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Abstract: Tapered cantilever beams, traditionally termed as leaf springs, undergo much larger deflections in comparison to 
a beam of constant cross-section that takes their study in the domain of geometric nonlinearity. This paper studies response 
of a leaf spring of parabolic shape, assumed to be made of highly elastic steel. Numerical simulation was carried out using 
both the small and large deflection theories to calculate the stress and the deflection of the same beam. Non-linear analysis 
is found to have significant effect on the beam’s response under a tip load. It is seen that the actual bending stress at the 
fixed end, calculated by nonlinear theory, is 2.30-3.39 % less in comparison to a traditional leaf spring having the same 
volume of material. Interestingly, the maximum stress occurs at a region far away from the fixed end of the designed 
parabolic leaf spring. 
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INTRODUCTION   
 

As pointed out by Rahman et al. (2006), structural 
problems, coupled with geometric non-linearity are always 
challenges for engineers. This is because of the fact that 
large deflection analysis of structures, inherently involves 
non-linear differential equations having no closed form 
solutions as pointed out by Bele’ndez et al. (2005). The 
problem would become even more interesting if the shape 
of the structure itself varies from point to point. That the 
topic of large deflection analysis of cantilever beams is 
ever interesting can be seen from a huge number of studies 
reported in the literature; out of those researches only a few 
relevant to the present study are discussed below.  

Very recently Bele’ndez et al. (2005) carried out 
numerical simulation using Runge-Kutta-Felhberg method 
to find the tip deflection of a very slender beam under a 
combined load. The authors studied the large deflections of 
a uniform cantilever beam under the action of a combined 
load consisting of an external vertical concentrated load at 
the free end and a uniformly distributed load and compared 
the numerical results with the experimental ones.  

Lee (2002) dealt with large deflection of cantilever 
beams made of Ludwick type material under combined 
loading. Governing equation was derived from shearing 
force formulation, which has computational advantages 
over the bending moment formulation for large deflection 
analysis. It was pointed out that numerical solution is 
required to determine the large deflection because the 
governing equation is a complex non-linear deferential 
equation. Numerical solution was obtained using Butcher’s 
fifth order Runge-Kutta method.  

Bratus and Posvyanskii (2000) studied problem of 
minimizing the elastic deflection of an elastic beam of 
variable cross-section and fixed volume with free 
supported and rigidly clamped ends respectively. In case of 
clamped ends, it is proved that the optimum solutions must 
necessarily have points inside the solution range in which 
the distribution of the beam thickness degenerates to zero. 
Qualitative analytical and numerical solutions were given.  

Rahman et al. (2007) carried out extensive numerical 
simulation of a slender cantilever beam with opening of 
different shapes (circle, ellipse and square slots). It was 
found that the elliptic holes develop the minimum stresses 
and deflections. Rahman et al. (2005) also performed tests 
to verify the soundness of the numerical results obtained 
considering varying cross-section because of a circular 
hole. Further, investigations on non-linear bending of 
tapered cantilever beams were also carried out by Rahman 
and Kowser (2007) and Kowser (2006). Though traditional 
design assumes constant/uniform stress distribution all 
along the leaf spring’s span, it was shown from non-linear 
analysis that stresses are actually less near the tip than 
those at the fixed end. It was concluded that slightly more 
material could be removed near the tip of a tapered 
cantilever beam originally designed for uniform strength. 
Therefore, this study designs a beam of a parabolic shape. 
This is accomplished by designing a leaf spring (tapered 
cantilever beam of uniform strength) and then removing 
material from it defining a parabolic geometry keeping 
beam’s volume equal to that of a traditional leaf spring. 
Deflections and stresses for non-linear bending are 
discussed and compared with those of an 
original/traditional leaf spring.  

 
____________________________________________________________________________________________________ 

Nomenclature 

b0 width of the beam at fixed end x horizontal distance measured from the fixed end 
b width of the beam at any point on its span XH upper limits of x 
E Young’s modulus of the beam material XL lower limits of x 
t height/ thickness of the beam y Elastic curve’s deflection 
I area moment of inertia at any point x 
L length of the beam Greek symbols 

M  bending moment δ tip deflection 
P tip load ∆ End 
s curved length of beam σ Stress 
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 This study aims at utilization of the parabolic leaf 
spring in a compliant structure/mechanism. It should be 
noted that a compliant mechanism is a single-piece flexible 
structure where the structural deformation is utilized to 
transmit force or deliver motion due to an input actuation.  
 
MATHEMATICAL ANALYSIS 

 
Since the beams are quite slender for the present case, 

only pure bending is considered for this study ignoring the 
effect of shearing stresses.  When deflection is large with 
respect to the span of the beam the governing equations of 
the elastic curve for a cantilever beam with a point load P 
(Fig. 1), in terms of large deflection formulation is given 
as,  

 
 

        (1) 
 
 
 
 
The above equation is highly nonlinear and has been 

solved numerically in the present study by Runge-Kutta 
method.  

For calculating the end-shortening ∆ , consider a 
cantilever beam having length L. When load P is applied, 
the beam bends and ∆ is the amount of end-shortening. On 
the elastic curve, an infinitesimal segment length ds is 
given by 

22 dydxds +=  
Therefore, the total length of the bent beam is given 

by  

 
     (2) 

 
 
Where, XH =L-∆ and XL=0 
∆ is calculated numerically by trial. At first the elastic 

curve is evaluated from Eq. (1) without considering ∆. 
Next, assuming the value of XH =L- ∆, in such a way that 
the value of integration of Eq. (2) becomes s≈L, it can be 
said that end-shortening is ∆=L-XH. The converging 
criterion was 0.998L≤s≤L. Then putting the value of ∆ in 
Eq. (1) of the elastic curve, deflections at corresponding 
loads can be found. Alternately, at first a small value of ∆ 
is assumed and Eq. (1) is solved. Once the elastic curve is 
known, Eq. (2) is integrated numerically to check whether 
the assumed value of ∆ is accurate or, needs to be 
improved by the next step. Therefore, in order to take into 
account the end-shortening, Eqs. (1) and (2) have to be 
solved simultaneously, as described in Kowser (2006).  

Next, the variable width of the two parabolic leaf 
springs are calculated from the following equations, with 
reference to Fig. 1. The vertex of the parabola lies at the tip 
of the leaf spring. For specimen 1 (b0=32.66mm, width at 
tip=9.02mm, L=145mm)  

   b=9.02+23.64× (1-x/L) ²       (3) 

For specimen 2 (b0=21mm, width at tip=5.80mm, 
L=145mm)  

   b=5.80+15.20× (1-x/L) 2        (4) 

Other dimension of the beam taken for analysis is 
t=0.83mm. 

Figure 1: (a)Traditional leaf spring and (b) the proposed 
parabolic leaf spring of same volume (b0=32.66 mm and 21 

mm for specimens 1 and 2, respectively). 
 
 
 
 
 
 
 
 
 
 
Figure 1(c): Deflection of beam under load P and 

corresponding end-shortening 
 
It should be noted that the proposed leaf spring 

(L=145mm) and the traditional leaf spring (L=150mm) 
have same width at fixed end and same volume as well.  

The problem here involves extensive numerical 
analysis as width of the beam changes nonlinearly with its 
span. In Table 1, non-linear solutions for a traditional leaf 
spring were obtained first and then compared with those 
for a proposed parabolic leaf spring.  

 
RESULTS AND DISCUSSION 

 
We start discussion by proving soundness of our 

numerical scheme by comparing few results, taking into 
account only geometric non-linearity, for a highly flexible 
cantilever beam of constant cross-section under a 
combined load, as treated by Bele’ndez et al. (2005). Table 
2 shows the comparison. The Young’s modulus for a 
particular load was not explicitly given by Bele’ndez et al. 
(2005). It was stated to be within 180-210 GPa. We used 
its value as 200 GPa. As seen, the numerical non-linear 
solution matches within an error of only 3.5% at the 
highest experimental load found by Bele’ndez et al. (2005). 
A better match would be possible with the known correct 
value of E. For example, E = 194.5 GPa was found to give 
least error as shown by Bele’ndez et al. (2005). Therefore, 
our numerical predictions would match even better with 
the experimental results with E = 194.5 GPa. Anyway, it is 
now proven that the present numerical scheme, as used 
here, is capable of predicting the elastic curve with 
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Table 1: Comparison of the proposed parabolic and traditional leaf springs for two different cases. 
 

(b0=32.66mm and 21mm for specimens 1 and 2, respectively) 

Non-linear solutions with end-shortening 

Traditional leaf spring 
(L = 150mm, t = 0.83 mm) 

Parabolic leaf spring of same volume 
(L = 145 mm, t = 0.83 mm) 
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Fixed end 
Stress (MPa) 

Tip deflection 
(mm) 

Fixed end stress 
(MPa) 

Max Stress 
(MPa) 

Tip Deflection 
(mm) 

1 10 400 370 50.56 357.43 399.71 46.22 
2 8 500 444 59.62 433.62 484.91 54.07 

Maximum stresses occur at x=53mm and 51mm, for specimen 1 and specimen 2, respectively. 
 

Table 2: Comparison of experimental results of Bele’ndez et al. (2005) with the numerical results generated by the 
present study using convergence criterion, L ≥ s ≥ 0.998L 

 
(Thickness, h=0.0004m; length, L=0.40m; uniform weight, w=0.758 N/m) 

Tip deflections (mm) 
Numerical solutions with ∆ (present study) 

Error (%) P (N) 
Experiment from Bele’ndez et 

al. (2005) Linear  Non-linear  Linear Non-linear 
0 89±1 81.80 84.48 8.80 5.35 

0.098 149±1 132.50 142.65 12.45 4.45 
0.196 195±1 166.22 184.71 17.31 5.57 
0.294 227±1 188.38 210.96 20.50 7.6 
0.396 251±1 211.96 236.28 18.41 5.22 
0.490 268±1 229.67 254.57 16.68 5.27 
0.588 281±1 236.84 271.77 18.64 3.39 
 

Figure 2: Tensile stress-strain curve of beam material (high 
strength steel). 

 
 

Figure 3(a): Tip deflection of parabolic leaf spring 
(specimen 1). 

 
 

Figure 3(b): Deflected shape of parabolic leaf spring 
(specimen 1). 

 

 

Fig. 4: Stress distribution for parabolic leaf spring 
(specimen 1). 
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reasonable accuracy by large deflection theory taking into 
account the associated end-shortening even under a 
combined load. Fig. 2 shows tensile stress–strain diagram 
that we performed for a highly elastic steel sheet. We 
assume the beam can be made of this steel sheet and its 
Young’s modulus as 194.573GPa (Fig. 2).  
 From Fig. 3(a) we can see the nature of the load-
deflection curves (equilibrium configuration paths) of the 
steel beam of parabolic shape (specimen 1) obtained from 
numerical analysis. The tip deflection at load of 10N for 
the specimen is 51.68mm and 59.68 mm for linear and 
nonlinear analysis, respectively. But with end-shortening 
the tip deflection is found to 42.85mm and 46.22mm for 
linear and nonlinear analysis respectively, which clearly 
shows importance of inclusion of end-shortening for a 

slender cantilever beam. Fig. 3(b) shows the deflected 
shape of the parabolic beam for specimen 1 by linear and 
nonlinear analysis with end-shortening. As seen from 
Table 1, the tip deflections with end-shortening are 7.84% 
less for linear analysis and 8.58% less for nonlinear 
analysis compared with the values of a traditional leaf 
spring (length=150mm and width at fixed end 
bo=32.66mm).  
 Regarding the presentation style of the stresses for 
specimens 1 and 2, respectively, we prefer to use x on the 
abscissa for Figs.4 and 6. x has been defined in Fig. 1 as 
the horizontal distance of a point on the elastic curve, 
measured from the fixed end. For clarity, x=XH corresponds 
to the projection of the deflected elastic curve’s tip on x 
axis. The advantage of stress versus x curve is that, one can 
get an idea of end-shortening directly. As seen, nonlinear 
solutions with end-shortening predict the stresses that are 
significantly smaller than those predicted without taking 
into account end-shortening. Linear solutions slightly over 
predict the stresses in comparison to the nonlinear 
solutions. Another distinguishing feature is the smooth rise 
and fall of stress along the beam span, the highest stress 
being near the middle in contrast to a classical leaf spring 
that develops maximum stress at the fixed end that 
continuously decreases all along its span (Kowser 2006). 
 Fig. 4 shows the stress distribution along the beam-
span of parabolic leaf spring by different solution schemes. 
Non-linear solutions with end-shortening predict the 
minimum bending stresses. The maximum stresses occur at 
a point far away from the fixed end unlike a tapered 
traditional leaf spring. But, there is no abrupt change in the 
stresses along the span. Fixed end stresses by linear and 
non-linear theories with end-shortening being taken into 
account, are 361.45MPa and 357.43MPa, respectively 
which are slightly less when compared with a traditional 
leaf spring (Table 1). 
 In Fig. 5(a), tip deflections with end-shortening at a 
load of 8N for specimen 2, are 49.80mm and 54.07mm by 
linear and nonlinear analyses, respectively. Corresponding 
results show that these tip deflections with end-shortening 
are 7.76% less for linear analysis and 9.31% less for 
nonlinear analysis in comparison to their counterpart 
(Table 1). The deflected shape of the parabolic beam for 
specimen 2 by linear and nonlinear analysis with end-
shortening is shown in Fig. 5(b). 
 Fig. 6 shows the stress distribution along the beam-
span for specimen 2, which is similar to that of specimen 1 
as shown in Fig. 4. According to non-linear theory with 
end-shortening the maximum stresses are 399.71MPa and 
484.91MPa, respectively for specimens 1 and 2. 
Interestingly, these maximum stresses occur near the 
middle span of the beam (Figs. 4, 6). 
 The main objective of a beam with variable cross 
section is to make the best use of material, in terms of 
economy. From detailed non-linear analyses it is obvious 
more material can be removed from a traditional leaf 
spring (by inscribing a parabolic shape, for example, as 
done here) with insignificant change in the response of the 
beam, in terms of stress and deflections. 
 
CONCLUSIONS 

 
An innovative parabolic leaf spring has been designed 

and analyzed solving highly non-linear differential 
equations. The effects of two vitally important factors, 
namely, the end-shortening and geometric nonlinearity, on 
the response of parabolic shaped variable cross section, 

Figure 5(a): Tip deflection of parabolic leaf 
spring (specimen 2). 

Figure 5(b): Deflected shape of parabolic 
leaf spring (specimen 2). 

Figure 6: Stress distribution of parabolic 
leaf spring (specimen 2). 
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have been demonstrated by numerical analysis. Nonlinear 
solution plays vital role in determining the true stresses in 
highly flexible structures. 

Of course, manufacturing difficulty may arise for such 
a proposed contour of the parabolic leaf spring. But, it is 
found that the response, in terms of stress and deflection, 
of the proposed parabolic leaf spring is not significantly 
changed from that of a traditional leaf spring. Therefore, it 
justifies the use of such a parabolic contour, especially, in 
terms of economy and light weight of the leaf spring.  

Results of another research group have been 
compared with those generated by present numerical 
scheme and found to be close. It verifies the soundness of 
the numerical scheme for the proposed parabolic leaf 
spring. 
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