
Journal of Naval Architecture and Marine Engineering  
January, 2026 

                                      https://dx.doi.org/10.3329/jname.v23i1.76997                              https://www.banglajol.info 

 

1813-8535 (Print), 2070-8998 (Online) © 2026 ANAME Publication. All rights reserved.                      Received:  Oct., 2024 

 

 
 

MHD PULSATILE FLOW OF JEFFREY LIQUID LAYERS 
SEPARATED BY MICROPOLAR LIQUID LAYER BETWEEN 

PERMEABLE BEDS 
V. Madhurya1* and S. Srinivas2 

Department of Mathematics, VIT-AP University, Inavolu, Amaravathi-522237, India 
1*madhurya6699@gmail.com, 2srinusuripeddi@hotmail.com   
 

Abstract:  
This study explores the magnetohydrodynamic (MHD) pulsatile flow of Jeffrey liquid layers separated by 

a micropolar liquid layer, confined between two permeable beds.  The flow domain is divided into three 

distinct regions: Regions A and C, which contain Jeffrey fluid, and Region B, which contains a micropolar 

fluid.  The liquid - permeable bed interfaces are governed by the Beavers–Joseph slip boundary condition.  

The governing equations are solved numerically using the NDSolve function in Mathematica. The effects 

of various physical parameters on velocity profiles, mass flux, and microrotation velocity are illustrated 

graphically.  Additionally, stress distributions are analyzed and presented in tabular form. The results 

reveal that the applied magnetic field has a pronounced influence on the flow characteristics compared 

to the purely hydrodynamic case.  Our analysis indicates that the stress distribution at the permeable 

boundaries increases with Reynolds number, slip coefficient, porosity, and Jeffrey fluid parameters. 

Furthermore, mass flux is found to increase with the Reynolds number, Jeffrey parameter, and micropolar 

material parameter, while it decreases with an increase in the Hartmann number. A comparative analysis 

of our results with other researchers shows good agreement. 
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NOMENCLATURE 
 

Greek symbols 

t  Time   Shear stress 

Q  Instantaneous mass flux    Frequency parameter 

pC  Coupling parameter   Slip parameter 

jP  Microrotation parameter    Interface height  

n  Gyration parameter 
1  Dimensionless interface height 

m  Micropolar material parameter 
1, ,    Micro viscosity coefficients  

k  Vortex viscosity of micropolar , '   Ratio of viscosity 

c  Microrotation velocity 
1 2,   Permeability parameters 

p  Pressure 
1 2,   Jeffrey parameters  

0B  Applied magnetic field strength , '   Ratio of density 

J  Electric current density 
*1 *2 *3, ,     Electrical conductivity 

j  Microinertia density 
1 2, 3,     Dynamic viscosity 

q  Velocity vector 
1 2, 3,     Fluid density 

v  Microrotation vector Subscripts 

B  
Total magnetic field 1 — Region A (Jeffrey fluid) 

 ,f l  Body force and body couple 2 — Region B (Micropolar fluid) 

2 — Region B (Micropolar fluid) ,x y  axial and transverse coordinates 3 — Region C (Jeffrey fluid) 

 
1 2,K K  Permeability of porous beds  𝑠— Steady component 

1 2,Q Q  Darcy velocities at permeable beds  𝑜— Oscillatory component 

1 2 3, ,u u u  Velocity components of Region A, B, C Abbreviations 
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1 2 3, ,M M M  Hartmann numbers UPB  — Upper Permeable Bed 

1 2 3, ,R R R  Reynolds numbers LPB  — Lower Permeable Bed 

1. Introduction 

Pulsating flows are frequently seen in various engineering applications that deal with the dynamics of liquids. 

Pulsating flows have diverse applications, including the pumping of mixtures containing both solids and liquids, 

mitigating cavitation in hydraulic systems Chaudhry (2014), pressure surges in pipelines, and more.  Several 

technological disciplines that utilise pulsatile flows include cardiovascular biomechanics, combustion systems, 

and refrigeration technology.  The reader can find a comprehensive treatise on this topic by Zamir et al. (2002).   

Many researchers have extensively studied pulsatile flow problems involving Newtonian and non-Newtonian 

liquids in various flow scenarios (Chaudhry, 2014; Zamir et al., 2002; Wang, 1971; Valueva and Purdin, 2015; 

Bhattacharya and Nanda, 1979; Sankar and Lee, 2009; Selvi and Muthuraj, 2018; Ali et al., 2020; Kim et al., 

1994; Rajkumar et al., 2025; Okedoye, 2025).   Wang (1971) performed an analytical investigation on the pulsatile 

flow through a porous channel. Analytical expressions for velocity and the mass flux have derived, in his study, 

under the assumption that a fluid is injected into one plate with a certain velocity and then extracted from the 

opposite plate at the same velocity. Valueva and Purdin (2015) conducted a numerical investigation on the 

pulsating laminar flow in a rectangular channel.  Equations that represent the flow were solved by employing the 

finite difference method.  The impact of the aspect ratio of the sides of a rectangular channel on the dynamics of 

pulsating flow has been examined.   Bhattacharya and Nanda (1979) conducted analytical research on the pulsatile 

flow of a viscous fluid in a rotating channel and obtained an exact solution for the flow.   The impact of Ekmann 

number and frequency parameters on important flow characteristics, such as the average sectional velocity and 

shear forces on the plates have been examined.  Sankar and Lee (2009) proposed a mathematical model for 

pulsatile flow of non-Newtonian fluid in narrowed arteries. The authors employed the perturbation approach to 

investigate the flow and obtained an analytical solution for the velocity, longitudinal impedance, plug core radius, 

flow rate, and shear stress. Selvi and Muthuraj (2018) analysed the oscillatory flow of a Jeffrey fluid with 

magnetohydrodynamics and viscosity dissipation in a vertical channel. The outcome of the study reveals that fluid 

temperature increases with thermal parameters, Brinkmann number and Dufour number, while decreasing with 

inertia coefficient.   Ali et al. (2020) conducted a numerical investigation on the pulsating flow of a micropolar-

Casson fluid in a channel in a Darcian porous material with a magnetic field. The study indicates that the wall 

shear stress (WSS) increases when the values of the Hartman, Casson, and micropolar liquid parameters increase, 

and WSS falls with a rise in the porosity parameter.  The flow separation regime is demonstrated to be significantly 

affected by the Hartman number. Kim et al. (1994) conducted a study on the heat transfer characteristics of forced 

pulsating flow in a channel filled with fluid-saturated porous media. The authors used Finite-volume methods to 

solve time-dependent, two-dimensional Darcy model equations and found that, with the increase in pulsation 

frequency, the Nusselt number reaches its maximum at more upstream positions.  Their results indicate that the 

Nusselt number at the upper wall rises as the heat source increases, and it falls as the radiation parameter increases.  

However, this behaviour is inverted at the bottom wall.  Rajkumar et al. (2025) examined the impact of Cattaneo-

Christov heat flux and Buongiorno nanofluid model on entropy generation in pulsating hydromagnetic flow of a 

micropolar nanofluid in a porous channel.  The outcome of the study reveals that, by increasing viscous 

dissipation, Brownian motion, and thermal radiation parameters leads to the entropy generation enhancement.  

Immiscible fluid flow is crucial in oil recovery, environmental management, and chemical processes.  It helps in 

enhanced oil extraction, managing spills, and separating components in chemical engineering.  Its principles are 

also applied in pharmaceuticals, food processing, and microfluidics.  Furthermore, it plays a vital role in creating 

sophisticated mathematical and computational models as well as for biological applications like blood flow 

analysis.  Several authors have extensively investigated immiscible pulsatile flow problems with Newtonian and 

non-Newtonian liquids in different flow conditions (Chamkha et al., 2004; Allan et al., 2008; Umavathi et al., 

2014; Umavathi and Hemavathi, 2018; Padma and Srinivas, 2023; Padma et al., 2024; Komal and Srinivas, 2024a; 

Komal and Srinivas, 2024b).  Chamkha et al. (2004) explored oscillatory flow and heat transfer in two immiscible 

fluids and their findings indicate that, with the rise of the viscosity ratio the velocity distribution decreases.  

Furthermore, there is a fall in temperature distribution. Padma and Srinivas (2023) examined the combined impact 

of Hall current, thermal radiation, heat source, and chemical reaction on the heat and mass characteristics in a 

vertical porous channel filled with a two-layered viscoelastic liquid.   Allan et al. (2008) conducted a study on 

characteristics of liquid flow through three porous layers, and their analysis shows that the velocity at interfaces 

does not significantly change, in spite of the difference in the Darcy numbers of the upper and lower regions.  The 

heat transfer effects of two micropolar liquid layers separated by a viscous fluid layer in a three-layer fluid flow 
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model are reported by Umavathi et al. (2014).  It is reported that as the rise of the conductivity ratio increases, the 

temperature distribution becomes suppressed in the vicinity of the lower plate, whereas it enhances in the vicinity 

of the upper plate.  Recently, Padma et al. (2024) numerically investigated the unsteady two-immiscible MHD 

free convective flow of Casson liquid through a vertical channel with a porous medium.  Their observation 

indicates that in both slip and no-slip scenarios, entropy production decreases as the magnetic field intensity 

increases.  In a more recent study, Komal and Srinivas (2024a) conducted a study on MHD two-layered pulsatile 

flow in a corrugated curved channel.  Their study unveiled that, at the outer channel wall, stress reduces as the 

frequency parameter increases, but it shows a reverse tendency at the lower channel wall.  The flow of a three-

layered immiscible fluid in a permeable inclined channel subjected to a pulsatile pressure gradient was studied by 

Komal and Srinivas (2024b).  Their findings reveal that lamina-shaped nanoparticles shows the highest rate of 

heat transfer.  Further, the Sherwood number fluctuates with time and is lower at the upper boundary of the channel 

compared to the lower boundary.  

Recent advances in research have concentrated on fluid dynamics in porous media (Chandrapushpam et al., 2023; 

Bhuvaneswari and Sivasankaran, 2024; Hakeem et al., 2024; and Sivanandam and Turki, 2025) highlighting the 

role of porous structures in facilitating complex flow dynamics and energy transport. Permeable beds, which are 

a specific form of porous media, play a vital role for effective water infiltration, groundwater recharge, and 

stormwater management, which are widely used in environmental engineering, civil infrastructure, and flood 

control systems to enhance drainage and reduce runoff, Many researchers have investigated pulsatile flow 

problems involving Newtonian and non-Newtonian liquids between permeable beds (Vajravelu et al., 1995; 

Malathy and Srinivas, 2008; Iyengar and Bitla, 2011;  Bitla and Iyengar, 2013; Bitla and Iyengar, 2014; kumar 

and Agarwal, 2021;  Mukherjee and Shit, 2022) .   A numerical investigation on unsteady immiscible conducting 

fluids between permeable beds was conducted by Vajravelu et al. (1995).    Malathy and Srinivas (2008) have 

reported the pulsating flow of a hydromagnetic fluid between two permeable beds.  In their model, they have 

assumed that the liquid is injected at a velocity through the bottom permeable bed and then drawn out of the 

channel with the same velocity from the upper permeable bed.  The volume flux and velocity expressions were 

derived analytically under the assumption that the Navier-Stokes equation governs the flow between beds and 

Darcy’s law regulates the flow through the porous beds.  Iyengar and Bitla (2011) have explored pulsating 

movement of an incompressible couple-stress fluid between permeable beds, and they observed that as the 

porosity parameter rises, both the velocity and the unsteady velocity component diminish.   Moreover, the stress 

distribution at both walls decreases with increasing porosity for / 4t   and / 2  and it increases for 

0t   and 3 / 4 .  In a separate study, Bitla and Iyengar (2014) explored the pulsating flow of an 

incompressible, mildly conducting micropolar fluid between two uniform permeable beds with an inclined 

magnetic field, and they found that increasing the magnetic field's inclination angle enhances the velocity. 

Additionally, asymmetry in microrotation is observed in the flow region, where it aligns with a plane closer to 

and parallel to the upper bed.  microrotation exhibits asymmetry in the flow region, aligning with a plane nearer 

to and parallel to the upper bed.  The problem of MHD pulsating flow and heat transfer effects of two immiscible, 

incompressible conducting couple-stress liquids between permeable beds has been modelled by Kumar and 

Agarwal (2021).  Their work demonstrates that the stress distribution at both permeable beds rises with increasing 

density ratio, slip, Reynolds number, and couple stress parameters, but decreases with increasing viscosity ratio.  

Further, there is a rise in the velocity and temperature distributions of the liquid with the rise of the slip parameter, 

while an opposite behaviour is noticed with an increase in the porosity parameter.  Mukherjee and Shit (2022) 

analysed the impact of the ion diffusion coefficient on the problem of constant electroosmotic couple stress in 

nanofluid flow and heat transfer within a porous microchannel that is enclosed by two permeable beds.  Their 

results highlighted that nanofluid temperature enhances with a rise in the couple stress parameter and porous 

permeability, but decreases as the ion diffusion coefficient falls.  

Although numerous investigations have been conducted on flows between permeable beds, information regarding 

immiscible flows between them remains limited.   Motivated by previous studies, a mathematical model related 

to immiscible flow between permeable beds is presented as such an investigation is not yet been reported in the 

literature. These studies are crucial in various fields, including hydrology, chemical processes, biomedical 

systems, and petroleum engineering.  Non-Newtonian fluids, such as micropolar and Jeffrey liquids, are essential 

in biomedical, industrial, and material processing applications for accurately modelling the complex behaviours 

of suspensions and emulsions.  The key objective of this research is to develop a mathematical model and address 

the problem of a three-layer magnetohydrodynamic pulsating flow between permeable beds with periodic pressure 

gradient.  The proposed model divides the flow between permeable beds into three distinct regions: Regions A 

and C, which are filled with Jeffrey liquid, and Region B, which contains a micropolar liquid.  The interfaces 
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between the permeable beds are governed by the Beavers-Joseph slip boundary conditions.  The governing flow 

equations are numerically solved with NDSolve command of Mathematica package and the role of pertinent 

parameters on velocity, mass flux and microrotation velocity have been shown graphically.  Furthermore, results 

for stress distribution are presented in tabular form and analyzed. 

2. Mathematical Formulation 

This work examines the flow in a channel between two permeable beds of indefinite length in the x  direction, 

with the y  axis separated by a distance h and  .  Figure 1 illustrates the partitioning of the channel into three 

separate sections, denoted as regions A, B, and C.  Region A ( 0)h y   filled with Jeffrey liquid with density  

1  and viscosity  1 . Region B (0 )y    filled with micropolar liquid with a density of 2  and the viscosity 

of 2  and Region C filled with Jeffrey liquid occupy the space ( 2 )y h    with density 3  and viscosity 3 .  
 

The field equations of micropolar fluid Eringen (1966, 2001) are 

 

      
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                                                (1) 

Where q  and   for velocity and microrotation vectors respectively.  The variables f  and l  represent the body 

force and body couple per unit mass, respectively while  p ,  , j , J ,  represents the pressure at any point, 

fluid density, microinertia density, and current density, in that order and B  denotes total magnetic field, which is 

the combined value of the applied and induced magnetic fields.  The conditions that material quantities *( , , )k   

and the micro-viscosity coefficients 1( , , )    satisfy are presented in Bitla and Iyengar (2013). 
 

The field equations of the Jeffrey fluid are 

2

. 0

1

1

q

dq
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 



  


  
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                                                                                                                        (2) 

This analysis is carried out based on the following assumptions. i) The fluids are non-compressible and 

immiscible.  ii) The permeable beds are rigid and homogeneous.   iii)  The flow is fully developed and laminar.    

iv) The fluid motion is driven by an unsteady pressure gradient i t

s o

p p p
e

x x x
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frequency, 
o

p
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 
 
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 and 
s

p

x

 
 
 

 are the amplitudes of oscillatory and steady pulsations, respectively. 

 
                                       

Fig. 1: Schematic flow 

Under the assumptions we made for region-B, q  as ( ( , ),0,0)u y t  and   as (0,0, ( , ))c y t  and for Region-A, C  

q  as ( ( , ),0,0)u y t .  
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The governing flow equations, when no body forces and couples present, are:  
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The velocity component  ,u y t  and the microrotation component c(y, t) must adhere to the specified boundary 

conditions. 

 1
1 1 1 1
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At the interfaces 0y   and y   microrotation velocity ( , )c y t  vanishes and at the y h   and 2y h  

boundary conditions of B-J slip Beavers and Joseph (1967)  are considered. For the upper permeable bed(UPB), 

1
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describes the Darcy velocity, and for lower permeable bed(LPB), it is given 2
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slip velocities at their respective interfaces of beds are 1u 
 and 3u 

. 
 

1 2 , ( 1,2,3),i t i t
j j j s ou u u e j c c c e                                                       (10)  

where the steady parts of the velocity and microrotation are denoted by 1ju   and 
sc  , and the oscillatory parts by 

2ju  and 
oc  , respectively. 

2.1 Non-dimensional flow quantities 

The following dimensionless variables are defined to convert governing equations and boundary conditions into 

a dimensionless form: 
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After dropping the asterisks, the flow equations and boundary conditions (3-9) provided by 
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variables 1M , 2M , 3M  represent the Hartmann numbers for Regions A, B, and C, respectively, while  1R , 2R ,

3R  denotes the corresponding Reynolds numbers for these Regions.  1 1/ ,h K   2 2/h K   are non-

dimensional characteristics that have an inverse relationship with the square root of the permeabilities in regions 
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Jeffrey liquid parameters for Region-A and C.  
 

The steady flow equations and boundary conditions are:  

   
2

211
1 1 11 1 12

1 1 0s

d u
M u R P

dy
                                                                                                            (19) 

2
221

2 21 22

2
21

2

0

2 0.

s
p s

s
s

dcd u
C M u R P

dydy

d c du
n nc

dydy

   

  

                                                                                                       (20) 

   
2

231
3 2 31 3 22

1 1 0s

d u
M u R P

dy
                                                                                              (21)    

11 1
1 11 2

1

s

u R
u P

y





 

     

, 11 11u u  at    1y                                                (22)  

 
11 21

11 21
1

1
, 0,

1
s s

p

u u
c c u u

m y C y





 
   

  
at 0y                                   (23)  

 
31 21

21 31
2

1
, 0,

1
s s

p

u u
c c u u

m y C y





  
   

  
at 1y                                                                         (24) 

31 3
2 31 2

2

s

u R
u P

y
 




 

      

, 31 31u u  at   2y                     (25) 
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The Oscillatory flow equations and boundary conditions are: 

    
2

212
1 1 1 12 1 12

1 1 0o

d u
i R M u R P

dy
                                                                                                  (26) 

 

 

2
222

2 2 22 22

2
22

22

0

2 0

o
p o

o
j o

dcd u
C i R M u R P

dydy

d c du
n n i R P c

dydy

 



    

   

                                                                                             (27) 

    
2

232
3 3 2 32 1 22

1 1 0o

d u
i R M u R P

dy
                                                                                            (28) 

12 1
1 12 2

1

o

u R
u P

y





 

     
  , 12 12u u  at 1y                                                                                       (29) 

 
12 22

1

1

1
o

p

u u
c

m y C y





 
 

  
, 0oc  , 12 22u u at 0 y                                                               (30) 

 
32 22

22 32
2

1
, 0,

1
o o

p

u u
c c u u

m y C y





  
   

  
at 1y                                                              (31) 

32 3
2 32 32 322

2

,o

u R
u P u u

y
 



 
 

     




at 2y                                                                                  (32) 

2.2 The solution of the problem 
 

The pulsatile velocity field is expressed                                                                                                        (33-36) 

1 11 12 ,i tu u u e   2 21 22 ,i tu u u e   ,i t
s oc c c e   3 31 32 .i tu u u e                                                                                                 

                                                                                                                            

The instantaneous mass flux is  
0 1 2

1 2 3

1 0 1

Q u dy u dy u dy



                                                                                                                                    (37) 

The shear stress at both the permeable beds is given by 

1,2
1

1

(1 )
|y

u

R y








 
                                                                                                                                       (38) 

3. Results and Discussions 

The present section of the work examines the influence of various parameters on the dimensionless representation 

of the overall and unsteady velocity, microrotation velocity, and mass flux. Our investigation focuses on 

examining the impact of Reynolds number, Hartmann number, coupling, micropolar, permeability, slip, Jeffrey, 

and frequency parameters on the flow variables shown in Figures (2-6) for ( 1,   1.4,   1.2,   0.8,   

1,sP   1,oP   1 2 5,      
2 1,R R




  

3 1)
,

R R


 


 
.  Further, the results of stress distribution at the top 

and bottom permeable beds are shown in the table. 
 

Figure 2 depicts the changes in pulsating over time ( )t . At the interfaces of the bottom ( 1)y    and top ( 2)y   

permeable beds, the slip velocities are represented by the velocity. By assigning the values ( 5,   1,M    

1 1,    1,PC   1 2 0.2,      0.5,m   1,   1 0.5,R  1,jP   0.5)n   in which relevant parameters vary 

while keeping the other parameters constant. 
 

Figure 3 displays the velocity ( , )u y t  distribution for different parameters. By assigning the values ( 5,   

1,PC   1,M   1 2 0.2,      0.5,m   1 1,   / 4,t   1,jP   1 0.5,R   0.5)n   in which relevant 

parameters vary while keeping the other parameters constant. Figure 3.a) illustrates that the velocity ( , )u y t  

drops as the Coupling parameter rises, indicating stronger micro-rotational interactions that resist fluid motion.  
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Fig. 2: Velocity distribution for a) Region-A, b) Region-B, c) Region-C 
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Fig. 3: Velocity distribution for different values of a) Cp, b) m, c) , d) α, e) R1, f) ωt, g) M and λ 

 

In Figure 3.b), the impact of micropolar fluid material parameter on the velocity is depicted.  As the value of this 

parameter grows, a corresponding increase in the velocity ( , )u y t  observed. The effect of the Porosity parameter 

on velocity shows in Figure 3.c). As the Porosity parameter increases, it is seen that velocity falls.  In Figure 3.d), 
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the velocity ( , )u y t  falls as the Slip parameter boost. Figure 3.e) indicates the velocity ( , )u y t  enhances with 

the increasing Reynolds number. Figure 3.f) illustrates that the velocity ( , )u y t  minimize as the Frequency 

parameter grows. Figure 3.g) shows that the velocity ( , )u y t  decreases when the Hartmann number increases.  

Figure 3.h) shows that the velocity ( , )u y t  of the liquid enhances with the rise of the Jeffrey fluid parameter, 

which lowers fluid resistance by adjusting fluid elasticity.  

 

 

 

 
 

  
 

a) 
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                                      Fig. 4: microrotation Variation with Various parameters. 

 
 

  
Fig. 5: Unsteady velocity and microrotation 

 

Figure 4 shows the changes in microrotation ( , )c y t  in core region(Region-B) with various parameters for 

( 0.2,M  1,PC  1 2 0.2,     / 6,t  1 1,  0.6,m  1,  1,jP 
1 0.1,R  6)n  in which relevant 

parameters varying while keeping the other parameters constant.  

 

Figure 4.a) illustrates that the microrotation velocity exhibits a decreasing trend in the central region with the rise 

in the coupling parameter. Figure 4.b) exhibits in the central core region of the channel 0y   to 1y  , the 

microrotation velocity falls near the upper interface of the region (R-B) where Jeffrey liquid flows and enhances 

closer the lower interface with the rise of and Micropolar fluid material parameters.  Figure 4.c) shows as the 

porosity parameter rises, the microrotation velocity in the middle region shows an increasing trend closer to the 

upper interface ( 1)y   and a decreasing trend at the lower interface ( 0)y  .  Figure 4.d) depicts as the slip 

parameter grows, the microrotation in the middle region shows a declining pattern near the lower interface 

( 0)y   and a rising trend closer to the higher interface ( 1)y  .  Figure 4.e) indicates that as the frequency 

parameter rises the microrotation velocity in the channel's central core location 0y   to 1y   falls near the top 

interface and enhances near the bottom interface of the Region-B.  Figure 4.f) demonstrates that in the central core 

region of the channel 0y   to 1y  , the microrotation velocity declines near the interface ( 1)y   and rises closer 

to the lower interface of region-B as the Hartmann number rises.  Figure 4.g) displays that the microrotation, 

denoted as ( , )c y t , increases near the upper interface ( 1)y   and reduces closer to the bottom interface ( 0)y   

when the gyration parameter increases. Figure 4.h) exhibits that the microrotation ( , )c y t  decreases in the Region-

B when the Jeffrey fluid material parameter increases Figure 5 illustrates the unsteady velocity and microrotation. 



V. Madhurya, S. Srinivas/ Journal of Naval Architecture and Marine Engineering, 23(2026) 145-160 

 

MHD pulsatile flow of Jeffrey liquid layers separated by micropolar liquid layer between permeable beds 156 

Figure 5.a) depicts that the unsteady velocity fluctuates over time with or without permeability.  Similarly, the 

unsteady microrotation velocity fluctuates over time, which can be observed in Figure 5.b). 
 

Table 1: Shear stress variation with several variables. 

t 

 

  0.1 

 
0.2 

 
0.3 

 
0.4 

 
0.5 

 

 1 

 
3 

 
5 

 
7 

 
9 

0 LPB 
UPB 

1.46319 

1.38797 

1.77089 

1.73075 

1.90185 

1.88845 

1.97397 

1.97944 

2.01953 

2.03873 

1.17579 

0.97145 

1.87566 

1.84507 
2.01953 
2.03873 

2.08137 

2.12501 

2.11574 

2.17397 

 /4  LPB 

UPB 

1.29179 

1.26476 

1.63022 

1.62685 

1.77525 

1.79362 

1.85348 

1.88807 

1.90182 

1.94852 

1.07389 

0.92109 

1.75543 

1.75786 
1.90182 
1.94852 

1.96317 

2.03173 

1.99653 

2.07817 

 /2 LPB 

UPB 
1.07499 

1.11653 

1.36776 

1.43917 

1.49702 

1.58989 

1.56638 

1.67433 

1.60836 

1.72725 

1.07389 

0.92109 

1.75543 

1.75786 
1.90182 
1.94852 

1.96317 

2.03173 

1.99653 

2.07817 

3 / 4      LPB 

UPB 

0.87761 

0.98917 
1.08030 

1.24435 

1.16104 

1.35576 

1.20009 

1.41433 

1.22119 

1.44871 

0.98699 

0.95080 

1.18437 

1.36459 
1.22119 
1.44871 

1.23094 

1.47884 

1.23343 

1.49248 

t 
R1  0.5 1 1.5 2 2.5 m  0.1 0.2 0.3 0.4 0.5 

0 LPB 
UPB 

2.01953 
2.03873 

1.97397 

2.76215 
1.90185 

3.48557 
1.77089 

4.20899 
1.46319 

4.93242 
1.73876 
1.93033 

1.81731 
1.95176 

1.88916 
1.97825 

1.95619 
2.00765 

2.01953 
2.03873 

 /4  LPB 

UPB 

1.29179 

1.26476 

1.63022 

1.62685 

1.77525 

1.79362 

1.85348 

1.88807 

1.90182 

1.94852 

1.07389 

0.92109 

1.75543 

1.75786 
1.90182 
1.94852 

1.96317 

2.03173 

1.99653 

2.07817 

 /2 LPB 

UPB 

1.90182 
1.94852 

1.79138 
2.39998 

1.66251 
2.61732 

1.55721 
2.72099 

1.47679 
2.77901 

1.64801 
1.84846 

1.71947 
1.86877 

1.78465 
1.89313 

1.84511 
1.92028 

1.90182 
1.94852 

3 / 4      LPB 

UPB 

0.87761 

0.98917 

1.08030 

1.24435 

1.16104 

1.35576 

1.20009 

1.41433 

1.22119 

1.44871 

0.98699 

0.95080 

1.18437 

1.36459 
1.22119 
1.44871 

1.23094 

1.47884 

1.23343 

1.49248 

t 
 

n  0.5 

 

1 

 

1.5 

 

2 

 

2.5 

 

Pj  1 
 

5 

 

10 

 

15 

 

20 

0 LPB 

UPB 
2.01952 
2.03873 

2.01737 
2.04108 

2.01546 
2.04316 

2.01376 
2.04501 

2.01224 
2.04667 

2.01952 

2.03873 
2.01956 

2.03867 

2.01961 

2.03861 

2.01965 

2.03855 

2.01969 

2.03849 

 /4  LPB 

UPB 

1.29179 

1.26476 

1.63022 

1.62685 

1.77525 

1.79362 

1.85348 

1.88807 
1.90182 

1.94852 

1.07389 

0.92109 

1.75543 

1.75786 
1.90182 
1.94852 

1.96317 

2.03173 

1.99653 

2.07817 

 /2 LPB 

UPB 

1.90182 
1.94851 

1.89981 
1.95067 

1.89804 
1.95209 

1.89646 
1.95428 

1.89503 
1.95580 

1.90182 
1.94852 

1.90191 
1.94843 

1.90207 
1.94829 

1.90225 
1.94816 

1.90239 
1.94805 

3 / 4       LPB 

UPB 

0.87761 

0.98917 

1.08030 
1.24435 

1.16104 
1.35576 

1.20009 
1.41433 

1.22119 
1.44871 

0.98699 

0.95080 

1.18437 

1.36459 
1.22119 
1.44871 

1.23094 

1.47884 

1.23343 

1.49248 

t CP  0.2 
 

0.4 
 

0.6 
 

0.8 
 

1.0 

 

  0.1 

 
 0.2 

 
0.3 

 
0.4 

 
0.5 

0 LPB 
UPB 

2.93641 
2.63166 

2.42406 
2.27878 

2.21254 
2.14566 

2.09507 
2.07829 

2.01953 
2.03873 

2.01952 
2.03873 

1.93757 
2.03811 

1.86898 
2.04437 

1.81025 
2.05543 

1.75900 
2.06989 

 /4  LPB 

UPB 

1.29179 

1.26476 

1.63022 

1.62685 

1.77525 

1.79362 

1.85348 

1.88807 
1.90182 
1.94852 

1.07389 
0.92109 

1.75543 
1.75786 

1.90182 
1.94852 

1.96317 
2.03173 

1.99653 
2.07817 

 /2 LPB 

UPB 

2.65709 
2.45345 

2.25129 
2.16021 

2.07156 
2.04411 

1.96886 
1.98413 

1.90182 
1.94852 

1.90182 
1.94852 

1.82272 
1.94147 

1.75611 
1.94046 

1.69875 
1.94341 

1.64839 
1.94892 

3 / 4       LPB 

UPB 

0.87761 

0.98917 

1.08030 

1.24435 

1.16104 

1.35576 

1.20009 

1.41433 
1.22119 

1.44871 

0.98699 

0.95080 

1.18437 

1.36459 

1.22119 
1.44871 

1.23094 

1.47884 

1.23343 

1.49248 

 

Table 1 shows the variation of the shear stress  at both permeable beds with slip, porosity, Reynolds, micropolar 

material, gyration, microrotation, coupling, Jeffrey fluid, and Hartmann parameters by assigning values for 

( 1,  1,  1 2 0.1,     1.2,  0.8,  1,jP 
1 1,  1,sP  1,oP  5,  0.5,M  1,PC 

0.5,n  0.5,m  1 0.5,R 
2 1,R R




 3 1)

,
R R



 


 
 in which relevant parameters vary while keeping the other 

parameters constant. 
  



V. Madhurya, S. Srinivas/ Journal of Naval Architecture and Marine Engineering, 23(2026) 145-160 

 

MHD pulsatile flow of Jeffrey liquid layers separated by micropolar liquid layer between permeable beds 157 

As the slip and porosity parameters increase, there is a noticeable rise in stress distribution at both the lower and 

upper permeable beds. In contrast, an increase in the Reynolds number, micropolar material, and gyration 

parameters results in a reduction of shear stress at the LPB, while simultaneously enhancing it at the UPB.  When 

the microrotation parameter increases, shear stress at the LPB rises, but it shows revers trend at the UPB. 

Furthermore, with the rise of coupling and Jeffrey fluid parameters, there is a decline in shear stress at both beds. 
 

  

  

Fig. 6: Mass flux variation with several parameters. 
 

Figure 6 represents the variation in mass flux variation with different parameters for ( 1 2 0.2,     1,jP 
1 1, 

5,  1,M  1,PC  0.7,n  0.5,m  1 0.5)R   and keeping the other parameters constant. Figure 6.a) illustra- 
 

 

                                                                          Fig. 7: Comparative study  
 



V. Madhurya, S. Srinivas/ Journal of Naval Architecture and Marine Engineering, 23(2026) 145-160 

 

MHD pulsatile flow of Jeffrey liquid layers separated by micropolar liquid layer between permeable beds 158 

tes that the mass flux reduces with the rise of the Hartmann number. Figures 6.b), c) and d) demonstrate that the 

mass flux rises when the Reynolds number, Jeffrey parameter, and micropolar fluid material parameters increase, 

respectively.  

Figure 7 presents a comparative analysis for limiting cases where the permeability and Jeffrey fluid parameters 

tend to infinity, and the results show excellent agreement with those reported by Pramod et al. (2018). 

 

4. Conclusions 
 

This work investigates the pulsating flow of Jeffrey liquid layers separated by a micropolar liquid layer. The flow 

occurs between two permeable beds and is influenced by a magnetic field.  The Beavers-Joseph slip conditions 

are applied at the interfaces of the permeable beds.  Assuming that the velocity and microrotation velocity 

comprise steady and oscillatory parts, in view of the periodic pressure gradient, the governing flow equations have 

been reduced into ordinary differential equations (ODEs).  The resulting ODEs are solved numerically using the 

NDSolve command in Mathematica software.  The graphical representations illustrate the impact of different 

parameters on mass flux, velocity and microrotation velocity.  Moreover, the tabulated data on stress distribution 

at the two permeable beds is provided and analyzed. Here are the findings from the investigation: 

 The Hartmann number, slip, porosity, frequency, and coupling parameters all contribute to the 

suppression of the flow. 

 The Reynolds number, Jeffrey parameter, and Micropolar fluid material parameter all escalates the flow. 

  The microrotation velocity rises near the upper interface ( . .,i e 1)y  and falls near     the lower interface 

( . .,i e 0)y  of the central region, influenced by porosity, slip, and gyration parameters. 

 In the core region ( 0y   to 1y  ), the microrotation velocity falls near the upper interface of  R-B, 

where Jeffrey liquid flows and is enhanced closer to the lower interface, driven by the Hartmann number, 

frequency, and micropolar material parameters. 

 Microrotation velocity falls with the rise of Jeffrey and Coupling parameters. 

 The unsteady component of velocity and microrotation velocity fluctuates over time. 

 At both permeable beds, the shear stress enhances with the rise of Reynolds, Jeffrey, porosity and slip 

parameters.  whereas the stress distribution at both beds falls with a rise in coupling parameter, CP and 

Hartman number, M. 

 As the gyration parameter increases, at the LPB, the shear stress drops and rises at UPB.  On the other 

hand, when the rise of the microrotation parameter, the stress distribution at the LPB enhances, and 

diminishes at the UPB. 

 The mass flux promotes continuously with the rise of Reynolds number, Jeffrey and Micropolar material 

parameters, and it falls progressively with the rise of Hartmann number. 

 By taking the permeability and Jeffrey parameters to infinity, our analysis shows strong agreement with 

the findings of other researchers. 
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