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Abstract:  
This work is focused on effect of inplane loading on sound generated by an airplane taking off from a 

floating runway. Assuming runway as a simple, infinitely long beam, modeled as a Timoshenko-Mindlin 

plate floating on water, an expression for sound radiation incorporating inplane loading is developed, 

for a wave number ratio of 0.1 to 2.2, to study effect of varying take off speeds and inplane loading. In 

developing this expression, a Fourier transformation in space in wave number domain is utilized rather 

than using wave propagation method to reduce analysis to a substructure. 
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NOMENCLATURE 
 

 

ξ Wave number variable 𝐶0 Sound speed in the acoustic medium,  m / s 

𝛾 Wave number ratio E Elastic modulus, N / m
2
 

ν Poisson's ratio 𝐺 Complex shear modulus 

𝜌𝑣  
Mass density of the material, 

 kg / m
3
 

𝐻(𝑥) Heavy side step function 

𝜌0 
Mass density of the acoustic 

medium,  kg / m
3
 

I 
The cross sectional moment of inertia per 

unit width 

𝜅2 
Cross sectional shape factor or the 

shear correction factor 
𝐾0 Acoustic wave number 

ζ 
Non dimensional wave number 

variable 
𝐾𝐵 Free bending wave number 

𝛼0 Fluid loading parameter 𝑀 Mach number, non-dimensional number 

𝛿(𝑥 − 𝑉𝑡) Delta function 𝑃 Sound pressure on the beam surface  

𝑓0 
Strength of external force per unit 

width, Nm / s 
Q Compressive inplane loading 

h Height of the beam, m V 
Subsonic speed of moving force of length 

2L,  m / s 

𝑝(𝑥, 𝑦 = 0, 𝑡) 
Acoustic pressure acting on the 

beam's surface 
𝑍𝑎  Acoustic impedance operator 

𝑢(𝑥, 𝑡) 
Transverse displacement of the 

beam, m 
𝑍𝑚  Beam impedance operator 

𝐶𝐿 Longitudinal wave speed, m / s   

1. Introduction 

Because of their relatively simple construction and ease of maintenance, pontoon-type Very Large Floating 

Structures (VLFS) are considered to be one of the most promising designs for a floating airport or runway, 
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particularly in sheltered areas. Sound generated by moving loads on such structures is an area of concern as it 

causes acoustic pollution for marine life and has not been addressed to date. Effect of berthing, plate 

connections, initial plate deformation, corrosion, hogging, sagging are some forms of inducing additional loads 

in form of compression / tension to plating of a floating runway and need to be considered for analyzing their 

effect on sound radiation by taking off of an airplane from such floating runways.  

 

Study of effect of compression goes back to the time of Bryan (1891) who undertook the first theoretical 

examination of plate under uniform compression. After his work numerous researchers have investigated local 

instability in plates under a wide variety of loading and boundary conditions using many different methods of 

analysis. Excellent textbooks by Timoshenko and Gere (1961) and Bulson (1970) describe main results of these 

investigations.  

 

Study of sound radiation using beams due to moving loads has been investigated by Keltie and Peng (1989). 

Results show that for beams under light fluid loading, coincidence sound radiation peak for a stationary force is 

split into two coincidence peaks due to effects of Doppler shift, while for beams under heavy fluid loading there 

are no pronounced sound radiation peaks. Following study of Keltie et al., (1999) formulated vibration response 

of periodically simply supported beam on the whole structure in wave number domain through Fourier 

transform. This problem was an advance on traditional substructure methods. For an air-loaded beam subjected 

to a stationary line force, they showed that radiated sound power exhibited peaks at certain wave number ratios. 

Wave number ratios at which radiation peaks occur nearly coincide with lower bounding wave number ratios of 

odd number of propagation zones. However, Cheng's formulation did not include presence of numerous wave 

number components induced from elastic supports and is subject to restriction that external force is located on 

one of the elastic supports. Cheng et al. (2000; 2001) introduced a “wave number harmonic series” to discuss 

vibro-acoustic response of a fluid-loaded beam on periodic elastic supports subjected to a moving load. Results 

show that response of a beam on an elastic foundation can be approximated using a periodically, elastically 

supported beam when support spacing is small compared with flexural wavelength. For such beams when force 

is stationary a single radiation peak occurs which splits into two peaks due to Doppler shift when force becomes 

traveling. 

 

Aim of this study is to propose a simple methodology for calculating sound radiation from a floating airport 

subjected to longitudinal bending due to inplane loading (compression or tension) when subjected to moving 

loads such as airplanes. An expression for sound radiation for a floating platform is developed for a wave 

number ratio of 0.1 to 2.2. In developing the expression, Fourier transform methodology is utilized as suggested 

in Keltie and Peng (1989). To simplify a three-dimensional runway with time varying loading caused by 

airplane take-off, the runway is assumed to behave as a simple, infinitely long beam supported by buoyancy. 

Hence the model is assumed to be a simple beam, described by a one dimensional Timoshenko-Mindlin beam 

equation. A compressive inplane load of magnitude Q per unit width or a tensile inplane load of magnitude –Q 

per unit width is considered to account for additional loads. 

 

2. Mathematical Formulation 

Axially loaded beams are often called beam-columns. To eliminate boundary effect of finite length of beam, 

these beams are assumed to extend to infinity. Hence we assume that the finite length floating runway behaves 

as a simple, infinitely long beam floating on water. The geometry and material properties are assumed to be 

linearly elastic. Structural damping is ignored since there is no apparent resonant mechanism in this problem. 

Water is assumed to be inviscid, and flow resulting from the airplane take-off is irrotational. The x -axis is 

aligned with the length of runway and y -axis is directed vertically upwards, as seen in Fig. 1. Because the 

floating runway is very narrow compared to its length, as a simplification, we assume that deformation and 

loading assumed do not vary across the runway. The structure is assumed to behave like a beam, described by 

the one dimensional Timoshenko-Midlin plate equation. An excitation force of length 2L moving at a subsonic 

speed V is assumed to be acting on the runway. The space y>0 is filled with an acoustic medium such as water. 

Other side of the plate is assumed to be vacuum. 

 

A uniform distributed moving line force considered to be acting on the floating runway is, given by 
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𝑓 𝑥, 𝑡 =
𝑓0

2𝐿
 𝐻 𝑥 − 𝑉𝑡 + 𝐿 − 𝐻 𝑥 − 𝑉𝑡 − 𝐿  𝑒𝑗𝜔𝑡  

 

 where 
0

f  is strength of external force per unit width, ( )H x  is Heavy side step function, and ( ) x Vt  is a 

Delta function. We consider a distributed load with a constant advance velocity instead of a point load because 

moving loads in practice have normally a finite area over which they are distributed and a point load represents 

only an extreme case. 

 

 
Fig. 1: Schematic representation of problem geometry  

 

A compressive inplane load of magnitude Q per unit width is considered to be present. If the inplane load is 

tensile then it attains a magnitude -Q. Vibration equation for the one dimensional elastic plate, including 

rotational inertia, transverse shear effects and inplane loading, is given by the Timoshenko-Mindlin beam 

equation as 

 

𝐷
𝜕4𝑢 𝑥, 𝑡 

𝜕𝑥4
+ 𝑄

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌𝑣ℎ

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
− 𝜌𝑣𝐼  1 +

𝐷𝜌𝑣
𝜅2𝐺

 
𝜕4𝑢 𝑥, 𝑡 

𝜕𝑥2𝜕𝑡2
+ 𝜌𝑣𝐼

𝜌𝑣
𝜅2𝐺

𝜕4𝑢 𝑥, 𝑡 

𝜕𝑡4
 

=  1 −
𝐷

𝜅2𝐺ℎ

𝜕2

𝜕𝑥2 +
𝜌𝑣ℎ

2

12𝜅2𝐺

𝜕2

𝜕𝑡 2  𝑓 𝑥, 𝑡 − 𝑝 𝑥, 𝑦 = 0, 𝑡     (1) 

 

where 𝑢(𝑥, 𝑡) is transverse displacement of the plate, 𝐷 = 𝐸ℎ3/12(1 − 𝜈2) is flexural rigidity of the plate, 𝐸 

the elastic modulus, 𝐺 = 𝐸/2 1 + 𝜈  is the shear modulus, 𝐼 = ℎ3/12 is the cross sectional moment of inertia 

per unit width, h  is height of the plate,   the Poisson's ratio, 𝜌𝑣  is mass density of the plate, 𝜅2 = 𝜋2/12 is 

cross sectional shape factor or shear correction factor and 𝑝(𝑥, 𝑦 − 0, 𝑡) is acoustic pressure acting on the plate's 

surface. 

 

Pressure distribution induced by the vibrating plate in acoustic medium is denoted by 𝑝(𝑥, 𝑦, 𝑡) and satisfies the 

wave equation in two-dimensional space, given by 

 

 
𝜕2

𝜕𝑦 2 +
𝜕2

𝜕𝑥 2 −
1

𝐶0
2

𝜕2

𝜕𝑡2 𝑝 𝑥, 𝑦, 𝑡 = 0             (2) 

where 𝐶0 is sound of speed in acoustic medium. 

 

 If 𝜌0 is mass density of the acoustic medium, the boundary condition at 𝑦 = 0 is given by 

 

𝜌0
𝜕2𝑢

𝜕𝑡2 = −
𝜕𝑝

𝜕𝑦
|𝑦=0          (3) 

By applying spatial Fourier transformation 𝐹𝑇() =  ()𝑒𝑖𝜉𝑥 𝑑𝑥
∞

−∞
, with   as the wave number variable, the force 

function for a harmonic line force in wave number domain may be written as 

 

𝐹  𝜉, 𝑡 = 𝑓0(
sin 𝜉𝐿

𝜉𝐿
)𝑒𝑗  𝜔+𝜉𝑉 𝑡         (4a) 

the transformed displacement as 
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𝑈 𝑠 𝜉, 𝑡 = 𝑈𝑠(𝜉)𝑒𝑗  𝜔+𝜉𝑉 𝑡          (4b) 

and the transformed pressure as 

𝑃  𝜉, 𝑦, 𝑡 = 𝑃(𝜉, 𝑦)𝑒𝑗  𝜔+𝜉𝑉 𝑡        (4c) 

Upon substitution of equation (4a), (4b) and (4c) in the relevant beam equation and the combination of 

Equations (2) and (3), we get  

 

𝑈𝑆 𝜉 =
𝑍𝐹𝐹(𝜉)

𝑍𝑚 +𝑍𝐹𝑍𝑎
              (5) 

and 

   𝑃(𝜉, 𝑦 = 0) =
𝑗 𝜌0 𝜔+𝜉𝑉 2

𝐾𝑦
𝑈𝑠(𝜉)            (6) 

 

where the acoustic impedance operator ( 𝑍𝑎  ) is given by 

𝑍𝑎 =
𝑗𝜌0(𝜔+𝜉𝑉)2

𝐾𝑦
           (7) 

the beam impedance operator ( 𝑍𝑚
 
) as 

   𝑍𝑚 = 𝐷𝜉4 − 𝑄𝜉2 − 𝜌𝑣ℎ 𝜔 + 𝜉𝑉 2 − 𝜉2  𝜌𝑣𝐼 +
𝐷𝜌𝑣

𝜅2𝐺
  𝜔 + 𝜉𝑉 2 + 𝜌𝑣𝐼

𝜌𝑣

𝜅2𝐺
(𝜔 + 𝜉𝑉)4         (8) 

 the  𝑍𝐹
 
by 

𝑍𝐹 = 1 +
𝐷

𝜅2𝐺ℎ
𝜉2 −

𝜌𝑣ℎ
2

12𝜅2𝐺
 𝜔 + 𝜉𝑉 2         (9) 

and 𝐾𝑦  is given by 

𝐾𝑦 =  
−𝑗 𝜉2 − (𝐾0 + 𝑀𝜉)2 𝑓𝑜𝑟 𝜉2 > (𝐾0 + 𝑀𝜉)2

 (𝐾0 + 𝑀𝜉)2 − 𝜉2       𝑓𝑜𝑟 𝜉2 < (𝐾0 + 𝑀𝜉)2
        (10) 

 

where 𝑀(= 𝑉/𝐶0)
 
is the Mach number and 𝐾0(= 𝜔/𝐶0) the acoustic wave number. 

 

Since we need to calculate total acoustic power, we first calculate time averaged sound intensity as given by 

Morse and Ingrad (1986) and then use this sound intensity to calculate the total acoustic power. Hence 

 

*

0

1 1
[ ]

2
  

T

s
I PVdt or I Re PU

T
 

 

where I  is time averaged sound intensity, P  is sound pressure on beam surface, *
s

U  is beam surface velocity 

of conjugation and 
( )

( ) ( )


     s

s s

dU
U j V U

dt
.  

 

To find total acoustic power (  ), surface acoustic intensity distribution is integrated over the infinite length of 

the beam as  

 

*1
[ ( , 0, ) ( , )]

2





   
s

Re P x y t U x t dx  

 

Upon substituting sound pressure (6) and surface velocity (5) of the beam, sound power radiated per unit width 

of the beam can be simplified as 

                             
3

20
( )

| ( ) |
4

[ ]  
 








   s

y

V
Re U d

K
        (11) 

 

Limiting the study to subsonic motion of the moving load, i.e, the taking off airplane, the limits within which 

yK  is real is given by 

0 0

1 2
1 1

  


   
 

K K

M M  
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This allows us to rewrite the expression for sound power as 

 

2

1

3

20
( )

| ( ) |
4

[ ]




  
 




   s

y

V
Re U d

K
  (12) 

 

Equation (12) gives the total acoustic power for a Timoshenko-Mindlin beam subjected to a inplane loading. 

 

In order to present numerical results, concept of non-dimensional parameters as discussed by Keltie and Peng 

(1989) is used. Hence the following non-dimensional parameters are defined 

 

Wave number variable   =
𝑊𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  (𝜉)

𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟  (𝐾0)
                              (13a) 

Free bending wave number  𝐾𝐵 =  
𝜌𝑣ℎ𝜔

2

𝐷
 

1

4

            

                            (13b) 

Wave number ratio  𝛾 =
𝐾0

𝐾𝐵
                   (13c) 

Longitudinal wave speed [𝐶𝐿] =  
𝐸

𝜌𝑣
                  (13d) 

Fluid loading parameter  𝛼0 =
𝜌0𝐶𝐿

 12𝜌𝑣𝐶0
                  (13e) 

Power per unit width  𝑊 =
4𝜋𝜔 (𝜌𝑣ℎ)2

𝜌0𝑓0
2 Π                   (13f) 

Substituting (13) in Equation (12) gives the dimensionless radiated sound power per unit width as 

 

   
2

1

3 2 20

0

( )
| || |






 



  F w

sin K L
W Z D

K L
      

(14) 

 where  

1 2

1 1

1 1
  


   

 M M
 

1  M  

2 2      

1 2 3 5 4
( )    

w
D D D D D jD  

4

2 2 2 2 20 0

2

2(1 )
1 (1 )( ) [ ( ) ] 

  



   

F

L L

C C
Z

C C
 

4 4

1
 D  

2 4 2 2 20

2 2 2

2(1 )
1 [1 ] (1 )

(1 )
[ ( ) ]

   
 


   


L

C
D

C
 

4 4 4 20

3 2

2(1 )
(1 )( )

  



 

L

C
D

C
 

2

0

4 2

 




F
D Z  

2

5 2

0

( )





v

Q
D

h C
 

3. Results and Discussions 

Investigation of the problem has been undertaken to evaluate total radiated sound power for an inplane loaded 

Timoshenko-Mindlin beam. Accordingly equation (14) is numerically evaluated for a case wherein the beam is 

floating on water. Material of beam considered is steel with properties as 10 220 10 / E N m , 37800 / 
v

kg m  

(i.e, 560D KNm ), 22.54 10 h m , 0.3  , 2 0.85  , 
0

1481 /C m s  and 
0

1000 /  kg m . External 

force ( 0f ) is assumed to be of unit magnitude. By varying values of parameters M  and
0

K L , sound power is 
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computed and then plotted versus wave number ratio (  ) or non-dimensional frequency. Compressive (Q) / 

Tensile (-Q) loading is taken as varying between 50 MN to 200 MN. Sound power has been calculated for 

0
0.1K L  and 2  in frequency range 0.01 2.2  . All calculations have been undertaken using MATLAB. 

 
Fig. 2: Relative sound power v/s wavenumber ratio under Compressive Load; M = 0.5 

 

Sound power generated by moving load on a one dimensional Timoshenko-Mindlin beam model subjected to 

compressive inplane loading can be seen in Figs. 2(a) and 2(b) and that due to tensile inplane loading in Figs. 

3(a) and 3(b). It is observed that for a compressive inplane load, with increased speed, there is a marginal 

increase in sound power generated, while an increased acoustic length 
0

K L  reduces sound power level over the 

entire range of frequency range. This happens since total applied force strength remains a constant. Due to a 

denser medium, like water, wherein energy drain is faster, no pronounced peaks are noticed.  

 

Since a tensile load is considered to be similar to a compressive load but with opposite direction, the effect of 

tensile load due to increased speed is a marginal decrease in sound power generated. However reduction in 

sound power level due to increased acoustic length 
0

K L  is observed over the entire range of frequency range. 

Effect of compressive and tensile inplane loads on a beam can be better understood if one was to imagine a 

sheet of paper being pulled at the edges defining tensile loading. Sound generated from such a paper may be 

considered analogous to results observed herein. 

 

 
Fig. 3: Relative sound power v/s wave number ratio under Tensile Load; M = 0.8 
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Increase of acoustic power observed in Figs. 2 and 3 is however not very large over the entire range of 

frequency as seen in Figs. 4 and 5. However the magnitude of the change in sound power is of the order of 2dB 

which cannot be neglected since inplane loading is one of the components of the loads acting on the floating 

airport. What is interesting to note is the differences tend to converge for varying convective speed of loading at 

higher frequencies as noted by Keltie and Peng (1985). 

 

 
Fig. 4: Relative sound power v/s wave number ratio under Compressive Load; M=0.5 

 
Fig. 5: Relative sound power v/s wavenumber ratio under Tensile Load; M=0.8 

4. Conclusion 

The effect of inplane loading on total sound power generated by a floating runway due to landing / taking off of 

an airplane has been analysed. For such large structures physical modeling is not feasible and one has to rely on 

mathematical models. One such model has been proposed in this study. The following are concluded from this 

study 

 

 Sound power decreases due to presence of compressive loading. 

 However sound power increases due to presence of tensile loading. 

 Change in sound power for inplane loading is limited to 2dB. 
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 Though magnitude of change is small, effect of inplane loading should not be neglected for floating 

airports subjected to landing / taking off of airplanes. 

 Change in sound power tends to converge for varying convective speed at higher frequencies. 
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