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Abstract:  

In this paper, using interfacial slip on the boundary, the exact solution is obtained for the Stokes flow 

through a couple stress fluid sphere which is embedded (implanted) in a porous medium with 

Brinkman’s condition. Analytical computations are derived for the stream functions and drag. For the 

drag force, special conditions are deduced that satisfy the literature's facts. Graphs are created and the 

numerical results are tabulated. It is noticed that in the external viscous fluid case the porosity 

parameter and the drag coefficient are directly correlated and for the external couple stress fluid case 

with raises in slip parameter the coefficient of drag reduces. 
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NOMENCLATURE 

 
Greek symbols 

p hydro-static pressure at any point 𝑈∞ velocity at infinity 

𝜌 density of the fluid 𝐷𝑔 drag force 

𝑞̅ velocity of the fluid e couple stress parameter 

𝜇𝑖 , 𝜇𝑒 fluid viscosities for inner and outer side of 

the fluid sphere 
𝜆1

2 Couple stress parameter 

𝑠 slip parameter 𝜇 viscosity ratio 

𝛽1
2 Porosity parameter   

 

1. Introduction  

The problem of fluid flow through porous surfaces is crucial in oil technology, aquifer recharge, and recharge of 

ground water. The utilize of beds of porous particles for biological fields like enzyme immobilization or cell and 

perfusion chromatography to purify proteins, and other biomolecules has attracted a lot of interest as cited by 

Shukla (2013).  

 

Durlofsky and Brady (1987) in their work developed Green’s function to study the behavior of flow in a porous 

media which helps to determine the effect of flow parameters on hydro dynamically interacting particles in 

Stokes flow. Padmavathi et al. (1993) used Faxen’s law to estimate the torque and drag terms for the flow over a 

porous sphere. Srinivasacharya and Murthy (2002) used Brinkman's extension equation to investigate the 

viscous fluid flow past an axisymmetric body implanted within a fluid-impregnated porous region. Partha et al. 

(2005) have considered the impact of tangential stresses in flows passed through spherical shells and the flow 

inside the porous region governed by the Brinkman equation. Umavathi et al. (2009) introduced a new method 

of analysis of strong and weak flows with comparable porosity conditions included with couple stress fluid 

parameters. Deo et al. (2010) expressed the influence of drag force on a porous structure and stream function 

was used to numerically analyze the nature of fluid in and outside of the sphere. Kumara (2012) examined the 

consequence of various types of basic temperature gradients on the criterion for convection initiation in a layer 

of an non-compressible CSF-saturated porous region. The mathematical formulation demonstrates that the 
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principle of exchange of firmness probably applies regardless of the shape of the basic temperature profile.  

Sunil et al. (2013) studied the effect of rotation on a CSF with a generalized energy method. Kumar et al. (2015) 

discussed about a CSF having appended particles with variable gravity in a porous region. The dispersion 

relation is analyzed numerically with Rayleigh-Ritz, Cauchy-Schwarz inequality equations and the results are 

depicted graphically. Eegunjobi and Makinde (2017) work has reported on influence of an assorted convection 

hydro-magnetic flow of CSF passed through a vertical channel filled with a soaked porous region. Pavlovskaya 

et al. (2018) in their work used the magnetic resonance imaging (MRI) method to investigate symmetric fluid 

flow in a porous region in cylinder sections. Prasad and Tina (2021) studied the impact of magnetic fields on 

Stoke’s Newtonian motion over a porous spheroidal particle and the Brinkman model is suggested to rule the 

flow in porous channels. The applied magnetic field helps in estimating the drag effect on the porous spheroid. 

Parida et al. (2021) investigated on the steady free convective flow of a nanofluid over a stretching sheet 

embedded in a porous medium. Murugan and Sekar (2022) considered magnetic field dependent (MFD) 

approach for a comprehensive understanding of the factors affecting thermos-convective instability in 

ferromagnetic fluids within a rotating porous medium. Prasad and Priya (2022) have considered the CSF flow 

over an impervious sphere placed in a porous region with slip condition over the surface and the drag force 

values were computed analytically. Punnamchandar and Sitotaw (2022) have developed analytical expressions 

to estimate the impact of the non-miscible fluid flows in a porous medium with slip at boundaries was 

graphically.  

 

Murthy and Kumar (2016) have critically analyzed the viscous fluid flow past a surfactant fluid sphere under 

no-slip conditions. Kishore and Ramdas (2016) in their study used a CFD-based internal solver to examine 

numerically the heat transfer phenomena of spherical particles in Newtonian fluids with velocity slip and 

uniform thermal boundary conditions (B. Cs) at the fluid-solid interface. Lakshmi and Kumar (2022) have 

obtained an analytical solution for drag for a uniform flow past a fluid drop with slip condition.  Devi and 

Kumar (2022, 2023) have obtained an exact solution for CSF flow over a fluid sphere filled with CSF, and 

partially surfactant CSF sphere with an interfacial slip condition respectively. The drag force illustrates 

analytically.  

 

The above-mentioned literature work focused on different geometries embedded in porous regions with slip and 

no-slip conditions. The present work mainly focuses on giving an exact solution for biological applications 

found in different types of flows like the combination of viscous fluid and CSF sphere implanted in a porous 

region with slip condition is the new study. 

 

2.1 Fundamental equations:  
 

Consider a fluid sphere containing CSF inner side it, is placed in a flow of uniform viscous fluid far from it. It is 

presumed that the flow is steady, axisymmetric, and incompressible. The model's geometry is shown in Fig. 1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. The geometry of viscous fluid over a CSF sphere implanted in a porous region. 
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The continuity equation is  

𝛻. 𝑞̅  = 0.                          (1) 

The field equations that determine the internal flow of couple stress fluid flow are as follows: 

𝛻2𝑞̅ = (
1

𝜇i
) 𝛻𝑃,                  (2) 

The momentum equation of external viscous fluid flow in porous region governed by the Brinkman model is 

𝛻2𝑞̅  − (
𝛽1

𝑎
)

2

𝑞̅  =
1

𝜇𝑒
𝛻𝑃.             (3)  

Due to the geometrical structure of the present problem, we chose a spherical coordinate system as our point of 

reference. “The scale factors for the system are  ℎ1 = 1, ℎ2 =  𝑅,   ℎ3 = 𝑅 𝑠𝑖𝑛𝜃.” (Naga Lakshmi Devi and 

Phani Kumar (2022)).  

In axisymmetric flow, 𝑈 and 𝑉  are velocity components in terms of stream function are exhibited as  

𝑈(𝑅, 𝜃) =
1

𝑅2𝑠𝑖𝑛𝜃

𝜕Ѱ

𝜕𝜃
;  𝑉(𝑅, 𝜃) =  

−1

𝑅 𝑠𝑖𝑛𝜃

𝜕Ѱ

𝜕𝑅
.           (4) 

Eliminating pressure P and using Eq. (4), reduces Eq. (2) and Eq. (3) to,  

𝐸0
2 [𝐸0

2 −
𝜆1

2

𝑎2] Ѱ = 0,              (5) 

𝐸0
4 [𝐸0

2 −
𝛽1

2

𝑎2] Ѱ = 0.             (6) 

The non-dimensional scheme is taken in Eq. (5) and Eq. (6) as     

𝑅 = 𝑎𝑟;  Ѱ = 𝜓𝑈∞𝑎2;  𝑃 = 𝑝
𝑈∞𝜇

𝑎
;  𝐸0

2 =  
𝐸2

𝑎2 ;  𝑈 = 𝑢𝑈∞;  𝑉 = 𝑣𝑉∞, porosity parameter 𝛽1
2 =

𝑎2

𝑘
. 

The momentum equation in non-dimensional form is  

𝐸2[𝐸2 − 𝜆1
2] [𝐸2 − 𝛽1

2]𝜓 = 0,                                                    (7)  

where, porosity parameter 𝛽1
2 =

𝑎2

𝑘
 , couple stress parameter 𝜆1

2 =
𝜇𝑎2

𝜂
 and 𝐸2  ≡

𝜕2

𝜕𝑟2 + 
1

𝑟2

𝜕2

𝜕𝜃2 −
𝑐𝑜𝑡𝜃

𝑟2

𝜕

𝜕𝜃
. 

As, 𝜆1
2 ⟶ ∞, couple stress fluid tends to viscous fluid, 𝛽1

2 ⟶ ∞, porous region reduces to no porous region. 

The solution of Eq. (7) which are regular for outer flow (𝜓1𝑒
′ ) and for inner flow (𝜓1𝑖

′ ) regions by superposition 

process are given by: 

𝜓1𝑒
′ = [

𝑙1

𝑟
+ 𝑟2 + 𝑚1√𝑟 𝐾3

2

(𝛽1𝑟)] 𝐺2(𝑥),                                                                                   (8) 

𝜓1𝑖
′ = [𝑙2 𝑟2 + 𝑚2 𝑟4+𝑛2√𝑟 𝐼3

2

(𝜆1𝑟)]  𝐺2(𝑥).                                             (9) 

Here,  𝐾3

2

(𝑥) and 𝐼3

2

(𝑥) represents modified Bessel’s functions, 𝐺2(𝑥) is a Gegenbauer functions. (Ramana 

Murthy, Phani Kumar (2016), Vijaya Lakshmi and Phani Kumar (2022)). 

The parameters 𝑙1, 𝑚1, 𝑙2, 𝑚2, 𝑛2 in Eq. (8) and (9) can be found by applying B. Cs: 

(i). Regularity conditions:  

 a) 𝑙𝑖𝑚
𝑟→∞

𝜓e
′ =

𝑟2 𝑠𝑖𝑛2 𝜃

2
 (Outer region)  

 b) 𝑙𝑖𝑚
𝑟→0

𝜓i
′ = Finite (Inner region).                                              (10) 

(ii). Impermeability condition: no mass transfer occurs at the fluid sphere's interface on 𝑟 =  1.  

       𝜓1𝑒
′ =  𝜓1𝑖

′ = 0.                                              (11) 

 

(iii). Slip condition: The tangential stress acting at that location on the surface is related to the tangential 

velocity of the liquid relative to the solid at that point. (Happel and Brenner (1983)) i.e., 

        𝜏𝑟𝜃𝑒 =  𝜗(𝑞𝜃 − 𝑉𝜃𝑖), where 𝜗 is the sliding friction,       (12) 

(iv). Shear stress is continuous at crossing the interface of the fluid sphere. i.e., 

        𝜏𝑟𝜃𝑒 =  𝜏𝑟𝜃𝑖 .                                       (13) 

(v). Type A condition: vanishing of couple stress 𝑚𝑟∅ = 0 i.e., 

      (
𝜕[𝐸2𝜓′]

𝜕𝑟
) = (𝑒 +

1

𝑟
 ) 𝐸2𝜓′.                                                     (14) 

Here 𝑒 is the couple stress parameter given by 𝑒 =
𝜂′

𝜂
 with (𝜂′ ≠ 𝜂) here 𝜂 and 𝜂′ are couple stress viscosity 

coefficients. 

 

2.2. Calculations: 
Using the B. Cs., (10) - (14) in Eq. (8) and Eq. (9), the following five system equations were derived. 

𝑙1 = −1 − 𝑚1
′ ; 

𝑙2 + 𝑚2 + 𝑛2 
′ = 0; 
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𝑙1(4 + 𝑠) + 𝑚1
′ (2 + 𝛽1

2 + (2 + 𝑠)𝛥1(𝛽1)) − (𝑛2
′ )𝑠 (𝛥2(𝜆1)) + 2𝑠𝑙2 + 4𝑠𝑚2 = 2𝑠 + 2;                  (15)    

6𝑙1 + 𝑚1
′ (4 + 𝛽1

2 + 2𝛥1(𝛽1)) + 𝜇 (−6𝑚2 − (𝑛2
′ )(4 + 2𝛥2(𝜆1))) = 0;             

𝑚2(10 − 10𝑒) − 𝑛2
′ 𝜆1

2 (𝛥2(𝜆1) + (1 + 𝑒)) = 0;             

where, 𝑚1
′ = 𝑚1 𝐾3

2

(𝛽1);   𝑛2
′ = 𝑛2 𝐼3

2

(𝜆1), slip parameter  𝑠 =
𝜗𝑎

𝜇
, viscosity ratio 𝜇 =

𝜇𝑖

𝜇𝑒
. 

 

Solving Eq. (15) analytically, resulted to  

𝑚1
′ =  

(3𝑠 + 6)𝜑2
′ − 6𝜙2

′

Ω 
;  𝑛2

′ =  
6𝜙1

′ − (6 + 3𝑠)𝜑1
′

Ω
; 𝑚2 =  𝑛2 

′ 𝛬1, 𝛬1 =  
𝜆1

2 (𝛥2(𝜆1) + (1 + 𝑒))

(10 − 10𝑒)
 

where, Ω =  𝜙1
′ 𝜑2

′ − 𝜙2
′ 𝜑1

′ , 

𝜙1
′ = (−𝑠 − 2 + 𝛽1

2 + (2 + 𝑠)𝛥1(𝛽1)); 

𝜙2
′ = 𝑠 (−2 + 2𝛬1 − 𝛥2(𝜆1)); 

𝜑1
′ = (−2 + 𝛽1

2 + 2𝛥1(𝛽1));    

𝜑2
′ =  𝜇 (−4 + 6𝛬1 − 2𝛥2(𝜆1)); 

 

Thus, outer and inner flow stream functions of Eq. (8) and Eq. (9) are derived. 

 

2.3. Evaluation of drag force: 

 

The limiting form of the drag force (𝐷𝑔) on a body, which is placed in a porous medium can be given by (Satya 

Deo et al. (2010)). 

𝐷𝑔 = 4𝜋𝜇𝑒𝑈∞𝑎 𝛽1
2 𝑙𝑖𝑚

𝑟⟶∞
[

𝑟3(𝜓𝑒
′ −𝜓∞

∗ )

𝜛2 ], where, 𝜛2 = 𝑟2 𝑠𝑖𝑛2 𝜃.                   (16) 

In the above Eq. (16), 𝜓∞
∗  denotes the fluid motion at infinity correlated with the stream function. 

Replacing Eq. (8), Eq. (10) in Eq. (16) and apply limiting conditions we get, 

𝐷𝑔 = 2𝑈∞𝜇𝑒𝜋𝑎𝛽1
2(𝑙1)     

      = 2𝑈∞𝜇𝑒𝜋𝑎𝛽1
2(−1 − 𝑚1

′ ).                   (17) 

Case (i): As slip parameter,  𝑠 ⟶ ∞, we get 𝐷𝑔without slip condition as  

               𝐷𝑔 = −2𝑈∞𝜇𝑒𝜋𝑎𝛽1
2 (1 +

(18𝜇−12)

(6𝜇)(𝛥1(𝛽1)−1)−2(−2+𝛽1
2+(2𝛥1(𝛽1)))

)                                 (18) 

Case (ii): If  𝜇 ⟶ ∞ and using,  𝛥1(𝛽1) =
1+𝛽1+𝛽1

2

1+𝛽1
, Eq. (18) reduces to viscous flow past a solid sphere 

embedded     

                in a porous medium without slip condition.     

                𝐷𝑔 = −𝜋𝑈∞𝜇𝑒𝜋𝑎(6𝛽1
2 + 6𝛽1 + 6 ).                                                   (19) 

Case (iii): If  𝛽1 = 0 (no porous region). then Eq. (19) reduces to  

                 𝐷𝑔 = −(6𝑈∞𝜇𝑒𝜋𝑎),                                                   (20) 

which is the drag force (𝐷𝑔) for a flow of viscous fluid over a rigid sphere without slip condition. The above 

equation also matches with the results of Satya Deo et al. (2010), Happel and Brenner (1983). 

 

Now the coefficient of drag (𝑐𝑑) is calculated as 

 

𝑐𝑑 =
𝐷𝑔

1

2
𝜋𝜌𝑈∞

2 𝑎2
,  

∴ 𝑐𝑑 =
−6𝜋𝜇𝑒𝑈∞𝑎 

1

2
𝜋𝜌𝑈∞

2 𝑎2
.                                                                (21) 

When,  𝑠 ⟶ ∞, 𝜇 ⟶ ∞, and  𝛽1 = 0, then the coefficient of drag is 

𝑐𝑑 = −
24

𝑅𝑒
, with,  𝑅𝑒 =

(2𝑎)𝜌𝑈∞

𝜇𝑒
.                                            (22) 

 

Equation (22) corresponds to the coefficient of drag for a solid sphere without slip condition (Happel and 

Brenner (1983)).  

 

Additionally, we have acquired drag force of uniform CSF flow beyond a viscous fluid sphere implanted in a 

porous medium.  
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3. Exact solution for CSF flow beyond a viscous fluid sphere embedded in a porous medium: 

 

3.1. Problem formulation: 

Consider a CSF flow past a viscous fluid sphere placed fixed in a porous region, far from it has a uniform 

velocity. The flow is presumed to be steady, axisymmetric and non-compressible. The geometry of the model is 

presented in Fig. 2. as 

                  

 

 

 

                              

 

 

 

 

 

 

 

Figure 2: Geometry of CSF over a viscous fluid sphere implanted in a porous region. 

 

For this geometry of the problem, Eqs (1) to Eqs. (7) remain same.  

The solution of Eq. (7) which are common for outer flow (𝜓2𝑒
′′ ) and for inner flow (𝜓2𝑖

′′ ) regions by 

superposition procedure are given by:  

𝜓2𝑒
′′ = [

𝑙1

𝑟
+ 𝑟2 + 𝑚1√𝑟𝐾3

2

(𝛽1𝑟)+𝑛1√𝑟 𝐾3

2

(𝜆1𝑟)] 𝐺2(𝑥),                                (23) 

𝜓2𝑖
′′ = [𝑙2 𝑟2 + 𝑚2 𝑟4] 𝐺2(𝑥).                                            (24) 

The parameters 𝑙1, 𝑚1, 𝑛1, 𝑙2, 𝑚2 in Eq. (23), Eq. (24) are obtained by implementing the B. Cs. (10) to (14). 

 

3.2. Calculations: 

Using the B.Cs. (10) - (14) in Eq. (23) and Eq. (24) gives the following system of five equations. 

𝑙1 + 𝑚1
′ + 𝑛1 

′ = −1, 
𝑙2 + 𝑚2 = 0, 

(6 + 𝑠)𝑙1 + 𝑚1
′ (𝛽1

2 + 4 + (2 + 𝑠)𝛥1(𝛽1) −
𝛽1

4

𝜁2
) + 𝑛1

′ (𝜆1
2 + 4 + (2 + 𝑠)𝛥1(𝜆1) −

𝜆1
4

𝜁2
) + 

2𝑠(𝑙2 + 2𝑚2) = 2𝑠,                   (25)  

−6𝑙1 + 𝑚1
′ (−𝛽1

2 − 4 − 2𝛥1(𝛽1) +
𝛽1

4

𝜁2
) + 𝑛1

′ (−𝜆1
2 − 4 − 2𝛥1(𝜆1) +

𝜆1
4

𝜁2
) + 6𝜇𝑚2 = 0, 

𝑚1
′ 𝛽1

2{𝛥1(𝛽1) + (1 + 𝑒)} + 𝑛1
′ 𝜆1

2{𝛥1(𝜆1) + (1 + 𝑒)} = 0, 
where, 𝑚1

′ = 𝑚1 𝐾3

2

(𝛽1);   𝑛1
′ = 𝑛1 𝐾3

2

(𝜆1).  

Solving Eqs. (25) analytically, results to 

𝑙1 = −1 − 𝑚1
′ − 𝑛1 

′ , 𝑙2 = −𝑚2 

𝑚1
′ =  

−(3𝑠 + 6)𝜑4
′ + 6𝜙4

′

𝛺1 
;  𝑚2 =  

−6𝜙3
′ + (3𝑠 + 6)𝜑3

′

𝛺1

;  𝑛1
′ = 𝑚1

′ 𝛬2;    𝛬2 =
𝛽1

2(𝛥1(𝛽1) + (1 + 𝑒)) 

𝜆1
2(𝛥1(𝜆1) + (1 + 𝑒))

; 

where,  𝛺1 =  𝜙3
′ 𝜑4

′ − 𝜙4
′ 𝜑3

′ , 

𝜙3
′ = (2 + 𝑠−𝛽1

2 − 4 − (2 + 𝑠)𝛥1(𝛽1) +
𝛽1

4

𝜁2
) + 𝛬2 (𝜆1

2 − 2 − 𝑠 + (2 + 𝑠)𝛥1(𝜆1) −
𝜆1

4

𝜁2
) ; 

𝜙4
′ = −2𝑠 ; 

𝜑3
′ = (2−𝛽1

2 − 2𝛥1(𝛽1) +
𝛽1

4

𝜁2) + 𝛬2 (𝜆1
2 − 2 + 2𝛥1(𝜆1) −

𝜆1
4

𝜁2);    

𝜑4
′ = 6 𝜇 ; 

 

Thus, outer and inner flow stream functions of Eq. (23) and (24) are derived. 
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3.3. Evaluate drag force: 

 

The limiting form of the drag force (𝐷𝑔) on a body, which is placed in a porous medium can be given by (Satya 

Deo et al. (2010)). 

𝐷𝑔 = 4𝜋𝜇𝑒𝑈∞𝑎 𝛽1
2 𝑙𝑖𝑚

𝑟⟶∞
[

𝑟3(𝜓𝑒
′′−𝜓∞

∗ )

𝜛2 ], where 𝜛2 = 𝑟2 𝑠𝑖𝑛2 𝜃.                   (26) 

In the above Eq. (26), 𝜓∞
∗  as denotes the fluid motion at infinity is correlated with the stream function. 

Putting Eq. (23) and Eq. (10) in Eq. (26) and apply limiting conditions we get, 

𝐷𝑔 = 2𝑈∞𝜇𝑒𝜋𝑎𝛽1
2(𝑙1)     

      = 2𝑈∞𝜇𝑒𝜋𝑎𝛽1
2(−1 − 𝑚1

′ (𝛬2 + 1)).                   (27) 

Case (i): As slip parameter,  𝑠 ⟶ ∞, we get 𝐷𝑔without slip condition as 

𝐷𝑔 = −2𝑈∞𝜇𝑒𝜋𝑎𝛽1
2 (1 +

(18𝜇−12)

(6𝜇)(𝛥1(𝛽1)−1)−2(−2+𝛽1
2+(2𝛥1(𝛽1)))

)                    (28) 

Case (ii): If viscosity ratio  𝜇 ⟶ ∞ and using,  𝛥1(𝛽1) =
1+𝛽1+𝛽1

2

1+𝛽1
,  Eq. (28) reduces to 

𝐷𝑔 = −𝑈∞𝜇𝑒𝜋𝑎(6𝛽1
2 + 6𝛽1 + 6 ).                                            (29) 

Case (iii): When porosity parameter, 𝛽1 = 0, Eq. (29) it is reducing to, 

𝐷𝑔 = −(6𝑈∞𝜇𝑒𝜋𝑎),                                                    (30) 

which is the drag force (𝐷𝑔) for a viscous fluid flow over a solid sphere in a non-porous medium without slip 

condition. The above equation also matches with the results of Satya Deo et al. (2010), Happel and Brenner 

(1983).  

Now the (𝑐𝑑) coefficient of drag is calculated as 

𝑐𝑑 =
𝐷𝑔

1

2
𝜋𝜌𝑈∞

2 𝑎2
,  

∴ 𝑐𝑑 =
−6𝜋𝜇𝑒𝑈∞𝑎 

1

2
𝜋𝜌𝑈∞

2 𝑎2
.                                                     (31) 

When, 𝑠 ⟶ ∞, 𝜇 ⟶ ∞, and 𝛽1 = 0, then 𝑐𝑑 tends to 

𝑐𝑑 = −
24

𝑅𝑒
, with  𝑅𝑒 =

(2𝑎)𝜌𝑈∞

𝜇𝑒
,                                       (32) 

Eq. (32) corresponds to the coefficient of drag without slip condition for a solid sphere (Happel and Brenner 

(1983)). Thus, the obtained results are validated. 

 

4. Results and Discussion: 

 
Case 1: Exact solution for viscous fluid flow beyond a CSF sphere implanted in a porous region: 

The stream function values are given in Eqs. (8) and (9) using the B. Cs from (10) – (14) they were 

derived. In a porous region with slip condition, the drag force (𝑫𝒈) is calculated as given in Eq. (17), 

which for special cases are matching with results in existing literature. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The coefficient of drag (𝑐𝑑) w.r.t. porous parameter (𝛽) for varying slip parameter (𝑠)  at fixed 

viscosity ratio  𝜇 = 5 and couples stress parameter e = 2. 
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The numerical results of coefficient of drag for changing slip and porous parameters at a constant 

viscosity ratio are displayed and listed in Fig. 3 and Table. 1 respectively. It is observed that the 

coefficient of drag increases along with the porous parameter values. 

 

Table 1: The coefficient of drag (𝑐𝑑)  w.r.t. porous parameter (𝛽) for varying slip parameter (𝑠)  at fixed 

viscosity ratio   𝜇 = 5 and couples stress parameter e = 2. 

 

  𝛽  \𝑠 → 

  ↓ 

4 6 8 10 

1 3.2348 3.2389 3.2408 3.2419 

2 12.5509 13.0602 13.3078 13.4542 

3 25.8866 28.0166 29.2376 30.0292 

4 42.4040 47.5297 51.0162 53.5414 

5 61.5240 70.6748 78.0548 84.1328 

6 83.1584 96.8401 109.7945 122.0781 

7 107.4083 125.6811 145.7051 167.7447 

8 134.4189 157.0545 185.3182 221.6071 

9 164.3232 190.9443 228.2466 284.2716 

10 197.2277 227.4033 274.1898 356.5112 

 

Case 2: Exact solution for CSF flow beyond a viscous fluid sphere implanted in a porous medium: 

The stream functions of CSF flow past a viscous fluid were obtained in Eqs. (23) and (24) using the 

boundary conditions from (10) - (14). In a porous medium with slip condition and the drag force (𝑫𝒈) of 

a CSF past a viscous fluid is calculated as shown in Eq. (27).  

 

The numerical results of coefficient of drag (𝒄𝒅) for changing porous parameter (𝜷) and slip parameters 

(s) at a constant viscosity ratio (𝝁) and CSF are displayed and listed in Fig. 4 and Table. 2 respectively. 

It is noticed that as the slip parameter value rises, the coefficient of drag (cd) values slightly decreases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The  (𝑐𝑑) coefficient of drag w.r.t. (𝑠) slip parameter for varying (𝛽) porous parameter at fixed 𝜇 = 5 

and e = 2. 
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Table 2: The  (𝑐𝑑) coefficient of drag w.r.t. (𝑠) slip parameter for varying (𝛽) porous parameter at fixed 𝜇 = 

5 and e = 2. 

𝑠\𝛽 → 

   ↓ 

4 6 8 10 

1 1.2558 6.5226 14.9348 26.6299 

2 1.1847 6.4835 14.9166 26.6196 

3 1.1310 6.4493 14.9004 26.6104 

4 1.0888 6.4191 14.8860 26.6022 

5 1.0550 6.3922 14.8731 26.5949 

6 1.0271 6.3682 14.8614 26.5882 

7 1.0039 6.3465 14.8508 26.5822 

8 0.9841 6.3269 14.8412 26.5766 

9 0.9671 6.3091 14.8323 26.5716 

10 0.9524 6.2928 14.8242 26.5669 

 

Case 3: The numerical results of the coefficient of drag (𝑐𝑑) for fixed the porosity parameter(𝛽 = 6), the slip 

parameter (𝑠) at constant viscosity ratio(𝜇), and the couple stress parameter (𝑒) are displayed and summarized 

in Fig. 5 and Table 3. The coefficient of drag is observed to progressively increase as the outside of the viscous 

fluid sphere in slip parameter raises and to significantly decrease when the outside of the CSF sphere in slip 

parameter raises. 

 

Table 3: A) outside viscous coefficient of drag (𝑐𝑑) and B) outside couple stress coefficient of drag (𝑐𝑑) 

w.r.t. slip parameter (𝑠) for fixed porosity parameter (𝛽 = 6), 𝜇 = 5 and e = 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑠 

↓ A) B) 

1 11.4718 1.2558 

3 12.1662 1.131 

5 12.5736 1.055 

7 12.8415 1.0039 

9 13.0311 0.9671 

11 13.1723 0.9395 

13 13.2815 0.9179 

15 13.3685 0.9005 

17 13.4395 0.8863 

19 13.4985 0.8745 

21 13.5483 0.8644 

23 13.5909 0.8558 

25 13.6278 0.8483 

27 13.66 0.8418 

29 13.6884 0.836 

31 13.7136 0.8308 

33 13.7361 0.8262 

35 13.7564 0.8221 

37 13.7747 0.8183 

39 13.7913 0.8149 
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Fig. 5: A) viscous coefficient of drag (𝑐𝑑) and B) couple stress (𝑐𝑑) coefficient of drag w.r.t. (𝑠) slip 

parameter for fixed porosity parameter (𝛽 = 6), 𝜇 = 5 and e = 2. 

 

5. Conclusions: 
      

The summary of the work are as follows: 

i. We have been able to infer an analytical solution in this work for the uniform flow of a viscous fluid 

beyond a CSF sphere in a porous region where the surface has a slip condition, and vice versa. For 

these situations, the inner and outer stream functions and drag force were analytically calculated. 

Results of special conditions i.e., no slip condition when 𝑠 → ∞, a solid sphere case when 𝜇 → ∞, and 

no porous zone for 𝛽 = 0 are deduced and observed consistent with data in literature. 

ii. In the case of an outer viscous fluid, it is observed that changing the slip parameter (s) and the porous 

parameter (𝛽1) led to a rise in the co-efficient of drag values for those variables, respectively. There is a 

drop in coefficient of drag values for modifying various parameters in the outer CSF case varying 

porosity parameter (𝛽1) slip parameter (s). 

iii. It has been shown that viscous fluid flow beyond a CSF sphere in a porous zone with slip parameter 

exhibits higher coefficient of drag (cd) values compared to its opposite flow. 

 

The obtained exact solutions for creeping flow are useful to the researchers to compare their results for moderate 

Reynolds numbers using numerical methods like Finite Difference Method (FDM), Finite Element Method 

(FEM) etc., which have applications in chemical engineering, biological studies etc. Other non-Newtonian fluids 

can be used to extend the work. 
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