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Abstract 

 
This paper presents results from the application of the genetic algorithm (GA) technique to the 
design optimization of hydrofoil and marine propeller incorporating potential based boundary 
element method (BEM). Although, larger population size as implemented by simple genetic 
algorithm (SGA) could find the optimal individual after a fewer number of generations than 
smaller population size, it is penalized by a longer amount of time to evaluate fitness in every 
generation. An investigation is, therefore, conducted in this research to implement micro 
genetic algorithm (µGA) with a very small population, and with simple genetic parameters, in 
order to achieve faster convergence to better solution from generation to generation. The 
technique is applied here to optimize hydrofoils of different plan forms, e.g., rectangular, 
elliptical, trapezoidal etc. Firstly, the hydrofoil design parameters, such as, angle of incidence, 
maximum thickness and camber ratios, aspect ratio, taper ratio, angle of sweep etc. are 
initialized randomly and the generated hydrofoil is analyzed by potential based boundary 
element method. GA then updates the design parameters over generation after generation and 
finally, finds an improved hydrofoil of maximum lift-drag ratio or minimum drag coefficient 
satisfying some design constraints. An improved blade or hydrofoil section is also designed by 
GA satisfying some design constraints. Finally, the technique is applied to the optimum design 
of marine propeller. In this study, µGA is found useful and prospective tool for the design 
optimization of hydrofoil and marine propeller due to its faster convergence. 
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NOMENCLATUER 
 

CD Drag coefficient 

CL Lift coefficient 

CPmin Minimum pressure coefficient 

Cr, Ct Root and tip chord respectively 

f(x) Objective function 

F(x) Constrained objective function 

f0 /C Maximum camber ratio 

Ij (x) i-th inequality constraint 

KT Thrust coefficient 

KQ Torque coeffcient 

L/D Lift-drag ratio 

NP Population size 

NC Total number of constraints 

PC Probability of crossover 

S Span 

t0 /C Maximum thickness ratio 

y Co-ordinate in vertical direction 
(2-D section), 
Co-ordinate in spanwise direction 
(3-D hydrofoil) 

α Angle of incidence 

β Angle of sweep 

ηo Open water effciency 

δi Penalty coefficients 

φi (x) Penalty term 

λ Taper ratio 

Λ Aspect ratio 
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1. Introduction 
 
Genetic algorithm (GA) has been introduced firstly by Holland (1975) expressing its two main features: 
1) the string representation of complex structures, and 2) the power of simple transformations acting on 
the strings to improve these structures. Goldberg (1989) has made further developments introducing 
fitness functions. In fact, GAs are advantageous because of their robustness and simplicity. They can 
cope easily with discontinuous, rough, or multimodal functions, and make an interesting tradeoff 
between diversification, i.e., exploration of the search space and intensification, i.e., exploitation of the 
results. Application of simple genetic algorithm (Goldberg, 1989; Michalewicz, 1996; Haupt & Haupt, 
1998 and Man et al, 1999) has been implemented by Karim and Ikehata (2000a) for the optimal design 
of rectangular hydrofoil using polynomial expressions of boundary element analysis results and also for 
the optimal design of systematic series propeller (Karim and Ikehata, 2000b). Though it is easier and 
less time consuming for finding optimum results, error may arise due to the regression equations, 
developed from analysis or experimental results, which are also valid only within the specific ranges. 
For   this   reason,   boundary element analysis has been incorporated in this study directly with the 
optimization algorithm. Using gradient-based optimization technique, it is difficult to find gradient 
from the analysis results if those are not approximated by interpolation or some polynomial functions 
for which the accuracy of the results may be lost. Moreover, polynomial expression is suitable for few 
numbers of variables but it is computationally expensive for a large number of variables. As for 
example, if we use six variables and at least 4 points for each variable Mishima and Kinnas (1996), 
then total number of analysis runs needed for this case is 46, i.e., 4096. But the present method can find 
the optimum with less than 600 analysis runs as will be found later. 
 
The advantage of GA is that it does not need to find gradient and accuracy will be as it is obtained by 
the analysis method. However, the drawback of the SGA including direct analysis method is time 
penalty required in evaluating fitness for large populations, over generation after generation. So an 
investigation is conducted here to implement micro-genetic algorithm (µGA) with a very small 
population, and with simple genetic parameters, in order to achieve fast turn around time from 
generation to generation evolution.  
 
An extensive study of different genetic algorithm techniques from SGA to µGA with different GA 
parameters has been done by Carroll (1996). According to his study, larger populations should find the 
optimal individual for the environment in few numbers of generations than smaller populations. But, at 
the same time, larger populations take a longer amount of time to compute their progress at each 
generation.  Therefore, he recommended µGA for the problem which requires longer amount of time 
(more than 30 CPU sec.) for function evaluations since total run time for many generations can be 
between a day and more than a week depending upon the population size.  
 
Currently, many SGA users use population ranging in size from 30 to 200. The usual choice is based 
on earlier studies by De Jong (1981), in which, suggestions for optimal population choices based on 
parametric studies are presented. An investigation carried out by Goldberg (1998) showed that for 
serial implementation of binary coded GA the optimal population size is small. This result was 
obtained from optimizing for effective real-time schema processing in a given population. Goldberg 
also points out that simply taking a small population size and letting them converge is certainly not 
very useful, and proceeds to outline a scheme by which small population GA can be implemented. This 
research will apply this small population (coined as Micro Genetic Algorithm-µGA) approach for 
solving optimization problem. As implemented by SGA, the usual choice of population size is based on 
the concept that bigger population relates to better schema processing, less chance of premature 
convergence, and better optimal results. However, the population size should be as little as possible for 
less time requirement in evaluating fitness if direct analysis is incorporated for this search technique.  
 
Micro-genetic algorithms are small-population GAs with reinitialization. Krishnakumar (1989) utilizes 
population size, NP = 5, crossover rate, PC = 1, and mutation rate, Pm = 0, along with an elitist selection 
strategy that always advances the best string of the current population to the next generation. 
Krishnakumar compares his µGA to SGA with typical parameter settings (NP = 50, PC = 0.6, and Pm = 
0.001). He reports faster and better results with the µGA on two simple stationary functions and on a 
real-world, engineering control problem. µGAs have also been applied to the optimization of an 
air-injected hydrocyclone (Karr, 1991a), to the design of fuzzy logic controllers (Karr, 1991b), to the 
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solution of the k-queens problem (Dozier et al, 1994) and to the optimization of chemical oxygen-
iodine laser (Carrol, 1996).  
 

2. Boundary Element Method  
 
The boundary element method (BEM) or more commonly surface panel method (Hess and Smith, 
1996; Hess, 1990; Kerwin et al, 1987 and Suciu and Morino, 1976) analyzes numerically the potential 
flow around lifting body as exactly as possible. In this method, the boundary surface of the body is 
represented by hyperboloidal quadrilateral panels with a constant source and doublet distributions and 
the trailing vortex wake is also represented by hyperboloidal panels with a constant doublet 
distribution. The complete solution for potential flow is obtained by simultaneously satisfying a 
condition of zero normal velocity at a control point on each panel of the body together with equal 
pressure Kutta condition at each trailing edge panel. The effect of viscosity has been added to the 
potential solution using Prandtl-Schlichting’s formula.  
 
Using this method, the results for rectangular and trapezoidal hydrofoils are compared with 
experimental results (Karim et al, 2000a). Here the same method is used to analyze all of the hydrofoils 
and marine propeller. The panel arrangement of elliptical hydrofoil (only half span is considered) 
including coordinate axes has been shown in Fig. 1.  The lift and drag coefficients computed by BEM 
for the elliptical hydrofoil of aspect ratio 3.0 with NACA 0012 section (Abbott and Doenhoff, 1959) 
are compared with the experimental results from University of Tokyo (Takasugi et al, 1992) as shown 
in Fig. 2. From the figure, it is clear that computed lift coefficient agrees well with experimental results 
up to angle of incidence of 8 degrees and then it becomes lower than the experimental values. The drag 
coefficient is always higher than the experimental values but satisfactory within our design range. For 
more accuracy, viscous flow solver can be incorporated, but it will be computationally expensive. 
 
 

 
Fig. 1: Panel arrangement of elliptical 
hydrofoil (only half span is shown) 
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Fig. 2: Comparison of lift and drag coefficient 
with experiment for elliptical hydrofoil of 
aspect ratio 3.0 

3. Optimization Problem 
 
The objective is to find the design variables x to minimize or maximize the objective function f(x), i.e., 
 min or max f(x)  (1) 
 subject to Ij(x)≤ 0;  j=1,2,……,m 
     Ek(x)=0; k=1,2,…....,n 
 
Where x is the solution vector, I1(x) ≤ 0, I2(x) ≤ 0,……,Im≤ 0 are inequality constraints and E1(x)=0, 
E2(x)=0,……,En(x) are equality constraints. 
 
In the present study, the objective is to minimize drag coefficient, CD in case of rectangular hydrofoil 
and to maximize lift/drag ratio, L/D in case of elliptical and trapezoidal hydrofoil. The design 
constraints to be considered are: 
-Lower limit of lift due to a minimum payload requirement, 
-Minimum foil section thickness for structural requirement, 

x

yz 
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-Negative minimum pressure coefficient for avoiding cavitation inception. 
 
At first this constraint problem is converted to an unconstrained one associating penalty for any 
constraint violation. Thus Equation (1) is transformed into the following function: 

∑
=

+=
CN

i
ii XXfxF

1
)()()( φδ            (2) 

where, NC is the total number of constraints, δ i is the penalty coefficients for constraint i, φi(X) is a 
penalty term related to the i-th constraint. 
 
4. Application of Genetic Algorithm 

 
An initial population of size, NP is generated from random selections of the parameters in the parameter 
space. Each parameter set represents the individual chromosomes. Each of the individuals is assigned a 
fitness value after evaluation with boundary element analysis. There are then three genetic operations, 
such as, selection, crossover and mutation to produce the next generation. Fit individuals are selected 
for mating to create offspring, whereas, weak individuals die off. The process of mating and production 
is continued until an entirely new population of size, NP is generated with the hope that strong parents 
will create a fitter generation of offspring. The fitness of each of the offspring is determined and the 
process of selection/crossover/mating is repeated. Successive generations are created until very fit 
individuals are obtained. 
 
4.1 Micro genetic algorithm (µGA) 
 
The µGA can be viewed as a diversification method because it promotes diversity across runs. Over 
multiple runs, selection pressure rises and falls, but selection noise drops due to redundancy. Just as in 
the SGA, the µGA works with binary coded populations and is implemented serially. The major 
difference of SGA and µGA comes in the population choice. In the µGA structure as proposed by 
Krishnakumar (1989), the population size is fixed at NP = 5. It is known fact that GA generally does 
poor with very small population due to insufficient information processing and early convergence to 
non-optimal results. The key to success with small population was outlined by Goldberg (1988) as 
follows: 

1. Randomly generate a small population. 
2. Perform genetic operations until nominal convergence (as measured by bit wise 

convergence or some other reasonable measure). 
3. Generate a new population by transferring the best individuals of the converged 

population to the new population and then generating the remaining individuals 
randomly. 

4. Go to step 2 and repeat. 
 

Based on this approach, a step-by-step procedure for the µGA implementation can be summarized as 
follows (Krishnakumar, 1989): 
 
In the first step [See Fig.3], a population of size 5 either randomly or 4 randomly and 1 good string 
from any previous search is selected. In the second step, fitness is evaluated and the best string is 
determined. It is labeled as string 5 and carried it to the next generation (elitist strategy). In this way 
there is a guarantee that the information about good schema are not lost. The remaining four strings are 
chosen for reproduction (the best string also competes for a copy in the reproduction) based on a 
deterministic tournament selection strategy. The population is so small that the law of averages does 
not hold good and the selection strategy is kept purely deterministic. 
 
In the tournament selection strategy, the strings are grouped randomly and adjacent pairs are made to 
compete for the final four (Care should be taken to avoid two copies of the same string mating for the 
next generation). Crossover is applied with crossover rate, PC = 1.0. This is done to facilitate high order 
of schema processing. The mutation rate is kept to zero as it is clear that enough diversity is introduced 
after every convergence through new population of strings. The final step is to check for nominal 
convergence (reasonable measure based on either genotype convergence or phenotype convergence). It 
goes to the second step and repeats the cycle up to convergence. After convergence it restarts from 
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beginning (first step) and the whole cycle is repeated until the number of generation exceeds the 
maximum number of generation as specified. 
 
In the case of µGA, the “start and restart” procedure helps in avoiding premature convergence and the 
µGA is always looking for better strings. In implementing µGA, the intention is purely to find the 
optimum as quickly as possible and not in the average behavior of the population. In other words, the 
performance measure for µGA is based on the best-so-far string, rather than on any average 
performance. Population convergence for this study is defined to occur when less than 5% of the bits of 
the other individuals are different from the best individual as suggested by Carroll (1996). He also 
studied µGA with different population sizes of 3 and 10 and concluded that NP equal to 5 is the 
optimum value. 
 
5. Results and Discussions 

 
The combination of NACA 66 modified thickness form and NACA a = 0.8 camber form (Koyama, 
1993) is used for all of the hydrofoils. The results of genetic algorithm for rectangular, elliptical, 
trapezoidal hydrofoil and marine propeller have been described elaborately in the following 
subsections. 
 
5.1 Rectangular hydrofoil 
 
In the case of rectangular hydrofoil, the objective is to minimize drag coefficient, CD satisfying 
following design constraints: 
 
CL ≥ 0.3, t0/c ≥ 0.07 and CPmin≤ 0.45 
 
 

1. SELECT POPULATION SIZE OF 5 EITHER 
RANDOMLY OR 4 RANDOMLY AND 1 GOOD 

STRING FROM ANY PREVIOUS SEARCH

2. EVALUATE FITNESS, DETERMINE THE BEST 
STRING AND CARRY IT TO THE NEXT 

GENERATION

CONVERGED?

3. SELECT REMAINING 4 STRINGS 
FOR REPRODUCTION

4. APPLY CROSSOVER WITH 
CROSSOVER RATE = 1.0

N > N MAX?

STOP

NO

YES

YES

NO

START

 
Fig. 3: Cycle of µ-genetic algorithm 

 
 

The absolute value of minimum pressure coefficient equal to 0.45 corresponds to the maximum speed 
of about 45 knots without cavitation inception (Eppler and Shen, 1979). In this case, four design 
variables, such as, angle of incidence, α, maximum thickness ratio, t0/c, maximum camber ratio, f0/c 
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and aspect ratio, Λ are chosen. These parameters are descretized and translated into a binary string of 
length 26 as shown in Table 1. There are 226, i.e., approximately 6.7 million possible permutations of 
this parameter space. The successful use of GA technique for searching this large parameter space to 
design optimal hydrofoil was demonstrated by Karim et al (2000a). In that case, however, polynomial 
expressions obtained from the least square method based on boundary element analysis results were 
used. In the present case, direct boundary element method has been incorporated to analyze all of the 
hydrofoils.  
 
Table 1: GA parameter search space for rectangular hydrofoil 
 

Parameter Range Increment # of possibilities # of binary 
digits 

α (deg.) 1.00-5.00 0.01600 256 8 

t0/c 0.06-0.12 0.00095 64 6 

f0/c 0.00-0.03 0.00048 64 6 

Λ 6.00-8.00 0.03200 64 6 
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Fig. 4: Comparison of progress of µGA with that of SGA 

 
The results of GA are shown in Table 2. The results of SGA with direct analysis are almost similar to 
those with polynomial expression. However, the value of CD is slightly higher in the latter case. This 
difference is due to the error occurred by polynomial approximation. The problem has been also solved 
using µGA and the progress of µGA has been compared with that of SGA as shown in Figure 5. From 
this figure, it is clear that after 40 generations with population size of 150, i.e., 6000 analysis runs, 
SGA did not find the minimum value of CD that has been found by µGA after 200 generations with 
population size of 5, i.e., 1000 analysis runs. However, the difference is very small. The principal 
advantage of µGA is that it requires about 13 hours of CPU time for 200 generations, whereas, SGA 
requires about 75 hours of CPU time for 40 generations on a personal computer (PC) with CPU speed 
of 500MHz. The performance of µGA is better than SGA since it converges faster than that. 
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Table 2: Results of GA for rectangular hydrofoil 
 

Variable α 
(deg.) 

t0/c f0/c Λ CD CPU time 
(approx.) 

SGA using 
polynomial 

approximation 

1.8235 0.0700 0.0300 8.0 0.013697 3.5 hours 

SGA using direct 
analysis 

1.8321 0.0713 0.0277 8.0 0.011648 
 

75 hours 
 

µGA using direct 
analysis 

1.7686 0.0705 0.0286 8.0 0.011641 13 hours 
 

 
5.2 Elliptical hydrofoil 
 
In the case of elliptical hydrofoil, five parameters, such as, angle of incidence, maximum thickness & 
camber ratios, aspect ratio and angle of sweep have been used and each parameter is coded by less 
number of binary digits for faster convergence of optimum results; since the accuracy after two decimal 
points is not considered so much important in this study.  Table 3 shows the GA parameter search 
spaces used in this study. However, taper ratio is not considered here; since it is fixed by elliptical 
chord distribution. So the total number of possibilities is then 214, i.e., 16384. Lift-to-drag ratio (L/D) is 
used as the objective function and the constraints similar to rectangular hydrofoil are used in this case. 
µGA found near optimal L/D ratio (27.48424) at 33 generations and optimal L/D ratio (27.48491) at 
108 generations. The results obtained by µGA have been shown in Table 4. GA found the upper bound 
of camber ratio and aspect ratio as the optimum values. In fact L/D increases with camber and aspect 
ratio. But camber is restricted by minimum value of CP constraint and aspect ratio by maximum 
permissible span, weight etc.; though they are not considered in this case. Optimum maximum 
thickness ratio is found as minimum value set by structural constraints. Optimum angle of sweep is 
found as its lower bound.  
 
Table 3: GA parameter search space for elliptical and trapezoidal hydrofoils 
 

Parameter Range Increment # of 
possibilities 

# of binary 
digits 

α (deg.) 1.25-3.0 0.25 8 3 
t0/c 0.05-0.12 0.01 8 3 
f0/c 0.0-0.03 0.01 4 2 
Λ 6.5-8.0 0.50 4 2 

β (deg.) 1.25-5.0 0.25 16 4 
λ 0.1-0.8 0.10 8 3 

 
 
Table 4: Results of GA for elliptical hydrofoil 

 
α 

(deg.) 
t0/c f0/c Λ β 

(deg.) 
L/D CL -CPmin 

2.5 0.07 0.03 8.0 1.25 27.4849 0.3692 0.4069 

 
5.3 Trapezoidal hydrofoil 
 
The plan form view of the trapezoidal hydrofoil has been shown in Fig. 5, where b, Cr, Ct, β are the 
half span, root chord, tip chord and the angle of sweep respectively. The taper ratio is defined as the 
ratio of tip chord to root chord, i.e., λ = Ct / Cr. Six variables such as angle of incidence, maximum 
thickness and camber ratios, aspect ratio, angle of sweep and taper ratio are chosen for the optimal 
design of trapezoidal hydrofoil. The objective function and design constraints similar to elliptical 
hydrofoil are considered here.  The design parameter search spaces are shown in Table 3. With total 17 
bits, the total number of possibilities is 217, i.e., 131072. In this case, µGA found near optimal L/D ratio 
(27.53500) at 82 generations and optimal L/D ratio (27.53568) at 113 generations. The results obtained 
by µGA have been shown in Table 5.  
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The taper ratio and angle of incidence take the intermediate values as the optimum values. The lift-drag 
ratio is also improved slightly in this case. To check the results, effect of two design variables, such as, 
angle of incidence and taper ratio on the L/D ratio is studied keeping the values of other design 
variables fixed. The contour plot of L/D ratio has been shown in Fig. 6, from which it is clear that GA 
has successfully found the king of the hill. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Plan form view of the trapezoidal hydrofoil  Fig. 6: Contour of L/D ratio for trapezoidal hydrofoil 
(t0/c = 0.07, f0/c = 0.03, Λ = 8.0, β = 2.5) 

 
The variation of L/D ratio with angle of sweep is shown in Fig. 7. According to the figure, the L/D ratio 
increases with increase in angle of sweep, reaches the maximum at angle of sweep of 2.5 and then 
decreases. However, the variation is very small and not so much improvement is found with angle of 
sweep. The main advantage of angle of sweep is that if the length of the span is restricted, it is possible 
to increase the aspect ratio as well as L/D ratio by increasing the angle of sweep since L/D ratio 
increase with increase in aspect ratio. 
 
The variations of L/D ratio with angle of incidence for different maximum thickness and camber ratios 
are shown in Fig. 8 and 9 respectively. From Figure 11, it is found that the values of L/D ratio for 
smaller value of maximum thickness ratio are higher than those for larger value of maximum thickness 
ratio at each angle of incidence. This is due to the fact that viscous drag is increased by the increase in 
maximum thickness ratio. For this reason, optimum value of maximum thickness ratio tries to approach 
the lower bound. In the present case, however, it is restricted by minimum value assigned for the 
structural reason.  
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Fig. 7: Variation of L/D ratio with angle of 
sweep, β for trapezoidal hydrofoil. 

Fig. 8: Variation of L/D ratio with angle of 
incidence in case of trapezoidal hydrofoil 
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Fig. 9: Variation of L/D ratio with angle of 
incidence for different maximum camber ratios 
(f0/c) in case of trapezoidal hydrofoil 

From Fig. 9, it is clear that the values of L/D 
ratio for larger value of maximum camber ratio 
are always higher than those for smaller value 
of maximum camber ratio. This is why 
optimum value of maximum camber ratio 
approached to the upper bound where it does 
not violate the constraint of minimum CP 
value. It is interesting to note that for optimum 
value of maximum thickness and camber 
ratios, the L/D ratio reaches maximum at 
optimum angle of incidence found by GA. 
 
Rectangular hydrofoil is the special case of 
trapezoidal hydrofoil when taper ratio is equal 
to 1.0 and angle of sweep is equal to zero.  
Since GA found optimum value of taper ratio 
as 0.6 and angle of sweep as 2.5 degrees, we 
can conclude that the performance of 

Fig. 10: Comparison of optimized section with the original NACA section (1. Thickness distribution, 
2. Camber distribution, and 3. 2-D section) 
 
trapezoidal hydrofoil is better than rectangular hydrofoil. Again the value of L/D ratio for optimum 
trapezoidal hydrofoil is higher than that for optimum elliptical hydrofoil. So the performance of 
trapezoidal hydrofoil is found better than any other hydrofoil for the present design case.
  
 

Table 5: Results of GA for trapezoidal hydrofoil 
 

α 
(deg.) 

t0/c f0/c Λ β 
(deg.) 

λ L/D CL -CPmin 

2.5 0.07 0.03 8.0 2. 5 0.6 27.53568 0.3688 0.4194 
  
5.4 Two-dimensional section design 
 
Many researchers studied two-dimensional section design but all of their methods are based on two-
dimensional analysis ignoring three-dimensional effect. In the present study, however, two-dimensional 
section with NACA 66 (mod.) thickness distribution and NACA a = 0.8 camber distribution are fitted 
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with B-spline polygon vertices (9 for the former and 7 for the latter). Then the shape of the section is 
varied by shifting B-spline polygon vertices vertically and using this generated section, trapezoidal 
hydrofoil (aspect ratio, 8.0, taper ratio, 0.6, maximum thickness ratio, 0.07, maximum camber ratio, 
0.03, angle of incidence, 2.5 deg. and angle of sweep, 2.5 deg.) is analyzed by 3-D boundary element 
method. GA then updates the section shape by shifting the 5 polygon vertices for thickness and 5 for 
camber distribution and finally, the optimum section is found for which hydrofoil attains maximum 
L/D ratio satisfying following design constraints: 
CL ≥ 0.3; t0/c = 0.07; f0/c = 0.03; and CPmin  ≤ 0.45  
 
GA has found the optimum section for trapezoidal hydrofoil after 204. In Fig. 10, the optimum section 
is compared with the original NACA section including thickness and camber distributions. The chord 
wise pressure distributions for the optimum section are compared with those for the original NACA 
section at different span wise positions as shown in Fig. 11. The hydrodynamic coefficients of 
optimized section have been compared with NACA standard section in Table 6. It is interesting to note 
that L/D ratio is increased by 35% ((L/DOpt-L/DNACA)/L/DNACA) with respect to the original NACA 
section.  
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Fig. 11: Comparison of pressure coefficients between NACA and optimized section 
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Table 7: Comparison of hydrodynamic coefficients of optimized section with those of NACA original 
section. 

 
 CL 

 
CD L/D -CPmin 

Original NACA section 0.36884 0.01339 27.53568 0.4194 
Optimized section 0.42232 0.01137 37.13586 0.449843 

 
5.5 Design of marine propeller 
 
In this study, a marine propeller is designed using micro genetic algorithm (µGA). At first, span wise 
chord distribution, pitch distribution, maximum thickness and camber distributions of DTRC 4119 
propeller are fitted with 5 B-spline polygon vertices. GA then updates these geometric characteristics 
by shifting 3 vertices vertically without changing end 2 vertices. Using these characteristics, the 
generated propeller is analyzed by Boundary Element Method and improved propeller of efficiency 
higher than DTRC 4119 propeller is found by GA with small amount of change from the original 
propeller. The constraints used here are as follows: 
 
KT ≥ 0.12; KQ ≤ 0.03 and CPmin ≤ 0.7 
 
Fig. 12 shows the comparison of span wise chord distribution between the improved and original 
DTRC 4119 propeller. The chord distribution of improved propeller is almost constant up to 90% 
radial position. The comparison of pitch angle between the improved and original propellers is shown 
in Fig. 13.  The curve of pitch angle of improved propeller is under that of original propeller. The 
thickness and camber ratios of improved propeller are compared with those of original propeller in 
Figs. 14 and 15.  The thickness of improved propeller increases with respect to original propeller. The 
camber distribution of improved propeller is almost mirror image of original propeller, i.e., loading is 
shifted from root to tip in case of improved propeller.  
 
The open water characteristics of improved propeller are compared with those of original propeller in 
Table 7. From this table it is clear that the efficiency is increased by about 5%. However, if we draw 
the open water characteristics at off design conditions, we can see that performance of the improved 
propeller is better than the original propeller as shown in Fig. 16, but unfortunately the improved 
propeller has maximum efficiency at the design advance coefficient of original propeller. From the 
design point of view, design advance coefficient should be a little bit left from the peak of the 
efficiency curve. So if we choose design advance coefficient for improved propeller a little bit left, the 
range of the operating condition of the propeller will be reduced and the improvement over the original 
propeller will not be more than 1 or 2%.  
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Fig. 12: Comparison of span wise chord 
distribution of improved propeller with that of 
DTRC 4119 propeller (Optimized at J = 0.833) 
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Fig. 13: Comparison of pitch angle of 
improved propeller with that of DTRC 4119 
propeller (Optimized at J = 0.833) 
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Fig. 14: Comparison of maximum thickness 
ratio (t0/C) of improved propeller with that of 
DTRC 4119 propeller (Optimized at J = 0.833) 
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Fig. 15: Comparison of maximum camber 
ratio (f0/C) of improved propeller with that of 
DTRC 4119 propeller (Optimized at J = 0.833) 

 
To overcome this problem, GA is applied to optimize propeller at advance coefficient, a little bit higher 
than the design advance coefficient, as for example, at J = 0.9. The constraint of minimum pressure 
coefficient is relaxed by a small amount. In the previous case, the first point of distribution is fixed, but 
now this condition is released. The propeller distributions are shown in Figs 7-10. The open water 
characteristics at advance coefficient, J = 0.833 are shown in Table 7. In the present case thrust 
coefficient has been increased and performance of the improved propeller is better than the previous 
case. Moreover, it is clear from Fig. 21, the present improved propeller may have the same design 
advance coefficient as the original propeller. 
 
Table 7: Comparison of open water characteristics of improved propeller and those of DTRC 4119 
propeller at design advance ratio, J = 0.833 
 

Type of 
Propeller 

KT KQ η0 

DTRC 4119 0.1657 0.0297 0.7406 

Improved 0.123 0.0207 0.7898 
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Fig. 16: Comparison of open water characteristics of improved propeller with that of DTRC 4119 
propeller at off-design conditions (Optimized at J = 0.833) 
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Fig. 17:  Comparison of span wise chord 
distribution of improved propeller with that of 
DTRC 4119 propeller (Optimized at J = 0.9) 
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Fig. 18: Comparison of pitch angle of 
improved propeller with that of DTRC 4119 
propeller (Optimized at J = 0.9) 
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Fig. 19: Comparison of maximum thickness 
ratio (t0/C) of improved propeller with that of 
DTRC 4119 propeller (Optimized at J = 0.9)  
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Fig. 20: Comparison of maximum camber 
ratio (f0/C) of improved propeller with that of 
DTRC 4119 propeller (Optimized at J = 0.9)  

 
Table 8: Comparison of open water characteristics of improved propeller and those of DTRC 4119 
propeller at design advance ratio, J = 0.833 

 
Type of 
Propeller 

KT KQ η0 

DTRC 4119 0.1657 0.0297 0.7406 
Improved 
(previous) 

0.123 0.0207 0.7898 

Improved 
(present) 

0.1413 0.0236 0.7926 
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Fig. 21: Comparison of open water performance of improved propeller with that DTRC 4119 propeller 
(Optimized at J = 0.9) 
 
 
6. Conclusion 

 
A genetic algorithm based optimization technique has been successfully applied to the design of 
hydrofoil of different plan forms and marine propeller incorporating boundary element method. From 
the abovementioned study, the following conclusions can be drawn: 
 

1. Genetic algorithm is successful for the design optimization of non-cavitating rectangular, 
elliptical and trapezoidal hydrofoils satisfying some design constraints. They are also useful 
for the two-dimensional section design taking three-dimensional effect into account. 

2. The method is also applicable to the design of marine propeller. 
3. The performance of micro-genetic algorithm is better than simple genetic algorithm for its 

faster convergence.  
4. Direct implementation of boundary element method with GA instead of regression equations 

increased the accuracy of the analysis results. 
 
GA has been restricted here only to optimize non-cavitating hydrofoils and propeller, however, it can 
be extended to cavitating hydrofoils or other lifting bodies, e.g. rudder etc.  
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