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Abstract: 
The effect of thermophoresis on heat and mass transfer flow of a micropolar fluid in the presence of 

Soret and Dufour effects over a stretching sheet is investigated in the present analysis. The 

transformed conservation equations are solved numerically using an optimized, extensively validated, 

variational Finite element method. The influence of key non-dimensional parameters, namely, suction 

parameter V0 (0.1 - 0.5), magnetic parameter M (0.1-1.5), Soret parameter Sr (0.5 - 1.8), Dufour 

parameter Du (0.5 - 0.1) and thermophoretic parameter τ (0.1-1.5) on velocity, angular velocity 

(micro-rotation), temperature and concentration fields as well as skin-friction coefficient, Nusselt 

number and Sherwood number are examined in detail and the results are shown in graphically and in 

tabular form to know the physical importance of the problem. It is found  that the imposition of wall 

fluid suction (V0>0) in the present problem of flow has the effect of depreciating the  velocity, micro-

rotation, temperature and concentration boundary layer thicknesses at every finite value of η. The 

thermal boundary layer thickness decelerates whereas solutal boundary layer thickness is improved 

with the combined influence of Sr and Du.  
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NOMENCLATURE 

B1      Coupling constant parameter                                 C       Concentration of the species 

Cp     Specific heat at constant pressure                          cs       Concentration susceptibility  

Cw     Uniform constant concentration                            C∞      Free stream concentration 

K       Permeability parameter                                          M      Magnetic parameter 

Dm     Mass diffusion coefficient                                      Du     Dufour number 

Ec      Eckert Number                                                       G       Acceleration due to gravity 

Gr      Thermal Grashof number                                        Gm    Solutal Grashof number 

G
*
      Micropolar parameter                                             J     Microinertia density  

kp      Permeability of the porous medium                         Kt     Thermal diffusion ratio 

Nu     Nusselt number                                                       Pr     Prandtl number 

Sc      Schmidt number                                                      Sh    Sherwood number 

St      Shear stress                                                             Sr     Soret number 

Re     Local Reynolds number                                           T      Temperature of the fluid(K) 

Tm     Mean fluid temperature(K)                                      Tw    Uniform temperature(K) 

T∞     Free stream temperature                                          U0    Velocity at the wall(m/s) 

V1     Dimensionless suction velocity(m/s)                        Vt     Thermophoretic velocity 

u       Velocity in the x-direction(m/s)                                v     Velocity in y-direction(m/s) 

W      Microrotation (angular velocity) (m/s) 

Greek symbols 

𝛼     Thermal diffusivity                                                           

𝛽     Coefficient of thermal expansion 

𝛽′     Coefficient of volume expansion 

𝛾     Spin gradient 

θ      Non-dimensional temperature parameter 

𝜏     Thermophoretic parameter 

𝜅     Thermal conductivity(𝑊𝑚−1𝐾) 

 

𝜆     Micropolar parameter  

ν      Kinematic viscosity(𝑚2𝑠−1) 

𝜌     Density of the fluid(𝑘𝑔𝑚−3) 

σ     Electrical conductivity 

η     Similarity variable 

υ     Non-dimensional concentration parameter 

ω    Non-dimensional micro rotation parameter   
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𝜂 

  

1. Introduction 
 

The theory of micropolar fluids has been an active area of research for several decades, because of its wide 

range of applications in analyzing fluid flow in brain, exotic lubricants, blood flow in animals, etc. Micropolar 

fluids are fluids with microstructure and related to the fluids with non-symmetrical stress tensor. They represent 

fluids consisting of rigid, randomly oriented or spherical particles suspended in a viscous medium, where the 

deformation of fluids particles is ignored (e.g. polymeric suspensions, animal blood, liquid crystals).  The theory 

of micropolar fluids was originally formulated by Eringen (1966) by taking the local effects arising from the 

microstructure and the intrinsic motion of the fluid into the account. Micropolar fluids are non-Newtonian fluids 

consisting of dumb-bell molecules, colloidal fluids, liquid crystals, lubricants, suspension fluids, animal blood, 

etc. In this theory, the continuum is regarded as sets of structured particles which contain not only mass and 

velocity, but also a substructure. That is, each material volume element contains microvolume elements that can 

translate and rotate independently of the motion of microvolume. In this model, two independent kinematic 

vector fields are introduced — one representing the translation velocities of fluid particles; and the other 

representing angular (spin) velocities of the particles, called as microrotation vector. The more detail of this 

theory and its applications can be found in Ariman et al.(1973, 1974) and books by Lukaszewicz (1999) and 

Eringen (2001). Chamkha et al. (2010,2013) has presented unsteady MHD micropolar fluid past a heated 

vertical plate by considering Joule heating, radiation and chemical reaction effects. Bhargava et al. (2003) have 

presented heat and mass transfer characteristics of micropolar fluid over porous stretching sheet. Ibrahim et al. 

(2008) analyzed unsteady MHD mixed convection flow of a micropolar fluid by taking viscous dissipation and 

thermal radiation into the account. Damseh Rebhi et al. (2009) have noticed the influence of heat 

generation/absorption and first-order chemical reaction on micropolar fluid flow over a uniform stretching sheet. 

Pratap Kumar et al. (2010) have presented free convection flow of a micropolar fluid over a vertical plate. 

Yacos et al. (2011) have reported boundary layer heat transfer stagnation-point flow of micropolar fluid over a 

stretching/shrinking sheet.Rosali et al. (2012) analyzed micropolar fluid flow through porous media over a 

stretching/shrinking sheet with suction. Abd El-Aziz (2013) studied boundary layer flow and heat transfer 

analysis of a micropolar fluid over a stretching sheet with viscous dissipation and found that thermal boundary 

layer thickness decelerates with the higher values of micropolar parameter. Mahmood et al. (2013) have 

perceived boundary layer flow, heat transfer analysis of micropolar second grade fluid over a stretching sheet. 

Recently, Bala Siddulu Malga (2014) has analyzed the unsteady heat and mass transfer flow of a micropolar 

fluid over a vertical plate with thermal radiation and heat generation. 

 

Thermophoresis is a phenomenon by which submicron sized particles suspended in a nonisothermal gas acquire 

a velocity relative to the gas in the direction of decreasing temperature. The velocity acquired by the particle is 

known as the thermophoretic velocity and the force experienced by the suspended particles due to the 

temperature gradient is called the thermophoretic force. The magnitudes of the thermophoretic force and 

velocity are proportional to the temperature gradient. Thermophoresis has many applications in radioactive 

particle deposition in nuclear reactors, deposition of silicon thin films, particles impacting the blade surface of 

gas turbines and aerosol technology. Many authors have done good work by taking thermophoresis in the 

account. Goren (1977) was first to analyze the thermophoresis in laminar flow over a flat plate for cold and hot 

plate conditions. Chamkha and Pop (2004, 2011a) analyzed the natural convection over a vertical flat plate in a 

porous medium with thermophoresis. Seddeek (2005) studied numerically the effect of variable viscosity and 

thermophoresis on a boundary layer flow with chemical reaction. Partha (2008, 2009) analyzed the effects of 

Soret and Dufour with thermophoresis in a non-Darcy porous medium, later he extended the problem by taking  

suction/injection in to the account. 

 

The effects Thermo-diffusion and Diffusion-thermo are very significant for the fluids which have higher 

temperature and concentration gradients. The Thermo-Diffusion (Soret) effect is corresponds to species 

differentiation developing in an initial homogeneous mixture submitted to a thermal gradient and the Diffusion-

thermo (Dufour) effect corresponds to the heat flux produced by a concentration gradient. Usually, in heat and 

mass transfer problems the variation of density with temperature and concentration give rise to a combined 

buoyancy force under natural convection and hence the temperature and concentration will influence the 

diffusion and energy of the species. Long years back, Chapman and Cowling (1952) and Hirshfelder et al. 

(1954) has been studied the effect of Thermo- diffusion and Diffusion-thermo of heat and mass transfer in the 

kinematic theory of gas. Alam et al. (2006a) have studied the Dufour and Soret effects on steady free convection 

and mass transfer flow past a semi-infinite vertical porous plate in a porous medium.  Alam et al. (2006b)  have 
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investigated, the effect of suction on mixed convective flow along vertical plate by taking Soret and Dufour 

effects. Dulal Pal et al. (2011) has studied MHD non-Darcian mixed convection heat and mass transfer over a 

non-linear stretching sheet with Soret and Dufour effects and chemical reaction. MHD mixed convection flow 

with Soret and Dufour effects past a vertical plate embedded in porous medium was studied by Makinde (2011). 

Chamkha et al. (2011b) have presented the impact of Soret and Dufour effects on unsteady natural convective 

flow over a vertical cylinder with chemical reaction. Reddy et al. (2012) has presented finite element solution to 

the heat and mass transfer flow past a cylindrical annulus with Soret and Dufour effects. Raju et al. (2014) have 

analyzed natural convection flow of Non-Newtonian fluid through porous medium by taking Soret effect into 

the consideration. 

 

To the author knowledge no studies have been found in literature to analyze the combined influence of Soret 

and Dufour effects on convective heat and mass transfer flow of a viscous electrically conducting micropolar 

fluid over a stretching sheet in the presence of suction/injection and thermophoresis particle deposition. Hence, 

this problem is examined in this paper. The problem addressed in this article has many practical applications, 

such as, technological and manufacturing engineering, radioactive deposition of silicon thin films and polymer 

deposition of silicon thin films and polymer extrusion process. The equation of non-linear momentum, micro-

rotation, temperature and concentration along with the boundary conditions are solved by using Finite element 

method with Mathematica 10.0 software. 

 

2. Mathematical Formulation 
 

We consider two-dimensional, study, mixed convective heat and mass transfer flow of a viscous electrically 

conducting, micropolar fluid through porous medium over a stretching sheet in the presence of thermophoresis, 

Soret and Dufour effects. The coordinate system is such that 𝑥-axis is taken along the stretching surface in the 

direction of the motion with the slot at origin, and the 𝑦-axis is perpendicular to the surface of the sheet as 

shown schematically in Fig. 1. A uniform transverse magnetic field (B0) is applied along the y-axis. The 

stretching surface and the fluid are maintained same temperature and concentration initially, instantaneously 

they raised to a temperature 𝑇𝑤(> 𝑇∞) and concentration 𝐶𝑤(> 𝐶∞) which remain unchanged. The effects of 

thermophoresis are being taken in the diffusion equation to help in the understanding of the mass deposition 

variation on the surface. The temperature gradient in the y-direction is much larger than that in x-direction and 

hence thermophoretic velocity component normal to the surface is of more importance. Under the above stated 

physical situations, the governing boundary-layer and Darcy-Boussinesq’s approximations, the basic equations 

are given by:   

 
Fig. 1: Flow configuration and coordinate system. 
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𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑚

𝜕2𝐶
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𝐷𝑚 𝑘𝑇
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𝜕
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 𝑉𝑇𝐶               (5) 

The associated boundary conditions on the vertical surface are defined as follows, 

𝑢 = 𝑈𝑤(𝑥) = 𝑎𝑥, 𝑣 = 𝑉1 𝑥 , 𝑇 = 𝑇𝑤 , 𝐶 = 𝐶𝑤 ,𝑊 = −𝑠  
𝜕𝑢

𝜕𝑦
 ,        𝑎𝑡  𝑦 = 0.  

  𝑢 → 0,           𝑣 → 0,         𝑇 → 𝑇∞ ,        𝐶 → 𝐶∞ , 𝑊 →  0,                       𝑎𝑡  𝑦 → ∞. (6) 

 

In the above equations x and y represents coordinate axis along the continuous surface in the direction of motion 

and perpendicular to it, u and v are the velocity components along x and y directions, respectively. The term 

𝑉1 = − 
𝜈𝑈𝑤

2𝑥
𝑉0 represents the mass transfer at the surface with V1 < 0 for suction and V1 > 0 for injection.  

 

The effect of thermophoresis is usually prescribed by means of an average velocity acquired by small particles 

to the gas velocity when exposed to a temperature gradient. In boundary layer flow, the temperature gradient in 

y-direction is very much larger than in the x-direction and therefore only the thermophoretic velocity in y-

direction is considered. As a consequence, the thermophoretic velocity VT, which appears in Eq.(5), is expressed 

as  

            𝑉𝑇 = −
𝐾1𝜈

𝑇𝑟

𝜕𝑇

𝜕𝑦
              (7) 

where𝐾1 is the thermophoretic coefficient and 𝑇𝑟  is the reference temperature. A thermophoretic parameter 𝜏 is 

given by the relation  

 𝜏 = −
𝐾1(𝑇𝑤−𝑇∞ )

𝑇𝑟
              (8) 

Where the typical values of 𝜏 are 0.01, 0.1and 1.0 corresponding to approximate values of–k1(Tw - 𝑇∞) equal to 

3, 30, 300K for a reference temperature of T=300K. 
 

The mathematical analysis of the problem is simplified by introducing the following dimension less functions f, 

h, 𝜃,𝜑 and the similarity variable 𝜂 
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The continuity equation (1) is satisfied by the stream function ψ(x, y) defined by 

𝑢 =
𝜕𝜓

𝜕𝑦
 ,          𝑣 = −

𝜕𝜓

𝜕𝑥
          (10) 

 

Substituting Eqn. (9) in Eqns. (2) to (6), we obtain 

 𝑓 ′′′ + 𝐵1
′ + 𝑓𝑓 ′′ + 𝐺𝑟𝜃 + 𝐺𝑚𝜑 − 𝐾𝑓 ′ −𝑀𝑓 ′   = 0        (11) 

𝜆′′ − 2
𝜆

𝐺1
(2 + 𝑓 ′′ ) + 𝑓 ′ + 𝑓′ = 0          (12) 

𝜃′′ + Pr 𝑓 𝜃′ + Pr𝐷𝑢 𝜑′′ + Pr𝐸𝑐 (𝑓 ′′ )2  = 0       (13) 

𝜑′′ + 𝑆𝑐 𝑓 𝜑′ + 𝑆𝑐 𝑆𝑟 𝜃′′ − 𝜏(𝜃′𝜑′ +  𝜃′′𝜑) = 0       (14) 

Where 𝜆 =
𝛾

𝜌𝜈 Ј
 and 𝐺1 =

𝛾𝑎

𝜈𝜅
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2𝑔𝑎𝛽
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𝜅1

𝜈
 is the Coupling constant parameter, 

𝐾 =
𝑈𝑤 𝑘𝑝

2𝜈𝑥
    is the permeability parameter, 𝑃𝑟 =

𝜈

𝛼
  is the Prandtl number, 𝑆𝑐 =

𝜈
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𝑤

𝑐𝑝

1
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number, 𝜈 =
𝜇+𝜅

𝜌
 is the kinematic viscosity, 𝑘1 =

𝜅

𝜌
(𝑘1 > 0)   is the coupling constant, 

𝑀 =
2𝜎𝐵0

2𝑥

𝜌𝑈𝑤
   is the magnetic parameter. 

 

The corresponding transformed boundary conditions are 

𝑓 ′ = 1, 𝑓 =   𝑉0  ,  = −𝑠𝑓 ′′ , 𝜃 = 1,𝜑 = 1,   at 𝑦 = 0   

𝑓 ′ = 0,  = 0, 𝜃 =  0, 𝜑 = 0                                   at 𝑦 → ∞      (15) 

Where 𝑓 0 =   𝑉0 with 𝑉0 < 0 and 𝑉0 > 0 corresponding to injection and suction respectively. 
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The major physical quantities of interest in this problem are the local skin friction coefficient (Cf), the local 

Nusselt number (Nux) and the local Sherwood number (Shx) are defined, respectively, by 

  Cf  =   
𝑓 ′′ (0)

𝑅𝑒𝑥

1
2

   , Nux = −
𝜃 ′ (0)

𝑅𝑒𝑥

1
2

  , Shx = −
𝜑 ′ (0)

𝑅𝑒𝑥

1
2

.                                                              (16) 

3. Method of Solution 

3.1 Finite Element Method 
 

The Finite- element method (FEM)  has been implemented to obtain numerical solutions of coupled non-linear 

equations  (11) to (14) of third-order in f  and second order in h, 𝜃,𝜑 under boundary conditions (15).This 

technique is extremely efficient and allows robust solutions of complex coupled, nonlinear multiple degree 

differential equation systems. The details of finite-element method can find in Bhargava et al. (2009), Anwar 

Beg et al. (2008) and Rana et al. (2012). The steps involved in this method are as follows: 

(i) Finite-element discretization  

In the finite element discretization the entire interval is divided into a finite number of subintervals and this 

subinterval is called an element. The set of all these elements is called the finite-element mesh. 

(ii)  Generation of the element equations 

a. Variational formulation of the mathematical model over the typical element (an element from the mesh) 

is performed. 

b. An approximate solution of the variational problem is assumed, and the element equations are made by 

substituting this solution in the above system. 

c. Using interpolating polynomials the stiffness matrix is constructed. 

(iii)  Assembly of element equations 

By imposing inter element continuity conditions all the algebraic equations are    assembled. This result a large 

number of algebraic equations called global finite-element model and it represents the whole domain. 

 

(iv) Imposition of boundary conditions 

The boundary conditions which represent the flow model are imposed on the assembled equations. 

(v)  Solution of assembled equations 

The assembled equations so obtained can be solved by any of the numerical techniques, namely, the Gauss 

elimination method, LU decomposition method, etc. An important consideration is that of the shape functions 

which are employed to approximate actual functions. 

For the solution of system of non-linear ordinary differential equation (11) – (14) together with boundary 

conditions (15), first we assume that 
df

dɳ
= j             (17) 

The equations (11) to (14) then reduces to  

 𝑗′′ + 𝐵1
′ + 𝑓𝑗′ + 𝐺𝑟𝜃 + 𝐺𝑚𝜑 − (𝐾 + 𝑀)𝑗  = 0        (18) 

𝜆′′ − 2
𝜆

𝐺1
(2 + 𝑗′) + 𝑗 + 𝑓′ = 0         (19) 

𝜃′′ + Pr 𝑓 𝜃′ + Pr𝐷𝑢 𝜑′′ + Pr𝐸𝑐 (𝑗′)2  = 0         (20) 

𝜑′′ + 𝑆𝑐 𝑓 𝜑′ + 𝑆𝑐 𝑆𝑟 𝜃′′ − 𝜏(𝜃′𝜑′ +  𝜃′′𝜑) = 0        (21) 

The boundary conditions take the form 

𝑗 = 1, 𝑓 =   𝑉0 ,  = −𝑠𝑗′ , 𝜃 = 1,𝜑 = 1,   as 𝑦 = 0   

𝑗 = 0,  = 0, 𝜃 =  0, 𝜑 = 0,                                   as 𝑦 → ∞         (22) 

 

3.2. Variational formulation 
 

The variational form associated with Eqs. (17) to (21) over a typical linear element (ɳ𝑒 , ɳ𝑒+1) is given by  

 𝑤1  
df

dɳ
− j dɳ = 0

ɳ𝑒+1

ɳ𝑒
          (23) 

 𝑤2  𝑗′′ + 𝐵1
′ + 𝑓𝑗′ + 𝐺𝑟𝜃 + 𝐺𝑚𝜑 − (𝐾 + 𝑀)𝑗   dɳ = 0

ɳ𝑒+1

ɳ𝑒
     (24) 

 𝑤3  𝜆
′′ − 2

𝜆

𝐺1
(2 + 𝑗′) + 𝑗 + 𝑓′ dɳ = 0

ɳ𝑒+1

ɳ𝑒
       (25) 

 𝑤4 𝜃
′′ + Pr𝑓 𝜃′ + Pr 𝐷𝑢𝜑′′ + Pr𝐸𝑐 (𝑗′)2 dɳ = 0

ɳ𝑒+1

ɳ𝑒
      (26) 

 𝑤5 𝜑
′′ + 𝑆𝑐 𝑓 𝜑′ + 𝑆𝑐 𝑆𝑟 𝜃′′ − 𝜏(𝜃′𝜑′ +  𝜃′′𝜑) dɳ = 0

ɳ𝑒+1

ɳ𝑒
     (27) 

Where 𝑤1 ,𝑤2 ,𝑤3, 𝑤4 and  𝑤5 are arbitrary test functions and may be viewed as the variations in f, h, θ, and ϕ, 

respectively. 
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3.3. Finite- element formulation 
 

The finite-element model may be obtained from above equations by substituting finite-element approximations 

of the form 

𝑓 =  𝑓𝑗Ѱ𝑗
2
𝑗=0 ,  𝑗 =  𝑗𝑗Ѱ𝑗

2
𝑗=0  ,    =  𝑗Ѱ𝑗

2
𝑗=0  , θ=  𝜃𝑗Ѱ𝑗

2
𝑗=0  ,  𝜙 =  𝜙𝑗Ѱ𝑗

2
𝑗=0 .                   (28) 

With 𝑤1 = 𝑤2 = 𝑤3 = 𝑤4 = 𝑤5 = Ѱ𝑖 ,         (𝑖 = 1,2). 

Where Ѱ𝑖  are the shape functions for a typical element (ɳ𝑒 , ɳ𝑒+1) and are defined as 

Ѱ1
𝑒 =

(ɳ𝑒+1−ɳ)

(ɳ𝑒+1−ɳ𝑒)
  ,  Ѱ2

𝑒 =
(ɳ−ɳ𝑒)

(ɳ𝑒+1−ɳ𝑒)
 , ɳ𝑒 ≤ ɳ ≤ ɳ𝑒+1.        (29) 

The finite element model of the equations thus formed is given by 

 
 
 
 
 
 
 𝐾11  𝐾12  𝐾13  𝐾14  𝐾15 

 𝐾21  𝐾22  𝐾23  𝐾24  𝐾25 

 𝐾31  𝐾32  𝐾33  𝐾34  𝐾35 

 𝐾41  𝐾42  𝐾43  𝐾44  𝐾45 

 𝐾51  𝐾52  𝐾53  𝐾54  𝐾55  
 
 
 
 
 

 
 
 
 
 
𝑓
𝑗

𝜃
𝜙 
 
 
 
 

=    

 
 
 
 
 
 
 𝑟1 

 𝑟2 

 𝑟3 

 𝑟4 

 𝑟5  
 
 
 
 
 

 

Where [𝐾𝑚𝑛 ] and [𝑟𝑚 ] (m, n = 1, 2, 3, 4,5) are defined as 

𝐾𝑖𝑗
11 =  𝜓𝑖

𝜕𝜓𝑗

𝜕ɳ
dɳ

ɳ𝑒+1

ɳ𝑒
   ,    𝐾𝑖𝑗

12 = − 𝜓𝑖𝜓𝑗  dɳ
ɳ𝑒+1

ɳ𝑒
  ,  𝐾𝑖𝑗

13 = 𝐾𝑖𝑗
14 = 𝐾𝑖𝑗

15 = 0.                              

 𝐾𝑖𝑗
21 =  𝜓𝑖

𝜕𝜓𝑗

𝜕𝜂
 dη

𝜂𝑒+1

𝜂𝑒
,   𝐾𝑖𝑗

22 = − 
𝜕𝜓 𝑖

𝜕𝜂

𝜕𝜓𝑗

𝜕𝜂
dη +

𝜂𝑒+1

𝜂𝑒
(𝑀 + 𝐾) 𝜓𝑖𝜓𝑗 dη

𝜂𝑒+1

𝜂𝑒
 , 

𝐾𝑖𝑗
23 = 𝐵1  𝜓𝑖

𝜕𝜓𝑗

𝜕ɳ
dɳ

ɳ𝑒+1

ɳ𝑒
 ,   𝐾𝑖𝑗

24 = 𝐺𝑟  𝜓𝑖𝜓𝑗  dη
𝜂𝑒+1

𝜂𝑒
  ,  𝐾𝑖𝑗

25 = 𝐺𝑚  𝜓𝑖𝜓𝑗  dη
𝜂𝑒+1

𝜂𝑒
.   

𝐾𝑖𝑗
31 =  𝜓𝑖

𝜕𝜓𝑗

𝜕𝜂
 dη

𝜂𝑒+1

𝜂𝑒
, 𝐾𝑖𝑗

32 = 2
𝜆

𝐺1
 𝜓𝑖

𝜕𝜓𝑗

𝜕𝜂
 dη

𝜂𝑒+1

𝜂𝑒
+  𝜓𝑖𝜓𝑗 dη

𝜂𝑒+1

𝜂𝑒
. 

𝐾𝑖𝑗
33 = 𝜆  𝜓𝑖

𝜕𝜓𝑗

𝜕ɳ
dɳ

ɳ𝑒+1

ɳ𝑒

+ 4
𝜆

𝐺1

 𝜓𝑖𝜓𝑗 dη

𝜂𝑒+1

𝜂𝑒

,𝐾𝑖𝑗
34 = 𝐾𝑖𝑗

35 = 0. 

𝐾𝑖𝑗
41 = 𝑃𝑟  𝜓𝑖

𝜕𝜓𝑗

𝜕𝜂
 dη

𝜂𝑒+1

𝜂𝑒
,   𝐾𝑖𝑗

42 = 𝑃𝑟.𝐸𝑐  𝜓𝑖

𝜕𝜓𝑗

𝜕𝜂

𝜕𝜓𝑗

𝜕𝜂
 dη

𝜂𝑒+1

𝜂𝑒
,𝐾𝑖𝑗

43 = 0,    

𝐾𝑖𝑗
44 =  𝜓𝑖𝜃 

𝜕𝜓𝑗

𝜕𝜂
 dη

𝜂𝑒+1

𝜂𝑒

,𝐾𝑖𝑗
45 = Pr𝐷𝑢  𝜓𝑖𝜙 

𝜕𝜓𝑗

𝜕𝜂
 dη

𝜂𝑒+1

𝜂𝑒

,  

  𝐾𝑖𝑗

51

= 𝑆𝑐  𝜓𝑖𝜙  𝜓𝑗  dη
𝜂𝑒+1

𝜂𝑒
 , 𝐾𝑖𝑗

52 = 0, 𝐾𝑖𝑗
53 = 0, 

𝐾𝑖𝑗
54 = 𝑆𝑐 𝑆𝑟  𝜓𝑖𝜃 

𝜕𝜓𝑗

𝜕𝜂
 dη

𝜂𝑒+1

𝜂𝑒
− 𝜏  𝜓𝑖𝜃 

𝜕𝜓𝑗

𝜕𝜂
𝜓𝑗 dη

𝜂𝑒+1

𝜂𝑒
𝐾𝑖𝑗

55 =  
𝜕𝜓 𝑖

𝜕𝜂

𝜕𝜓𝑗

𝜕𝜂
 dη −

𝜂𝑒+1

𝜂𝑒
𝜏  𝜓𝑖

𝜕𝜓𝑗

𝜕𝜂
dη

𝜂𝑒+1

𝜂𝑒
. 

𝑟𝑖
2 = 0, 𝑟𝑖

2 = − 𝜓𝑖
𝑑Ѱ𝑖

𝑑ɳ
 
ɳ𝑒

ɳ𝑒+1
,  𝑟𝑖

3 = − 𝜓𝑖
𝑑Ѱ𝑖

𝑑ɳ
 
ɳ𝑒

ɳ𝑒+1
 ,  𝑟𝑖

4 = − 𝜓𝑖
𝑑Ѱ𝑖

𝑑ɳ
 
ɳ𝑒

ɳ𝑒+1
, 𝑟𝑖

5 = − 𝜓𝑖
𝑑Ѱ𝑖

𝑑ɳ
 
ɳ𝑒

ɳ𝑒+1
 

Where  

𝑓 =  𝑓𝑖
𝜕Ѱ𝑖

𝜕ɳ

2
𝑗=0 ,   𝑗 =  𝑗𝑖

𝜕Ѱ𝑖

𝜕ɳ

2
𝑗=0  ,    =  𝑖

𝜕Ѱ𝑖

𝜕ɳ

2
𝑗=0  , 𝜃 =  𝜃𝑖

𝜕Ѱ𝑖

𝜕ɳ

2
𝑗=0 ,    𝜙 =  𝜙𝑖

𝜕Ѱ𝑖

𝜕ɳ

2
𝑗=0 .  

The very important aspect in this numerical procedure is to select an approximate finite value of 𝜂∞ . So, in order 

to estimate the relevant value of  𝜂∞ , the solution process has been started with an initial value of  𝜂∞ = 4, and 

then Equations (23) – (27) are solved together with associated boundary conditions. We have updated the value 

of  𝜂∞  and the solution process is continued until the results are not affected with further values of  𝜂∞ . The 

choice of  𝜂𝑚𝑎𝑥 = 4  for velocity and temperature and  𝜂𝑚𝑎𝑥 = 6 for concentration have confirmed that all the 

numerical solutions approach to the asymptotic values at the free stream conditions.  
 

4. Grid Independence Test 
 

To investigate the sensitivity of the solutions to mesh density, we have performed the grid invariance test for 

velocity, temperature and concentration distributions and are shown in table 1. It is observed from this table that 

in the same domain the accuracy is not affected, even the number of elements increased, by decreasing the size 

of the elements. 
 

5. Results and Discussion 
 

Comprehensive numerical computations were conducted for different values of the parameters and results are 

illustrated graphically as well as in tabular form. Selected computations are presented in Figs. 2-12. The 

correctness of the current numerical method is checked with the results obtained by Mohanty et al. (2015) and is 
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shown in table 2. Thus, it is seen from table 2 that the numerical results are in close agreement with those 

published previously. 
 

5.1  Effect of suction (V0) 
 

Fig.2 illustrates the variation of velocity profiles for various values of suction parameter (V0). It is observed 

from this figure that the velocity decreases with increase in the value of the suction parameter. This is because 

of the reality that the momentum boundary layer thickness depreciates with increment in (V0). Further, it is seen 

that the velocity decreases with increase in η till it satisfies the boundary condition at η →∞. Fig.3 illustrates the 

effect of (V0) on micro-rotation profiles. Since there is no buoyancy term occurs in the angular momentum 

equation, then there exist strong coupling between translational velocity and micro-rotation fields.  The linear 

momentum equation (11) also contains the micro-rotation term, which further gives coupling between velocity 

and angular velocity fields. All the profiles have different values at   η = 0 because of the initial condition 

 0 = −𝑠𝑓 ′′  0 which is always non-zero since s = 0.5 and 𝑓 ′′  0  ≠ 0. The effect of (V0) on temperature 

profiles (θ) is shown in Fig.4. It is seen from this figure that temperature profiles decreases with increase in the 

values of (V0). This is due to the fact that the presence of wall suction has the tendency to reduce the thermal 

boundary layer thickness which results the reduction in the temperature profiles. Fig.5 depicts the changes in 

concentration profiles for different values of suction parameter (V0). This figure indicates that increase in 

suction parameter (V0) decreases concentration profiles and  is because of the imposition of suction/injection 

parameter into the flow region depreciate the concentration of the species in the solutal boundary layer. 

Therefore, From the above Figs. 2 - 5 we observed that the imposition of wall fluid suction (V0>0) in the present 

problem of flow has the effect of depreciating the  velocity, micro-rotation, temperature and concentration 

boundary layer thicknesses at every finite value of η. The deceleration in all profiles with the higher values of 

suction parameter (V0>0) is from the reality that suction is taken away the warm fluid from the fluid region. 

 

  
       Fig. 2: Effect of V0 on velocity profile.     Fig. 3: Effect of V0 on micro-rotation profile  

  
Fig. 4: Effect of V0 on temperature profile. Fig. 5: Effect of V0 on concentration profile 
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The variation of local skin-friction co-efficient (𝑓 ′′  0 ) , local Nusselt number (−𝜃 ′ 0 ) , and local Sherwood 

number (−𝜑′ 0 ) for different values of suction parameter (V0) is presented in table 3. It is seen from table that 

the local skin-friction co-efficient depreciates whereas the dimensionless heat and mass transfer rates elevates 

with increase in suction parameter (V0). 
 

5.2  Effect of magnetic parameter (M) 
 

The influence of magnetic field parameter (M) on velocity, temperature and concentration profiles in the 

boundary layer is depicted in Figs. 6 - 8. It is noticed from these figures that the hydrodynamic boundary layer 

thickness depreciates, whereas the thermal boundary layer thickness as well as the solutal boundary layer 

thickness enhances with the higher values of (M). This is because of the reality that, the presence of magnetic 

field in an electrically conducting fluid produces a force called Lorentz force, this force acts against the flow 

direction causes the depreciation in velocity profiles (fig. 6), and at the same time, to overcome the drag force 

imposed by the Lorentzian retardation the fluid has to perform extra work; this supplementary work can be 

converted into thermal energy which increases the thickness of thermal and solutal boundary layers in the fluid 

region (figs. 7 & 8). 
 

 
 

 
Fig. 6: Effect of 𝑀 on velocity profile. Fig. 7: Effect of 𝑀 on temperature profile. 
 

 
Fig. 8: Effect of 𝑀 on concentration profile 
 

The sway of magnetic parameter (M) on skin-friction coefficient, Nusselt number and Sherwood number is also 

presented in table 3. It is clear from this table that skin-friction coefficient, dimensionless heat and mass transfer 

rates are all decelerates with the higher values of magnetic parameter (M). 
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5.3  Effect of Soret and Dufour parameters (Sr & Du) 
 

The combined impact of (Sr) and (Du) on temperature and concentration profiles is depicted in Figs. 9-10. In 

these graphs (Sr) and (Du) values are taken as Sr = 0.5,0.8,1.1,1.4,1.8 and Du = 0.5,0.3,0.2,0.15,0.1. It is clearly 

observed from these graphs that the temperature distributions decreases whereas concentration profiles increases 

at all points in the flow field with the increasing values of Soret number(Sr) and the decreasing values of Dufour 

parameter (Du). This is because of the fact that the diffusive species with higher values of Soret parameter (Sr) 

has the tendency of  increasing concentration profiles whereas thermal species with lower Dufour parameter 

(Du) values has the tendency of depreciating temperature profiles in the flow field. Thus, it is concluded from 

Figs. 9 - 10 that the temperature and concentration distributions are more influenced with the values of Soret and 

Dufour parameters.  

  
Fig.9: Effect of 𝑆𝑟 & 𝐷𝑢 on temperature profile Fig.10: Effect of 𝑆𝑟 & 𝐷𝑢 on concentration profile 
 

The combined influence of (Sr) and (Du) on skin-friction coefficient, Nusselt number and Sherwood number is 

also reported in table 3. It is noticed that  𝑓 ′′  0  and the dimensionless heat transfer rates are both improved 

whereas the dimentionless mass transfer rates falls with the increasing values of (Sr) and decreasing values of 

(Du). 

  
Fig. 11: Effect of 𝜏 on temperature profile Fig. 12: Effect of 𝜏 on concentration profile 
 

5.4  Effect of thermophoretic parameter (τ) 
 

The variation in temperature and concentration distributions for various values of thermophoretic parameter 𝜏 is 

depicted in Figs.11 and 12. It is seen from fig.11 that the thickness of the thermal boundary layer increases in 

flow region with higher values of thermophoretic parameter (𝜏). This is because of the fact that the particles 

near the hot surface create a thermophoretic force causes the increment in the thermal boundary layer thickness. 
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However, the thickness of solutal boundary layers depreciates in the entire flow region with increase in the 

values of thermophoretic parameter (𝜏). 
 

It is evident from table 3 that the skin-friction co-efficient and Nusselt number depreciates whereas Sherwood 

number enhances with the increasing values of thermophoresis parameter (τ). 
 

7. Conclusion 
 

In the present analysis we have investigated the combined influence of suction and thermophoresis on the mixed 

convective heat and mass transfer boundary layer flow of a micropolar fluid through porous medium over a 

stretching sheet in the presence of Thermo-Diffusion and Diffusion-Thermo effects. Similarity transformation is  

used to transform the resulting partial differential equations into the set of highly non-linear ordinary differential 

equations and are solved numerically by using Finite element method. The most significant findings of the 

present study are as follows. 

 The velocity, micro-rotation, temperature and concentration profiles are highly influenced with different 

values of magnetic parameter (M). Velocity profiles impedes because of the Laurentz force, whereas the 

thickness of thermal and concentration boundary layers are both elevates with higher values of M. 

 The thickness of hydrodynamic, microrotation, thermal and solutal boundary layers is reduced with the 

higher values of suction parameter (V0). This is because of the fact that suction is taken away the warm 

fluid from the fluid region.   

 The thermal boundary layer thickness is improved with the increasing values of thermophoretic parameter 

(τ). This is because of the fact that thermophoresis acts against temperature gradient, so that, the particles 

move from the region of higher temperature to the region of lower temperature. 

 The rates of non-dimensionless temperature decreases with an increase in the values of Soret number Sr. 

 The rate of non-dimensionless concentration improves with increasing values of Soret parameter (Sr). 

 The Nusselt number increases with the decreasing values of Dufour number (Du). 
 

Table 1:Grid-invariance test for velocity distribution (𝑓 ′ ), temperature distribution (θ) and concentration 

distribution (𝜑) , for λ=0.5, G1=0.5, Ec=0.01, B1=0.5, M=1.0, τ = 0.1, Pr=0.71, Sc = 0.22, K= 0.5,V0 

= 0.5,Gm = 0.1,Gr =1.0, Sr=1.0, Du=0.1. 
 

 

Table 2:Comparison of local Skin-friction, Nusselt number and Sherwood number with the existing results, 

when 𝑆𝑟 = 0,𝐷𝑢 = 0, G1 = 0.5,𝑉𝑜 = 0,𝐵1 = 0.1, 𝜏 = 0, 𝜆 = 0.5. 
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al.  (2015) 
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Mohanty et 

al.  (2015) 
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Mohanty et 

al. (2015) 

Present      
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0.0 
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0.72 
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0.00 
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0.22 

0.22 

0.22 

0.22 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 
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0.5 
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0.5 
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0.5 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 
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0.82922 

0.79858 

0.72576 

0.85619 

0.86526 

0.86526 

0.78482 

0.68386 

0.77981 

0.67646 

3.02052 

0.82931 

0.79863 

0.72569 

0.16666 

0.42252 

0.42252 

0.37866 

0.33393 

0.37867 

0.33394 

0.38361 

0.40495 

0.38891 

0.35583 

0.16671 

0.42263 

0.42263 

0.37872 

0.33385 

0.37874 

0.33398 

0.38370 

0.40486 

0.38896 

0.35591 

 

η 𝑓′  θ 𝜑 
Step size (h) 

0.04 0.02 0.01 0.005 0.04 0.02 0.01 0.005 0.04 0.02 0.01 0.005 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1.0 1.4364 1.2563 1.1157 1.1154 0.3174 0.2849 0.2446 0.2445 0.3874 0.3457 0.3289 0.3286 

2.0 0.3172 0.2965 0.1874 0.1873 0.0532 0.0321 0.0318 0.0317 0.0965 0.0824 0.0816 0.0814 

3.0 0.0534 0.0425 0.0264 0.02631 0.0056 0.0041 0.0011 0.0010 0.0156 0.0098 0.0084 0.0083 

4.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0054 0.0041 0.0034 0.0032 

5.0 ---- ---- ---- ---- ---- ---- ---- ---- 0.0005 0.0003 0.0002 0.0001 

6.0 ---- ---- ---- ---- ---- ---- ---- ---- 0.0000 0.0000 0.0000 0.0000 
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Table 3: The local Skin-friction, Nusselt number and Sherwood number for different values of the important 

parameters. 

 

𝑉0 M Sr Du τ 𝑓′′(0) −𝜃′(0) −𝜑′(0) 
0.1 

0.4 

0.7 

1.0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

1.0 

1.0 

0.1 

0.4 

0.7 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

0.5 

0.8 

1.1 

1.4 

1.0 

1.0 

1.0 

1.0 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.5 

0.3 

0.2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.4 

0.7 

1.0 

4.341664 

4.217637 

4.035646 

3.797455 

3.181322 

2.951362 

2.735015 

2.531069 

4.073383 

4.130123 

4.304030 

4.304302 

2.531069 

2.403028 

2.262505 

2.140653 

0.840417 

0.957082 

1.081757 

1.214205 

0.956905 

0.946389 

0.936191 

0.926322 

0.743463 

0.897880 

0.985056 

1.025185 

0.926322 

0.899578 

0.867547 

0.837243 

0.713787 

0.766098 

0.820302 

0.877212 

0.727742 

0.714376 

0.701742 

0.689786 

1.165773 

0.960502 

0.688923 

0.482014 

0.689786 

0.967457 

1.307852 

1.637596 
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