 

0.00000 
0.08340 
0.16613 
0.31395 
0.39132 
0.59178 
0.71112 
0.80021 
0.83950 
0.89264 
0.90550        

0.99028 
0.98919 
0.98612 
0.97528 
0.96651 
0.93047 
0.89478 
0.85425 
0.82887 
0.77603 
0.75471 

0.00000 
0.07933 
0.15800 
0.29842 
0.37181 
0.56121 
0.67310 
0.75569 
0.79161 
0.83900        
0.84993       

0.96003 
0.95893 
0.95582 
0.94485 
0.93597 
0.89952 
0.86343 
0.82249 
0.79685 
0.74355 
0.72206 

0.00000 
0.07569 
0.15073 
0.28455 
0.35437 
0.53401 
0.63938 
0.71638 
0.74945 
0.79206 
0.80142 

0.93160 
0.93045 
0.92731 
0.91625 
0.90730 
0.87053 
0.83415 
0.79291 
0.76711 
0.71350 
0.69192 

 

Journal of Mechanical Engineering, vol. ME36, Dec. 2006 
Transaction of the Mech. Eng. Div., The Institution of Engineers, Bangladesh 


