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Abstract  
Laminar free convection flow from an isothermal sphere immersed in a fluid with thermal conductivity 
proportional to linear function of temperature has been studied. The governing boundary layer 
equations are transformed into a non-dimensional form and the resulting nonlinear system of partial 
differential equations is reduced to local non-similarity equations, which are solved numerically by 
very efficient implicit finite difference method together with Keller box scheme. Numerical results are 
presented by velocity and temperature distribution of the fluid as well as heat transfer characteristics, 
namely the heat transfer rate and the skin-friction coefficients for a wide range of thermal 
conductivity parameter γ (= 0.0, 0.5, 1.0, 2.0, 3.0, 5.0) and the Prandtl number Pr  (= 0.7, 1.0, 3.0, 
5.0, 7.0). 
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NOMENCLATURE: 
 

a Radius of the sphere 
Cp Specific heat at constant pressure 

Cf Skin-friction coefficient 
f Dimensionless stream function 
g Acceleration due to gravity 

Gr Grashof number 
k(T) Thermal conductivity of the fluid  
Nu Nusselt number 
Pr Prandtl number 

qw Heat flux at the surface 

r Local radius of the sphere 
T Temperature of the fluid in the 

boundary layer 
T∞ Temperature of the ambient fluid 
Tw Temperature at the surface 
u, v The dimensionless x and y- component 

of the velocity 

v̂,û  The dimensional x  and component 
of the velocity 

ˆ ŷ

x,y Axis in the direction along and normal 
to the surface 

Greek symbols 
 

β Volumetric coefficient of thermal 
expansion 

ψ Stream function 

τw Shearing stress  

γ Conductivity-variation parameter 
γ* Constant  
ρ Density of the fluid 
ν Reference kinematic viscosity 
µ  Viscosity of the fluid 
θ Dimensionless temperature function  

Subscript 
 

w Wall conditions 

f Film temperature of the fluid 
∞ Ambient temperature 

Superscript 
 

′ Differentiation with respect to y 

 

1. Introduction: 
 

Natural convection flow of viscous incompressible fluid from an isothermal sphere represents an 
important problem, which is related to numerous engineering applications. Conjugate effect heat and 
mass transfer in natural convection flow from an isothermal sphere with chemical reaction has been 
investigated by Molla et al. (2004). The natural convection flow from an isothermal horizontal circular 
cylinder and sphere with temperature dependent viscosity has been investigated by Molla et al. (2005). 
Nazar et al. (2002) have considered the problem of natural convection flow from lower stagnation point 
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to upper stagnation point of a horizontal circular cylinder and an isothermal sphere immersed in a 
micropolar fluid. Chiang et al. (1964) investigated the laminar free convection from a sphere by 
considering prescribed surface temperature and surface heat flux. Natural convection from a sphere 
with blowing and suction studied by Huang and Chen (1987). Analysis of mixed forced and free 
convection about a sphere studied by Chen and Mucoglu (1977).   
 

Sparrow and Lee (1976), looked at the problem of vertical stream over a heated horizontal circular 
cylinder. They obtain a solution by expanding velocity and temperature profiles in powers of x, the co-
ordinate measuring distance from the lowest point on the cylinder. The exact solution is still out of 
reach due to the non-linearity in the Navier-Stokes equations. It appears that Merkin (1977), was the 
first who presented a complete solution of this problem using Blasius and Gortler series expansion 
method along with an integral method and a finite-difference scheme. Also the problem of free 
convection boundary layer flow on cylinder of elliptic cross-section was studied by Merkin (1977). 
Ingham (1978) investigated the boundary layer flow on an isothermal horizontal cylinder. Hossain and 
Alim (1997) have investigated natural convection-radiation interaction on boundary layer flow along a 
vertical thin cylinder. Hossain et al. (1999), have studied radiation-conduction interaction on mixed 
convection from a horizontal circular cylinder.  
 

All the above studies were confined to the fluid with constant thermal conductivity. However, it is 
known that this physical property may change significantly with temperature. To predict accurately the 
flow behavior, it is necessary to take into account this variation of thermal conductivity. A semi-
empirical formula for the variation of the thermal conductivity with temperature was used by 
Arunachalam and Rajappa (1978). On assuming that the viscosity and thermal conductivity of the fluid 
are linear functions of temperature, two semi-empirical formulae were proposed by Charraudeau 
(1975).  Following him Hossain et al. (2000) investigated the natural convection flow past a permeable 
wedge, a flat plate and a wavy surface for the fluid having temperature dependent viscosity and thermal 
conductivity.  
 

In the present study it is proposed to investigate the natural convection flow of a viscous 
incompressible fluid having thermal conductivity k(T) depending on temperature from an isothermal 
sphere. The surface temperature Tw of the sphere is higher than that of the ambient fluid temperature 
T∞. In formulating the equations governing the flow the conductivity of the fluid has been assumed to 
be proportional to a linear function of temperature, a semi-empirical formula for the conductivity k(T), 
as Charrudeau (1975). The governing partial differential equations are reduced to locally non-similar 
partial differential forms by adopting appropriate transformations. The transformed boundary layer 
equations are solved numerically using very efficient finite-difference scheme known as Keller box 
technique (1978). Effect of conductivity-variation parameter γ , on the velocity  and temperature 
distribution of the fluid as well as on the rate of heat transfer in terms of the Nusselt number and the 
skin-friction are shown graphically for fluids having Prandtl number Pr ranging from 0.7 to 7.0.  

  

2. Formulation of problem 
 

A steady two-dimensional laminar free convective flow from a uniformly heated sphere of radius a, 
which is immersed in a viscous and incompressible fluid having temperature dependent thermal 
conductivity, is considered. It is assumed that the surface temperature of the cylinder is Tw, where 
Tw>T∞. Here T∞ is the ambient temperature of the fluid, the configuration considered is as shown in 
Figure 1.  
 
The equations governing the flow are    
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                                               Figure 1: Physical model and coordinate system. 
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The boundary conditions of equation (1) to (3) are  
 

0ˆat,,0ˆˆ ==== yTTu wv         (4a) 
∞→→→ ∞ yTTu ˆas,0ˆ        (4b) 

 

where  are velocity components along the ( v̂,û ) ( )yx ˆ,ˆ axes, g is the acceleration due to gravity, ρ is 
the density, µ is the viscosity of the fluid, β is the coefficient of thermal expansion, Cp is the specific 
heat at constant pressure,  k (T) is the thermal conductivity of the fluid depending on the fluid 
temperature T. Here ( ) ( axaxr /ˆsinˆ = )

)

 
 

Here we will consider the form of the temperature dependent thermal conductivity which is proposed 
by Charraudeau (1975), as follows 

([ ]∞∞ −+= TTkk *1 γ         (5a) 
 

 

where k∞ is the thermal conductivity of the ambient fluid and γ* is defined as follows 
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We now introduce the following non-dimensional variables: 
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where ν (=µ/ρ) is the reference kinematic viscosity and Gr is the Grashof number and θ is the non-
dimensional temperature. 
 
Substituting variables (6) into equations (1)-(3) leads to the following non-dimensional equations 
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With the boundary conditions (4) become 
 

yxu anyfor,0at1,0 ==== θv                 (10a) 

00,at10 >==== xy,,u θv                  (10b) 

0,as,0,0 >∞→→→ xyu θ                 (10c) 
 
In equation (9) the conductivity-variation parameter γ and Prandtl number Pr are defined as 
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To solve equations (7)-(9), subject to the boundary conditions (10), we assume the following functions  

( ) ( yxyxxrf ,,, θθ )ψ ==          (12) 
 
where ψ is the non-dimensional stream function defined in the usual way as  
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u
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Substituting (12) into equations (8)-(9) we get, after some algebra, the following transformed equations 
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Along with boundary conditions 

yx
y
ff any0at1,0 ===

∂
∂

= θ                   (16a) 

00,at,1,0 >===
∂
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y
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0,as,0,0 >∞→→→
∂
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y
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Now we calculate the important quantities for the experimentalists are the shearing stress in terms of 
the skin-friction coefficient and the rate heat transfer in terms of the Nusselt number, which can be 
written, in non-dimensional form as 
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Using the variables (6),(12) and the boundary condition (16b), get 
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3. Solution Methodology 
 

In the present investigation we have integrated the equations (14) to (15) for all x by implicit finite 
difference method. 
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Implicit finite difference method (IFDM)  
 
In the present analysis, we shall employ a very efficient solution method, known as implicit finite 
difference method, which was first introduced by Keller (1978) and elaborately describe by Cebeci and 
Bradshaw (1984). An elaborate discussion on the development of algorithm of implicit finite difference 
method together with Keller-box elimination scheme is given below. 
 
To apply the aforementioned method, we first convert the equations (14) and (15) into the following 
system of first order equations with dependent variables, U(x, y), V(x, y) and p(x, y)   as  
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 And the boundary conditions (16) reduce to 
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We consider the net rectangle on the (x, y) plane and denoted by the net points   
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Here n and j are just sequence of numbers on the (x, y) plane, kn and hj be the variable mesh widths. 
 
We approximate the quantities (f, U, V, θ) at the point (xn, yj) of the net by  ( )which 

we call net function. We also employed the notation  for the quantities midway between net points 

and for any net function as 
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Now we write the difference equations that are to approximate equations (21a)-(21d) by considering 
one mesh rectangle for the mid point (xn, mj−1/2) to obtain 
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Similarly equations (21c)-(21d) are approximated by centering about the mid points ( )2/1
2/1 , −

−
j

n yx . 
Centering the equations (21c) and (21d) about the point ( )yx n ,2/1−  without specifying y to obtain the 
algebraic equations. The difference approximation to equations (21c)- (21d) become  
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Rearranging these equations and using equation (24), we can write  
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The corresponding boundary conditions (22) become 
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These nonlinear systems of algebraic equations are then linearized by Newton’s quasi-linearization 
method. 
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We define the iterations , i=0,1,2,…,IMAX with initial values equal to 

those at the previous τ station (which is usually the best initial guess available). For higher iterates we 
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We then insert the right hand side of the expressions (32) in place of jjjj VUf θ,,,  and  in 

equations (26)-(30) dropping the terms that are quadratic in  and . 
This procedure yields the following linear system of algebraic equations:
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The coefficients of momentum equation are  
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The boundary conditions (31) become 
 

0,0,1,0,0 000 ===== jjUUf δθδδθδδ       (36) 
 

which just express the requirement for the boundary conditions to remain during the iteration process. 
Now the system of nonlinear equations (33)-(35) together with the boundary conditions (36) can be 
written in matrix/vector form where the coefficient matrix has a block tri-diagonal structure. Such a 
system is solved using a block-matrix version of well known Thomas or tri-diagonal matrix algorithm. 
The whole procedure, namely reduction to first order form followed by central difference 
approximations, Newton's quasi-linearization method and the block Thomas algorithm, is well known 
as the Keller-box method. To initiate the process at the leading edge x = 0.0 we first prescribed guess 
profiles for the functions f and θ and their derivatives from the exact solutions of the following 
equations: 
 

02 2 =+′−′′+′′′ θffff          (37) 

( ) 02
Pr
11

Pr
1 2 =′+′+′′+ θθγθγθ f

       (38)

 

 
Satisfying the boundary conditions 
( ) ( ) ( )
( ) ( ) 0

10,000
=∞=∞′

==′=
θ

θ
f

ff
        (39) 

 
These solutions are then employed in the Keller-box scheme with second order accuracy to march step 
by step along the boundary layer. For a given value of x, the iterative procedure is stopped when the 
maximum change between successive iterates is less than 10−5. A uniform grid of 2001 points are used 
in the x-direction with the step size ∆x = 0.01 and another non-uniform grid in the y-direction has been 
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incorporated, considering yj = sinh{(j-1)/a} where j = 1, 2, 3, …, N  with N = 301 and a = 100 to get 
quick convergence and thus save computational time and memory space. 
 
4. Results and Discussion: 

 

In this paper we have investigated in the problem of laminar natural convection flow and heat transfer 
from an isothermal sphere with temperature dependent thermal conductivity. Here we have considered 
the thermal conductivity of the fluid is proportional to the linear function of temperature that means if 
the temperature of the fluid increase then the conductivity of the fluid increases. The thermal 
conductivity of air is 0.009246 W.m-1.0K-1, 0.013735 W.m-1.0K-1, 0.03003 W.m-1.0K-1 and 0.05779 
W.m-1.0K-1 at 1000K, 2000K, 4000K and 8000K temperature respectively. (See Cebeci and Bradshaw 
(1984)). 
  
Table 1. Compares the present numerical values of Nu for the values of Prandtl number Pr (= 0.7, 7.0) 
without effect of conductivity variation parameter with those obtained by Nazar et al. (2002) and 
Huang and Chen (1987). 
 

Pr = 0.7 Pr = 7.0 x in 
degree Nazar et 

al. [5] 
Huang 

and Chen 
[7] 

Present 
results 

Nazar et 
al. [7] 

Huang 
and Chen 

[5] 

Present 
results 

0 0.4576 0.4574 0.4576 0.9595 0.9581 0.9582 
10 0.4565 0.4563 0.4564 0.9572 0.9559 0.9558 
20 0.4533 0.4532 0.4532 0.9506 0.9496 0.9492 
30 0.4480 0.4480 0.4479 0.9397 0.9389 0.9383 
40 0.4405 0.4407 0.4404 0.9239 0.9239 0.9231 
50 0.4308 0.4312 0.4307 0.9045 0.9045 0.9034 
60 0.4189 0.4194 0.4188 0.8801 0.8805 0.8791 
70 0.4046 0.4053 0.4045 0.8510 0.8518 0.8501 
80 0.3879 0.3886 0.3877 0.8168 0.8182 0.8161 
90 0.3684 0.3694 0.3683 0.7774 0.7792 0.7768 

 
Equations (14)-(15) subject to the boundary conditions (16) are solved numerically using a very 
efficient implicit finite finite-difference together with Keller box, which is described in above section. 
The numerical solutions start at the lower stagnation point of the sphere, x ≈ 0, with initial profiles as 
given by equations (37)-(38) along with the boundary conditions (39) and proceed round the sphere up 
to the upper point, x ≈ π/2. Solutions are obtained for fluids having Prandtl number Pr (= 0.7, 1.0, 3.0, 
5.0, 7.0) and for a wide range of values of the variable conductivity parameter γ  (= 0.0, 0.5, 1.0, 2.0, 
3.0, 5.0.). Since the values of f ″ (x,0) and θ ′ (x,0)  are known from the solutions of the coupled 
equations (14) and (15), numerical values of the shearing stress in terms the skin-friction coefficients Cf 
from (19) and the heat transfer rate in terms of Nusselt number Nu from (20) are calculated from lower 
stagnation point to upper stagnation point of the circular cylinder. Numerical values of Cf and Nu are 
entered in Table 1 and depicted by figures 2 and 3. It should be noted that for constant thermal 
conductivity we recover the problem that discussed by Nazar et al. (2002) in absence of micro polar 
parameter and Huang and Chen (1987) in absence of suction and blowing. 

 
The numerical values of the skin-friction coefficient Cf and the local Nusselt number Nu, against the 
curvature parameter x for different values of conductivity variation parameter γ (= 0.0, 0.5, 1.0, 2.0, 
5.0) while Pr = 0.7 (air at 200C and 1 atm. pressure) are depicted in Fig. 2(a)-(b). With the increasing 
values of the conductivity-variation parameterγ, it can be observed that the values of skin-friction 
coefficient Cf increases and the Nusselt number Nu decreases. For increasing values of γ, the 
temperature of the fluid within the boundary layer increases and hence the viscosity of the air increases 
and the corresponding skin-friction coefficient Cf increases. Since the temperature of the fluid increases 
and hence the corresponding temperature difference between the surface and the fluid enhances. Due to 
higher temperature of the fluid, the rate of heat transfer that means the Nusselt number Nu decreases. It 
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can also be calculated at x = π/4, the values of skin-friction coefficient Cf  increases by 25.32% and the 
Nusselt number Nu decrease by 59.20% respectively for increasing values of γ  from 0.0 to 5.0. 
 
The effect of Prandtl number Pr (= 0.7, 1.0, 3.0, 5.0, 7.0) on the skin-friction coefficient Cf and the 
Nusselt number Nu against the curvature parameter x∈[0, π/2] for γ  = 2.0 is shown in Fig. 3(a)-(b). It 
is found that values of the skin-friction coefficient Cf decreases and the Nusselt number Nu increases 
for increasing values of the Prandtl number Pr. For example, at x = π/4, the values of the skin-friction 
Cf  decreases by 31.88% and the Nusselt number increases by 120.17% while Pr increasing from 0.7 to 
7.0. According to definition of Pr, for increasing values of Pr the thermal conductivity of the fluid 
decreases and the viscosity of the fluid increases. Then in any one point on the surface, the shearing 
stress that means the skin-friction coefficient is larger and the  heat is not able to conduct easily into the 
fluid as Pr increases and therefore the thermal boundary layer becomes thinner, hence the 
corresponding temperature gradients are larger and the surface rate of heat transfer increases.  
 
Attention is now given to the effect of pertinent parameter on the dimensionless velocity f′ (x, y) = u/x 
and the dimensionless temperature distribution θ (x,y) in the flow field are shown graphically in Fig. 4. 
Fig. 4(a)-(b) illustrate the velocity and temperature distribution against the variable y for different 
values of the conductivity-variation parameter γ (= 0.0, 0.5, 1.0, 2.0, 3.0, 5.0) at x = π/3 while Pr = 0.7. 
It can be observed that the velocity and temperature distribution increases with the increasing values of 
the conductivity-variation parameter, γ. It should be noted that at each value of the conductivity-
variation-parameter  γ, the velocity profile has a local maximum value within the boundary layer. 
The maximum values of the velocity are 0.32806, 0.35586, at y = 1.1144 for γ = 0.0, 0.5 respectively 
and forγ = 1.0, 2.0 the maximum values of the velocity are 0.37855, 0.41383 respectively at y = 1.1752. 
And the corresponding temperature at that location are 0.53497, 0.59759, 0.62240, 0.68437, 0.70813 
and 0.75963 for γ = 0.0, 0.5, 1.0, 2.0, 3.0, 5.0 respectively. Here it can be seen that for large values of γ, 
the location of the maximum values of the velocity are shifted. The maximum velocity and temperature 
increase by 26.14% and 41.99% respectively as γ increases from 0.0 to 5.0. It also be concluded that 
the velocity boundary layer and the thermal boundary layer thickness increase for large values of γ.  
 
5. Conclusions: 
 

The effect of temperature-dependent thermal conductivity on the natural convection boundary layer 
flow from an isothermal sphere has been investigated theoretically. Numerical solutions of the 
equations governing the flow are obtained by using the very efficient implicit finite difference method 
together with Keller box scheme. From the present investigation the following conclusions may be 
drawn:  

• Increasing the value of the thermal conductivity- variation parameter γ leads to increase the 
local skin-friction coefficient Cf and a decrease the local Nusselt number Nu. 

• The velocity distribution and the temperature distribution increase for increasing value of 
thermal conductivity- variation parameterγ. 

• It is seen that the skin-friction coefficient Cf decrease as well as the rate of heat transfer 
increase with the increasing values of Prandtl number Pr.   

• The results have demonstrated that the assumption of constant fluid properties may introduce 
severe errors in the prediction of the surface shearing stress and the rate of heat transfer. 
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Figure 2: (a) Skin-friction coefficient (b) Rate of heat transfer for different values of γ  while Pr = 0.7 
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Figure 3: (a) Skin-friction coefficient (b) Rate of heat transfer for different values of Pr while γ = 2.0. 
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Figure 4: (a) Velocity and (b) Temperature distribution for different values of γ while Pr = 0.7 at x = 
π/3. 
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