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Abstract:  
This study investigates non-similar nonlinear thermal convection of a Buongiorno nanofluid 

through a Darcy–Forchheimer porous medium—an important problem for accurately 
modelling high-velocity thermal systems where Brownian motion, thermophoresis, and 
inertial porous-media effects coexist.  It further highlights that the governing two-dimensional 
PDEs are solved using the second-order accurate Keller Box Method, validated against 
known special cases. The discoveries offer fresh perspectives on the behavior of nanofluids in 
porous media, contributing to a deeper understanding of heat, mass transfer, and fluid 

dynamics. It is observed that with increasing Darcy number, there is a substantial hike in 
velocity, but temperature and concentration decay; conversely, as the Forchheimer number 
increases, velocity is decreased; however, temperature and concentration profiles are 
elevated steadily. Specific and quantitative numerical results show that increases in 
nanoparticle Brownian diffusion Nb elevating temperature profiles by up to ~18% and 
reducing concentration by ~12%, thermophoresis Nt intensifying thermal fields by ~20% 

while lowering near-wall velocity, and higher Darcy Da and Forchheimer Fs numbers 
reducing near-wall momentum by 10–15% but enhancing thermal and concentration layers 
by up to 17%. This current study has practical implications for enhancing the design and 
optimization of cooling systems, electronic thermal management, and power systems in 
situations where accurate temperature regulation and effective heat transport are essential. 
By addressing the current research gap, this study makes major advances in the fields of 

thermal sciences and nanofluid technology dynamics, the novelty of simultaneously 
integrating Buongiorno’s nanofluid theory with the nonlinear Da–Fs model in a non-similar 
convection framework—advancing beyond earlier studies that considered these mechanisms 
separately and were restricted to ODE formulations. 
  

Keywords: Darcy–Forchheimer; porous medium; non-similar transformations; semi-infinite vertical plate; 

Brownian motion; buoyancy ratio 
 

NOMENCLATURE 

b Inertial drag coefficient (-) Sc Local Schmidt number (-) 

K permeability (-) Sh Mass transfer rate Sherwood number (-) 

P Pressure (Pa) T Temperature of the fluid (Kelvin) 

pC  Specific heat parameter(J/kgK) wT  Wall temperature (K) 

Cf Skin friction coefficient (-) T  Ambient temperature (K) 

C Concentration (-) u, v 
Non-dimensional velocity components along the 
x- and y- directions respectively (m/s) 

wC  Concentration near Wall (-) x Stream-wise coordinate (m) 

C  Concentration in Ambient stream (-) y Transverse coordinate (m) 

D  Nanoparticle diffusivity V Velocity vector (m/s) 
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DB Brownian diffusion coefficient (m2/s) Greek Symbols 

Da  Darcy number  (or) m  Thermal diffusivity of the nanofluid (m2/s) 

Dm Molecular diffusivity (m2/s)  Volumetric expansion coefficient of the fluid (K) 

DT Thermophoretic diffusion coefficient (m2/s)  (or)
f  

The electric conductivity of the fluid 

(Siemens/m) 

f Non-dimensional steam function (-)    

Fs Forchheimer number p Fluid density of nanoparticles (-) 

f   Nondimensional velocity (-) f Dynamic viscosity (kg.m-1 · s-1)  

g Acceleration due to gravity (m/s2) f  Kinematic viscosity of base fluid (m2/s)  

Gr Grashof number (-)  
The ratio of the heat capacity of the 
nanoparticle to the heat capacity of the fluid (-) 

 

k* 
The mean absorption coefficient  Dimensionless temperature (-) 

   Dimensionless concentration (-) 

K Thermal diffusivity (-)  Dimensionless tangential coordinate (-) 

km Effective thermal conductivity (W/mK)  Dimensionless radial coordinate (-) 

L Characteristic length (m)  Dimensionless stream function (-) 

Nb Brownian motion parameter (-)  (or)
f  Density of the base fluid (kg/m3)  

Nt Thermophoresis parameter (-) pC  Effective heat capacity (J/kg K) 

Nr Buoyancy ratio parameter (-) Subscripts 

Nu Heat transfer rate (Local Nusselt number) (-) w Surface conditions 

Pr Prandtl number (-)  Free stream conditions 

Abbreviations 

BL Boundary layer NPs Nanoparticles 

BLT Boundary layer thickness  NF Nanofluid 

BVP Boundary Value Problem MHD magnetohydrodynamic 

BNF Buongiorno Nanofluid KBM Keller Box Method 

BCs Boundary Conditions (Da-Fs) Darcy-Forchheimer 

    

1. Introduction 

 
The field of thermal management has witnessed a remarkable surge in interest towards the utilization of 
nanofluids, which are colloidal suspensions of nanoparticles in base fluids, because these innovative materials 
exhibit significantly improved thermophysical characteristics when juxtaposed with traditional working fluids, 
including but not limited to various lubricants, ethylene glycol, and water, thereby making them exceptionally 
advantageous for enhancing heat transfer processes in a wide array of engineering and industrial applications. 
The term nanofluid was first introduced by Choi (1995), who demonstrated that dispersing nanoparticles within 

a base fluid can substantially improve heat transfer performance in cooling processes. Since then, extensive 
research has examined the influence of various nanoparticle types, including carbides, oxides, and metals , 
dispersed in different base liquids, using experimental, numerical, or combined approaches. In recent years, 
substantial progress has been made in the study of diverse nanofluid models, including Williamson NFs (2023), 
Sutterby NFs (2022), Eyring–Powell NFs (2023), modified Eyring–Powell NFs (2022), and Casson nanoliquids 
(2022). Anjum et al. (2024) analyzed bioconvective nanofluid flow over a stretching surface. Razzaq et al. 

(2021) investigated a non-similar, non-Newtonian Maxwell fluid flow over an exponentially stretching 
magnetized sheet. Additionally, Cui et al. (2021) explored three-dimensional bioconvective nanofluid flow 
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involving motile nanoparticles and microorganisms. Ali et al. (2021) explored boundary layer nanofluid flow 
over a stretching permeable wedge-shaped surface with magnetic effect.  
 
The thermal behavior and Brownian motion of nanoscale fluid particles described by Buongiorno (2006) form 
the basis of the Buongiorno nanofluid model. Anjum et al. (2025) analyzed Buongiorno-type nanofluid flow 

over an elongating sheet incorporating multiple slip effects, while Ramesh Reddy et al. (2022) explored its 
transport over a vertical surface, emphasizing Hall and ion-slip influences. A robust mathematical framework 
for capturing complex interactions during nanofluid film boiling at the vapor–liquid interface was proposed by 
Yahyaee et al. (2024), who demonstrated that the Continuous-Species-Transfer method provides superior 
accuracy and efficiency for such simulations. Bhavani et al. (2024) investigated ultrafast nanofluid velocities 
essential for safe, non-radiative thermal designs and confirmed that the synthesized nano-coolants exhibit good 

stability, indicating their potential applicability. Humane et al. (2023) examined temperature and solutal effects 
in a magneto-micropolar nanofluid within an inclined porous stretching surface using the Buongiorno 
formulation. Wang et al. (2023) applied a modified Buongiorno model to study heat and mass transfer in an Ag–
H₂O nano-thin film moving through a permeable medium. Katun et al. (2021) investigated the numerical 
modeling of Buongiorno’s nanofluid on free convection. 
 

Non-similar transformations represent a sophisticated set of mathematical methodologies that are employed in 
the intricate analysis of fluid dynamics, particularly in scenarios where the various profiles related to velocity, 
temperature, or concentration exhibit complex behaviors that preclude their simplification or reduction to a 
singular, dimensionless similarity form that would allow for easier interpretation and understanding of the 
underlying physical phenomena involved. Such transformations introduce new variables that capture spatial 
variations, enabling the treatment of complex flows characterized by non-uniform boundary conditions, variable 

material properties, or changing geometries. These methods are essential for accurately modeling realistic 
boundary-layer and heat-transfer problems, where flow characteristics vary along the streamwise direction. 
Non-similarity may arise from factors such as spatial changes in freestream velocity, variations in wall 
temperature, surface mass transfer, or fluid injection and suction. To address these challenges, several 
computational approaches have been developed, including the locally non-similar (LNS) method pioneered by 
Sparrow et al. (1970, 1971), which has since been widely applied to boundary-layer analysis. Razzaq and 

Farooq (2021) investigated Oldroyd-B fluid flow over an expanding surface under non-similar forced 
convection. Gaffar et al. (2024) studied the effects of Brownian motion, thermophoresis, and mixed convection 
in nanofluid flow over an isothermal rotating cone. Raees et al. (2021) examined non-similar mixed convection 
in magnetized second-grade nanofluid flow. 
 
Convection flows arise in fluids due to temperature-induced density variations: warmer, lighter fluid rises whi le 

cooler, denser fluid sinks, forming continuous circulation patterns that transport heat. These flows are 
fundamental in atmospheric and oceanic processes and are widely used in engineering systems such as HVAC, 
geothermal devices, and heat-transfer equipment. Natural convection occurs when buoyancy forces generated by 
density differences drive the flow, whereas forced convection relies on external mechanisms such as pumps or 
fans. Mixed convection involves the simultaneous influence of both mechanisms and has been widely examined 
(e.g., Vedavathi et al. 2021; Farooq et al. 2021). Convection in porous media is especially important in 

petroleum and mechanical engineering, with applications in geothermal energy, nuclear waste management, 
grain drying, enhanced oil recovery, and thermal storage. Usman et al. (2024) analyzed natural convection 
effects in magnetohydrodynamic heat transfer within a wavy cavity, while Shaheen et al. (2024) explored the 
heat-transfer behavior of a hybrid nanofluid flowing over an elongated vertical cylinder. 
 
In fluid dynamics, porosity of the medium is defined as aperture volume divided by the medium's total volume. 

While there are innumerable naturally existing porous media, some are artificially created to meet industrial 
needs. Stones such as limestone, sandstone, fabric sponge, human skin, kidney, gall bladder with stones, etc., are 
examples of naturally permeable media. The substantial need for porous media in manufacturing facilities, 
several other technical applications have drawn researchers' attention to a deeper examination of the properties 
and flowing patterns of porous media. Numerous real-world applications can be found in a variety of fields, 
including the cleansing and purification techniques used in drug manufacturing, the bed-level leaks of water, 
penetration of porous substances through chemical reactions beneath engineering construction sites, and mass, 

heat transfer in packed bed reactors. Darcy's law states that "liquid flow through a permeable gravitational forc e 
of Earth and stress gradient are directly related to the medium. This law is presented by renowned 
mathematician and engineer Darcy. However, the medium's porosity increases, and Darcy's resistance causes 
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viscous shear to expand. When the medium pores are distributed widely and have large pore sizes. In 1901, a 
Dutch engineer by the name of P. Forchheimer expanded on Darcy's ideas by using them as a foundation. When 
computing the inertial forces in the momentum equation, Forchheimer (1901) added the square of the velocity 
term, modifying Darcy's Law. The Forchheimer number provides insight into the relative dominance of inertial 
forces to viscous forces (governed by viscosity) within the porous medium. Muskat (1946) incorporated this 

expression into his work; it is now referred to be a "Forchheimer term. Nadeem et al.  (2021) examined how to 
optimise the Sisko NF for nonlinear radiative MHD flow and entropy formation across a spinning disc with a 
non-Darcy porous medium when there is irregular Joule heating, source/sink heat. There are a few more 
pertinent works by Saeed et al. (2020), Khan et al. (2024), Makinde et al. (2024), and Waqas et al. (2023). 
Hossain et al. (2021) studied Unsteady magneto-porous convective transport by micropolar binary fluid due to 
an inclined plate. 

 
A semi-infinite vertical plate plays an important role in analyzing buoyancy-driven heat and mass transfer 
relevant to heat exchangers, electronic cooling, building ventilation, atmospheric dispersion, and thermal plumes 
in oceanography. Gebhart et al. (1989) later summarized extensive investigations conducted under various 
physical conditions, predominantly using air or water as working fluids. In water, density variations depend on 
both temperature and concentration due to dissolved or suspended materials, giving rise to mass-transfer effects. 

Numerous studies have since examined convection along semi-infinite vertical plates under different influences 
(Narahari et al., 2018; Amanuallah et al., 2018). Although Soret and Dufour effects were once assumed to be 
negligible in air and water, Gebhart and Pera (1971) showed that coupled mass and heat diffusion can 
significantly influence density variation, introducing the parameter, Nr to characterize these contributions. 
Chamkha et al. (2010) further analyzed coupled heat–mass transfer over a magnetized, “semi-infinite vertical 
plate embedded in a porous medium. More recent contributions include Gangadhar et al. (2022), who explored 

EMHD flow of a radiative second-grade nanofluid over a Riga plate using a modified Buongiorno model; Khan 
et al. (2023), who investigated unsteady MHD nanofluid flow past a permeable vertical plate with fractional 
derivatives; and Anjum et al. (2025), who studied dissipative magneto-thermo-convection with Ohmic heating 
over a semi-infinite vertical surface. Uddin et al. (2025) examined the thermal-material transport in boundary-
layer flow over a semi-infinite sheet. 
 

In fluid dynamics, the Darcy number is a dimensionless parameter that characterizes the ease with which a fluid 
moves through a porous medium, defined as the ratio of the medium’s permeability to the square of a 
characteristic length. Named after Henry Darcy, it underpins classical models of flow through porous structures. 
The Forchheimer number, by contrast, quantifies the relative importance of inertial to viscous forces within 
porous materials and is commonly used for analyzing flow in packed beds, filters, and porous membranes. The 
ratio of void volume to total volume is known as porosity. Porous media are made up of solid matrices with 

interconnected voids. These media can be created for commercial uses or found naturally in things like 
limestone, sandstone, sponges, skin, and biological organs. Their widespread use in filtration, chemical  
processing, groundwater flow, geothermal systems, and packed-bed reactors has motivated extensive research 
into their flow characteristics. Darcy’s law relates fluid flow in porous media to pressure gradients and 
gravitational forces, assuming low velocities and dominant viscous effects. As porosity increases and flow 
velocities rise, inertial effects become significant, leading Forchheimer (1901) to extend Darcy’s law by 

introducing a velocity-squared term. This modification, later formalized by Muskat (1946), is now known as the 
Forchheimer term and is essential for modeling high-velocity flows in porous structures. Recent studies continue 
to apply these concepts in complex systems. Nadeem et al. (2021) optimized Sisko nanofluid behavior in 
nonlinear radiative MHD flow and entropy generation over a rotating disk within a non-Darcy porous medium 
under irregular Joule heating and heat source/sink effects. Additional relevant contributions include those of 
Saeed et al. (2020), Khan et al. (2024), Makinde et al. (2024), and Waqas et al. (2023). 

 
In the present work, a mathematical model is developed for steady-state laminar boundary layer flow of a 
Buongiorno nanofluid past a semi-infinite vertical plate with the Da-Fs model, with heat and mass transfer of 
nanoparticles. Unlike previous studies, which focused on either Da-Fs or Buongiorno’s model individually and 
have been confined to ordinary differential equations. The article fills a critical research gap by integrating the 
Da-Fs model with BNF theory to study non-similar convection flows. 
   



       S. Peerusab  , S. A. Gaffar, A.Anjum/ Journal of Naval Architecture and Marine Engineering, 23(2026) 41-60 

Numerical investigation: of non-similar thermal convection in Buongiorno nanofluid with Darcy–Forchheimer drag…  

 

45 

1.1 Novelty of the investigation  
 
The novelty of the present work is that this research simultaneously examines the combined impact of Da-
Fsdrag and Buongiorno’s nanofluid model within non-similar convection flows adjacent to a semi-infinite 
vertical plate. This research encompasses fully two-dimensional NF flow partial differential equations and 
examines velocity, temperature, and concentration profiles using detailed graphs. These have not been 

considered in previous studies.  The novelty of the proposed study renders several key aspects.  

 This research offers a more comprehensive understanding by simultaneously incorporating Nb, Nt , and 
Nr in a Da-Fs porous medium, unlike existing studies that analyse individual effects by employing 
robust KBM, known for its superior accuracy, stability, and convergence. 

 What influence does the skin friction coefficient have on Nb, Nt, Nr, Da, Fs compared to the variations 

observed in Buongiorno's nanofluid past a semi-infinite plate? 

 How our findings support the patterns of Reddy et al. (2022), (2024), Amanullah et al. (2018), and 
Anjum et al. (2025a, 2025b).  

 

The dimensionless nonlinear multi-physical BVP with related wall and free stream BCs is solved employing the 
robust 2nd order robust implicit finite difference KBM. Validation using previous special instances that have 
been documented in the literature, and authentication, is also accomplished. Velocity, temperature, and 
concentration distributions are computed and visualized graphically for the influence of Nb, Nt, Nr, Da, and Fs. 
The simulations are relevant and provide an in-depth parametric study, investigating the impact of various 
factors like permeability, porosity, and the relationship between nanoparticle volume fraction and thermal 

conductivity affect motion and heat transfer processes. These articles' findings enable precise predictions of heat 
and mass transmission as well as fluid flow behaviours, which can optimize both cooling sys tems and power 
systems through design improvements. 

 

2. Mathematical Analysis of Fluid Flow 

 
Fig. 1: Physical model and coordinate system 

 

Fig. 1 illustrates a laminar, steady, incompressible natural-convection nanofluid flow over a semi-infinite 
vertical plate in an  xy-coordinate system, where x is aligned vertically along the plate and y is normal to it. 
Buoyancy forces arise from thermal and concentration gradients in the suspended species, driving the upward 
flow. As the Grashof number becomes very large, the Navier–Stokes equations reduce to the classical boundary-

layer form. Gravity acts downward, opposing the buoyant motion. Initially, both the nanofluid and the plate 
are maintained at uniform temperature and concentration; far from the plate, the fluid reaches constant ambient 
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values. The porous medium is assumed homogeneous and isotropic to simplify its effective thermal 
conductivity. The flow resistance within the medium follows the modified, second-order Darcy–Forchheimer 
model, in which the pressure gradient incorporates both viscous (Darcy) and inertial (Forchheimer) 
contributions. 

2

p aU bU             (1) 

Where 
p  is the pressure, 

1

a and b
K K

 
   are the constants, and U is velocity. The governing 

equations for mass, momentum, energy, and nanoparticle species (concentration) for the Buongiorno nanofluid 
under the boundary layer and Boussinesq approximations may be established using the models of Buongiorno 
(2006), Reddy et al. ((2022), (2024)), Amanullah et al. (2018), and Anjum et al. (2025a, 2025b).  
The vectorial forms of the conservation equations are: 

. 0 V            (2) 

        2. 1f f f p f

V
V V p g C T T C C

t
         

                  
V  (3) 

     
22. T . T

m Bp p

DT
c V k T c D C T T

t T
 



  
          

   

    (4) 

2 21
V. T

m

DC
C D C T

t T 


     



        (5) 

Here  ,V u v  is the velocity vector  

The Semi-infinite substrate surface (wall) and free stream (boundary layer edge) are subject to the following 

BCs, Reddy et al. (2022), (2024), and Anjum et al. (2025a, 2025b): 
 

0, , 0

0, ,

w wu v T T C C at y

u T T C C as y 

    

   

      (6) 

 
Equation (3) can be expressed as follows in accordance with Kuznetsov and Nield (2010), given the low 
concentration of NPs and the use of a suitable pressure: 

        2. 1f f f p f

V
V V p g C T T C C

t
         

                  
V  

The Oberbeck-Boussinesq approximations yield the linearized momentum equation, which is as follows: 

        

        20 1f f p fp V g C T T C C        
          
 

   (7) 

The reduced boundary layer equations are used by Reddy et al. (2022), (2024), and Anjum et al.(2025a, 2025b).  

0
u v

x y

 
 

 
           (8) 

      
2

2

2
1 f p f

u u u b
u v g C T T C C u u

x y K Ky


        

  
          
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 (9) 

22

2

T
m B

DT T T T C T
u v D

x y y y y T y
 



       
     

        

             (10) 

2 2

2 2

1 T

m

DC C C T
u v D

x y Ty y 

    
   
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            (11) 

Where  
 

 

 
,

pm

m

f f

ck

c c


 

 
              (12) 

The relevant boundary conditions imposed at the plate surface and in the free stream, Reddy et al. (2022), 
(2024), and Anjum et al.(2025a, 2025b): 
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0, , 0

0, ,
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3
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4
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L
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

 
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   
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   

   
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 

  (14)                   

Stream function   is defined as u and v
y x

  
  
 

                                                                                   

Subject to the velocity components given in terms of stream function, equation (8) is automatically satisfied. 
The dimensionless scaling variables listed below are introduced: Equations (9–11) provide the following paired 
nonlinear ordinary differential boundary layer equations:  

 2 2 2

1

2

.
3 2 2

Fs f f
f ff f Nr f f f f

Da
DaGr


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 

  
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2''
3 ' ' ' ' 2 '
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 
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 
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 

  
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      (17)  

The transformed non-dimensional boundary conditions are  Anjum et al. (2025a, 2025b): 
0, ' 0, 1, 1 0

' 0, 0, 0

f f at

f as

  

  

    

   
       (18) 

The nondimensional parameters are Reddy et al. (2022), (2024), and Anjum et al. (2025a, 2025b): 
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2.1 Quantities of physical importance 
 

The shear stress components at the surface, known as the skin-friction coefficients Cf) the heat transfer rate 

known as the Nusselt number Nu, and the mass transfer rate of NPs, known as the Sherwood number Sh, are the 
physically key interesting engineering design parameters for the Semi-infinite vertical surface Reddy et al., 
2024; Anjum et al.(2025a, 2025b). They are defined as follows: 

1

3 4
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1
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         (19) 
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Here,  0 and the BLEs (15) – (17) contract to a system of ODEs in the neighborhood of the lower stagnation 
point: 

 2 2 2

1

2

.
3 2 0

Fs
f ff f Nr f f

Da
Da Gr


                          

2''
3 ' ' ' ' 0

Pr
f Nb Nt


                                 

'' 1
3 ' '' 0

Nt
f

Sc Sc Nb


      

 

2.2 KBM solution and validation 

 
The dimensionless BLEs (15) – (17) have been numerically solved using the Keller box implicit finite 
difference scheme (1978). This approach retains its status as one of the leading numerical methods to solve two -
point BVPs. The Keller-box approach offers appealing extrapolation “properties and second-order accuracy with 
flexible spacing. On a rectangular grid (Fig. 2 ), a finite-difference technique is used ("box") and converts the 

partial differential equations of BL into an algebraic set of equations.  It attains remarkable accuracy, offers 
steady numerical meshing characteristics, and converges quickly. By utilizing fully implicit methods with 
customizable stepping, the Keller box approach improves accuracy on explicit or semi-implicit schemes. 

Another advantage of this method is that two-coordinate (, ) nonlinear partial differential equation systems 
can be easily accommodated, unlike other solvers, such as MATLAB BVP4C, which are restricted to ordinary 

differential boundary value problems. In line with the physics of parabolic systems, each discretization step is 
fully coupled. The discrete algebra connected to the Keller-Box technique is essentially independent of any 
other mimicking (physics-capturing) computation methods (2020), (2024), (2013), Reddy et al. (2024), Hussain 
et al. (2023).  

 
The four phases involved in the KBM scheme: 

1. The Nth order PDE system is divided into N first-order ODEs.  

2. Discretisation of Finite Differences. 
3. Keller algebraic equations that are non-linear can be quasi-linearized.  
4. The linearised Keller Algebraic Equations' block-tridiagonal elimination solution.  
 

 

 

 

Fig. 2  Keller Box Method flow chart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Keller box method flow chart. 
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Step 1: The Nth order PDE system is divided into N first-order ODEs 
Equations (15) - (17) and BCs (18) are utilized in conjunction with additional variables to convert the BVP into 
a multiple system of first-order equations. Consequently, a set of nine simultaneous first-order ODEs is 
produced by adding the additional variables Anjum et al.  (2025a), (2025b): 
 

 ( , ) ', ( , ) '', ' , , ( , ) , ( , ) 'u x y f v x y f g x y p s x y t x y           (23) 

'f u     
(24) 

'u v     (25) 

'g p     (26) 

's t             (27) 
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       (30) 

where differentiation concerning η is indicated by primes. Regarding the dependent variables, the BCs turn into: 
 

0, ' 0, 1, 1 0

' 0, 0, 0

f f at

f as

  

  

    

   
 

       

Step 2: Discretization of Finite Differences 
 

In a Keller box (cell), Fig. 3 a 2D computational grid is imposed in the -η plane. The stepping process is 
defined by:  

0 10, , 1,2,..., ,j j j Jh j J               (31) 

0 10, , 1,2,...,n n

nk n N              (32) 

where nk  is the   - spacing and 
jh
 
is the   - spacing.  If 

n
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j  , 
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Fig. 3: Two-dimensional computational grid 
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Equations (24) through (30) and their corresponding finite-difference approximation for the middle point 

 1/2 , n

j 
, are:  
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where we have used the abbreviations 
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The BCs are: 

0 0 0 00, 0, 0, 0, 0, 0, 0n n n n n n n

J J Jf u g s u g s         (46) 

 

Stage 3: Keller's non-linear algebraic equations can be quasi-linearized.  

If we presume 
1 1 1 1 1 1 1, , , , , ,n n n n n n n

j j j j j j jf u v g p s t      
 to be widely recognized for 0 j J  ,  the 

consequence is in a framework of 7J+7 equations for the solution of 7J+7 unknowns 

, , , , , ,n n n n n n n

j j j j j j jf u v g p s t 0,1, 2,...,j J . This non-linear system of algebraic equations is linearized by 

means of Newton’s method. 

 

Stage 4: The linearized Keller Algebraic Equations' block-tridiagonal elimination 

solution.  
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Since the linearized system has a block-tridiagonal structure, it is solved using the block-elimination technique. 
This results in a block-tridiagonal architecture composed of block matrices. Every component of the coefficient 
matrix is a matrix in and of itself, and the full linearized system is represented as a block matrix framework. 
This system is solved using the efficient Keller-box approach. A significant influence on the numerical output is 
the quantity of mesh points in both axes. After a few experiments, a larger number of mesh points are selected 

in the radial coordinate (η-direction), whereas a significantly lesser number are employed in the tangential 

coordinate (-direction). ηmax = 10 establishes an appropriately high level at which the desired BCs are 

accomplished. For this flow domain, max is set as 3. In the current computation, mesh independence is attained. 

The computational algorithm is run on a PC using MATLAB. As explained by Keller (1978), the procedure 
exhibits outstanding stability, convergence, and consistency. 
 

2.3 Convergence analysis 
 
Until a certain convergence threshold is met, computations are performed. Laminar boundary-layer calculations 

commonly use the wall shear stress parameter, v (, 0), as the convergence criterion Beg (2013). The most 

significant error in BL calculations is found to be in the wall shear stress parameter. It is important to note that 
this convergence criterion is applied throughout the study since it is effective, appropriate, and the best solution 

to all of the issues. The computations are terminated when   
0 1

i
v  , a modest 1 specified value is reached. 

 

2.4 Validation of Keller box code 
 
The Nusselt number Nu for Prandtl numbers Pr is compared to those published in previous studies to assess the 

validity of the present numerical code. Table 1 illustrates this by comparing the validity of the current research 
with that of previous investigations. The data confirms that the present results validate and reinforce the findings 
of previous studies, indicating strong agreement and reliability in the observed trends. Error analysis Percentage 
of the comparisons is also included. 

 
Table 1 Local skin friction coefficient Cf comparison for different values of   as Da→∞, Fs=0. 

 

 Local skin friction coefficient Cf 






Saddiqa et al. 

(2021) 
 

Ramesh 

Reddy et al. 

(2022) 

Current Results 

 

 

Error 

Analysis% 

with 

(2021) 

Error 

Analysis% 

With 

(2022) 

0.1 0.014 0.012 0.016 2% 4% 

0.2 0.050 0.049 0.054 4% 5% 

0.3 0.104 0.103 0.106 2% 3% 

0.4 0.172 0.171 0.169 3% 2% 

0.5 0.250 0.249 0.251 1% 2% 

0.6 0.336 0.338 0.339 3% 1% 

0.7 0.430 0.429 0.432 2% 3% 

0.8 0.529 0.528 0.531 2% 3% 

0.9 0.634 0.634 0.634 0% 0% 

1 0.744 0.743 0.747 3% 4% 

1.1 0.858 0.857 0.860 2% 3% 

1.2 0.975 0.971 0.975 0% 4% 

1.4 …..................... …..................... 0.998   
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3. Numerical Results and Discussion 
 

This part focuses on the results that were obtained and the physical discussions that followed. This section has 
been split into the following two subsections: 
 

3.1 Parameter’s effect on velocity, temperature, and concentration profiles 
 

The present section highlights the physical perspective of Buongiorno’s Nanofluid flow past a semi-infinite 
vertical plate with the Da-Fs model. The Keller-box finite difference technique is applied for equations (15) – 
(17). A detailed graphical illustration for the solution is shown in Figures (2 – 11) utilizing MATLAB Code,  on 
Velocity f  , Temperature θ and nanoparticle volume fraction concentration ϕ, shear stress rate Cf, heat transfer 

rate Nusselt number Nu nanoparticle mass transfer rate Sherwood number Shfor six dimensionless 
thermophysical parameters in the model, such as Nb, Nt, Nr, Da, Fs are presented along the radial coordinate 

(). The Numerical problem comprises two independent space variables (,), default values of the following 

variables are Pr =0.71, Sc = 0.6, Nr =0.1, Nb = Nt= 0.3, Da = Fs =0.5, Gr = 10,  = 1.0 are prescribed.  
 

  
Fig. 4: Velocity description for Nb. Fig. 5: Temperature description for Nb. 

 
Fig. 6: Concentration description for Nb. 

 

Figures (4 – 6) show the impact of Brownian motion Nb on f  , θ (ϕ profiles through the surface regime with 

transverse coordinate ().  In Fig. 4 , f   is enhanced, although a stronger elevation is computed in the former 

with greater Nb values.  Nb also modifies the NF thermal conductivity and the propensity for heat transmission 
in the NF. As a result, the increased random motion of the NPs modifies the thermal behaviour as well, and the 
momentum field experiences this influence through thermal buoyancy. As Nb increases, θ is positively affected 

across the BL regime, as seen in Fig. 5 . There is also a significant change in the topology  profiles further 
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from the substrate (wall) at very high Nb values. Raising the  aggravates the motion of the NPs and ballistic 
collisions. Consequently, chaotic Brownian motion is increased even further. The increased heat conduction in 
the regime and the improved micro-convection surrounding the NPs are also influenced by the change in 
thermal conductivity with greater Nb values. This results in a thicker thermal BL due to a heating effect. 

Although the fluid's molecules and NPs are always moving, there is a noticeable shift in  overall. Brownian 
motion, however, predominates in the random thermal motion of the NPs. As Nb is increased, however, the 

intensification in ballistic collisions curtails the diffusion of NPs, and this produces a notable decrease in( 

values, as observed in Fig.  6 . Hence, the thickness of nanoparticle concentration BL is reduced, which is 
important in fine-tuning coating structure during the manufacturing process. Our results concur with the trends 
of Reddy et al. (2022), Anjum et al. (2025a), (2025b), who have also shown that the greater viscosity acts to 
accelerate the flow and heat convection but depresses mass transfer rates. The physical significance of these 
observations lies in the complex interplay between Brownian motion and NF dynamics. As Nb increases, 
nanoparticles experience enhanced random movement, facilitating more efficient thermal diffusion and 

increasing fluid velocity. This phenomenon is crucial in settings where efficient heat transport is necessary, like 
cooling structures and thermal management in engineering. 
 

  
Fig. 7: Velocity description for Nt Fig. 8: Temperature description for Nt 

 
Fig. 9: Concentration description for Nt 

 

Figures (7–9) depict the influence of the thermophoresis parameter Nt on f’ θ, ϕ profiles. From Fig. 7, an 

increase in Nt decelerates velocity f’. The increasing thermophoresis parameter value enhances temperature   in 

Fig. 8 and considerably boosts concentration  in Fig. 9 . These trends are sustained at all distances, transversed 

to the inclined substrate. However, while asymptotic decays occur from the wall to the free stream for all  

profiles, the nanoparticle concentration profile is only a decay for Nt = 0, which has not been identified 
previously in the literature. As Nt increases, the topology is flipped from a convex to a concave one for Nt = 0.2. 
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With subsequent elevation in the thermophoresis parameter, a peak in emerges progressively further from the 
wall. Eventually, however, profiles for Nt > 0.2 do descend smoothly to the free stream. Overall, stronger 
thermophoresis elevates the thermal and nanoparticle species BLT. The impact of a higher thermophoretic 
temperature gradient is clearly significant on all transport characteristics, confirming the important role it plays 

in NF mechanics. Our findings support the patterns of Reddy et al. (2022), Anjum et al. (2025a), and (2025b). 
Physical interpretation: This signifies that a stronger thermophoretic force leads to enhanced momentum, heat, 
and mass transfer, reflecting more pronounced thermal and solute gradients in the NF flow. The two most 
intriguing aspects of Buongiorno's nanofluid model are thermophoresis and Brownian motion characteristics. In 
essence, these characteristics raise the fluid's temperature, which is essential for optimizing heat and mass 
transfer processes in various applications. 

  
                    Fig.10: Velocity description for Nr.                      Fig. 11: Temperature description for Nr.  
 

 

 
Fig. 12: Concentration description for Nr. 

 

Figures (10–12) elucidate the impact of the combined Buoyancy ratio parameter Nr on profiles f  , ,  As seen 

in Fig. 10, velocity f   is suppressed with positive Nr but is enhanced with negative Nr. In other words, 

assistive buoyancy damps the primary flow, whereas opposing buoyancy. This reduction weakens buoyancy-
driven movement, tending to a decrease in fluid velocity. Consequently, with less buoyancy force driving fluid 

motion, the convective heat transfer process is hindered, resulting in depreciation of velocity profiles in the 
system. Fig.(11-12) demonstrates that an increment of Nr strengthens the buoyancy-driven flows. This 
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augmentation enhances fluid motion, facilitating more effective mixing and transport of heat and solute. 

Consequently, ,  profile appreciates. Notably, both temperature , concentration profiles show an upward 
trend, signifying that the heightened internal buoyancy forces improve heat, mass transfer. This results in higher 

thermal, solute gradients near the surface, causing increased ,   levels within the boundary. Our outcomes 

align with the observed trends of Reddy et al.(2022), Anjum et al.(2025a), and (2025b). Physically, this 
signifies that stronger buoyancy effects lead to more efficient energy and species transport in the fluid. This is 
essential for precisely estimating flow behaviour and maximising mass and heat transfer in a variety of technical 
applications. f’ converges to a value close to 1 for all values of Nr. The convergence to this asymptotic value 

implies that beyond a certain point, further increases in η have minimal effects on f’ This suggests that the 
system reaches a steady state or equilibrium condition. 
 

  
Fig. 13: Velocity description for Da. Fig. 14: Temperature description for Da. 

 

 
Fig. 15: Concentration description for Da 

 

Figures ( 13  –  15 ) portray the impact of Darcy number Da on profiles f  , , . Fig.  13  demonstrates 

unambiguously that the velocity is much amplified with an increase in Da, with the maximum effect occurring 

close to the surface. Greater permeability, of course, indicates a decrease in solid Fibers that obstruct axial flow; 
this lowers the Darcian resistance and accelerates flow. Elevating pushes peak velocity even more Da. Fig.  14  
shows that boosting the Darcy parameter yields a significant suppression of temperature. Heat conduction is 
suppressed as a result of the loss of solid fibers in the porous matrix linked to increased penetration. This cools 
the regime by reducing heat diffusion inside it. As a result, the surface's heat BLT is suppressed. Porous media 
with lower permeability reach far higher temperatures than those with higher permeability. Fig. 15  eluciates 
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that as the Da increases, this indicates increased resistance to flow through the porous medium. This resistance 
reduces the exchange of nanocrystals, leading to a low concentration of NPs near the surface. Consequently, 

overall,concentration  profile within the fluid decreases. Physically, as Da increases, indicating higher 
permeability in the porous medium, the resistance to fluid flow decreases. This lower resistance allows for an 

increased fluid velocity because the flow encounters less drag. However, the enhanced fluid velocity leads to 

decay in both ,    profiles. Essentially, fluid moves more quickly through the medium, carrying less heat and 
fewer NPs along with it. Reduced heat transmission via thermal conduction in the system is facilitated by the 
steady reduction of solid fibres that have large Da values in porous medium. This cools down the thermal BLT, 

which also diminishes and limits the transfer of thermal energy from the vertical surface into the system. As a 
consequence, the presence of porous materials significantly affects the system's speed and thermal dispersion, 
offering a solid foundation for regulating flow and temperature management”. It is evident from equation (15) 
that the Darcian bulk impedance term has an inverse relationship with Da. Thus, the Darcian impedance arising 
from the viscous effect to stress at solid particle surfaces decreases dramatically with increasing Da. The flow 
experiences reduced matrix “resistance from the porous fibres, which become less common, with higher Da 

values (greater permeability). As a result, the flow quickens, its velocity rises, and the momentum of the regime 
does too. This parameter is crucial for analysing and modelling fluid flow behaviours in applications involving 
porous media, such as filtration, groundwater flow, and enhanced oil recovery.  

  

Fig. 16: Velocity description for Fs. Fig. 17: Temperature description for Fs. 

 
Fig. 18: Concentration description for Fs. 

 
Figures (16–18) Emphasis impact of the Forchheimer number Fs on f   θ, ϕ profiles through the outermost 

regime with transverse coordinate . Fig.  16  demonstrates how a greater inertial impedance that resists flow is 
present and causes a noticeable depreciation in velocity with an increase in Fs. This impact is maximised close 
to the surface; lesser deceleration in a flow with a higher Fs is calculated farther away. There is no discernible 

effect of Fs on flow in the free stream. Fig.  17  reveals that a significant heating impact occurs in the regime as 
a result of the higher Fs. Temperatures are always stronger for all transverse coordinate η values. Hence, the 



       S. Peerusab  , S. A. Gaffar, A.Anjum/ Journal of Naval Architecture and Marine Engineering, 23(2026) 41-60 

Numerical investigation: of non-similar thermal convection in Buongiorno nanofluid with Darcy–Forchheimer drag…  

 

57 

thickness of thermal BL is highest for the strong Forchheimer case Fs = 1 and smallest for the weak 

Forchheimer drag case Fs = 0. Fig.  18  illustrates  increases as Fs gradually rises because greater Fs signifies 
greater inertial effects in flow through a porous medium. These inertial effects enhance the mixing and 
dispersion of nanocrystals, leading to a greater concentration of NPs near the surface. Consequently, increased 

inertial forces facilitate better nanoparticle distribution and an elevated concentration profile. Our outcomes are 
consistent with the patterns of Reddy et al.(2022), Anjum et al.(2025a), (2025b). Physically, since the drag force 
and coefficient of inertia are connected, a surge in inertia causes the fluid's drag force to grow, thus lowering its 
speed. The influence of the quadratic inertial drag is larger with closer proximity to the wall's surface. 
Nevertheless, since Forchheimer drag is of order two, a rise in (Fs) virtually blanks the momentum development 
and causes a slowdown. Consequently, the reduced velocity decreases the convective heat transfer rate, resulting 

in higher temperatures near the surface. Simultaneously, the enhanced inertial effects promote better mixing and 

dispersion of NPs, increasing their concentration near the surface. Thus, f   dampens while ,   profiles 

enhance with higher Forchheimer numbers. Fs is used to optimize flow and performance in NF-based filtration 
systems and heat exchangers by accounting for inertial effects in porous media. 
 

It is noteworthy that in Figs. (4 - 18 ) all ll profiles converge smoothly, validating the implementation of a 
sufficiently large infinity boundary condition in the free stream. 
 

4. Conclusions 
 

The non-similar, incompressible steady state laminar Darcy-Forchheimer convection flow of Buongiorno’s 
Nanofluid past a Semi-Infinite vertical surface is investigated numerically. Thermal convection and nanoparticle 
mass transfer have also been investigated in the present paper. The conservation equations and BCs have been 
rendered dimensionless with appropriate scaling non-similarity transformations. While most studies focus on 
linear Darcy flows, this work extends the analysis to the nonlinear Da-Fs regime, capturing inertial effects that 
are crucial for high-velocity flows in porous media. filling a crucial gap in existing literature. The resulting 

nonlinear multi-physical boundary value problem has then been solved with realistic BCs, employing a second-
order implicit finite-difference Keller Box technique. Graphical results for the influence of selected parameters 
on transport characteristics have been presented. A thorough evaluation of the impacts on thermofluidic 

properties has been conducted, considering the influence of   Nb, Nt, Nr, Da, and Fs on f  , θ,  characteristics 

have been presented graphically. The implicit KBM has been validated with previous studies mentioned in the 
literature. From the above-mentioned results and discussion, the following conclusions can be drawn: 
 

(i) As the Brownian motion parameter increases, velocity and temperature profiles are accelerated, 
whereas the concentration profile is dampened. 

(ii) An increase in the thermophoresis parameter depletes the velocity profile, but temperature and 
concentration profiles are strongly improved  

(iii) With a stronger Darcy number, it is noted that the velocity profile is enhanced close to the plate’s 
surface, whereas temperature and concentration profiles decay significantly. 

(iv) As the Forchheimer number value enhances, velocity reduces close to the plate’s surface, whereas 
temperature and concentration profiles are strongly improved. 

(v) A heightened Buoyancy ratio parameter strengthens buoyancy-driven flows, declines the velocity 
profile and enhances temperature and concentration profiles. 

 

The current investigation has uncovered some intriguing traits of semi-infinite vertical substrate nanofluid BL 
flows. The combined analysis of Buongiorno's nanofluid model and Darcy-Forchheimer drag's combined effects 
on non-similar convection flows across a semi-infinite vertical plate constitutes the innovations of this work. 
Moreover, velocity, temperature, and concentration profiles are thoroughly examined graphically for various 

parameters and partial differential equations, which encompass fully two-dimensional nanofluid flow. These 
weren't taken into consideration in previous investigations.  The effectiveness of KBM in resolving these 
intricate multi-physical BVPs has been demonstrated. But only the Newtonian example has received attention. It 
is well known that NFs with a higher volume proportion of nanoparticles show rheological effects.  

 

5. Future Scope 
 
Future research can extend this study by incorporating variable thermophysical properties and exploring 

unsteady flow conditions to better simulate real-world applications. Investigating the effects of different 
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nanoparticle shapes and base fluids could enhance the accuracy of NF models. Additionally, implementing 
machine learning techniques for parameter optimization in heat transfer applications may provide further 
advancements. Experimental validation of the numerical findings would also strengthen the reliability of the 
proposed model. Future research could thus examine non-Newtonian polymeric models, such as shear -thinning 
and viscoelastic formulations. Additionally, studying NF behavior in complex geometries and incorporating 

detailed boundary conditions, including time-dependent effects, could better simulate practical scenarios. 
Leveraging advanced computational techniques, such as machine learning and high-performance computing, 
will further refine simulations and predict nanofluid dynamics under extreme conditions, which will be 
communicated soon. 
 

Credit author statement:  
Dr. Samdani: Software, editing, Visualizations, Dr. Shaik Abdul Gaffar: Conceptualization, Problem 

formulation, solving, Software, Dr. Asra Anjum: Problem formulation, original drafting, editing, and Software. 
 

Acknowledgments 
The authors appreciate the reviewers' and editor's perceptive comments, encouraging words, and practical 
suggestions for improving the original work, all of which have assisted us in revising the final version of the 
manuscript. 

 

References 
Anjum, N., Khan, W. A., Hobiny, A., Azam, M., Waqas, M., & Irfan, M. (2022). Numerical analysis for thermal 

performance of modified Eyring Powell nanofluid flow subject to activation energy and bioconvection 
dynamics. Case Studies in Thermal Engineering, 39, 102427. https://doi.org/10.1016/j.csite.2022.102427 
Anjum, A., Gaffar, S. A., Kumar, D. S., Bég, O. A., & Peerusab, S. (2024). Non-similar Keller box analysis of 
magnetically radiative Buongiorno’s nanofluid flows past a stretching surface. Journal of Naval Architecture 
and Marine Engineering, 21(2), 127–153. https://doi.org/10.3329/jname.v21i2.74923 
Anjum, A., Gaffar, S. A., Kumar, D. S., & Peerusab, S. (2025). A numerical analysis of convection flows of 

Buongiorno’s nanofluid past an elongating sheet with multiple slip effects. Journal of Naval Architecture and 
Marine Engineering, 22(2), 117-140.  https://banglajol.info/index.php/JNAME/article/view/79532 
Gaffar, S. A., Bég, O. A., Anjum, A., Bég, T. A., Leonard, H. J., Kuharat, S., & Reddy, R. P. (2025). Simulating 
magneto-convective radiative nanofluid flow from a non-isothermal rotating cone with heat generation and 
chemical reaction. Journal of Nanofluids, 14(3), 447-465. https://doi.org/10.1166/jon.2025.2244 
Amanulla, C. H., Nagendra, N., & Suryanarayana Reddy, M. (2018). Computational analysis of non-Newtonian 

boundary layer flow of nanofluid past a semi-infinite vertical plate with partial slip. Nonlinear 
Engineering, 7(1), 29-43. https://doi.org/10.1515/nleng-2017-0055. 
Anjum, A., Gaffar, S. A., Kumar, S., & Peerusab, S. (2025a). Dissipative magneto-thermo-convection of 
nanofluid past through a Semi-Infinite vertical surface with ohmic heating. Journal of Applied and 
Computational Mechanics, 11(4), 991-1008. https://doi.org/10.22055/jacm.2024.47689.4765 
Anjum, A., Kumar, D. S., Gaffar, S. A., & Peerusab, S. (2025b). Heat and mass transfer in magneto-dissipative 

Buongiorno nanofluid flow along a semi-infinite plate in a non-Darcy porous medium. International Journal of 
Heat & Technology, 43(2). https://doi.org/10.18280/ijht.430220 
Ali, M., Nasrin, R., & Alim, M. A. (2021). Analysis of boundary layer nanofluid flow over a stretching 
permeable wedge-shaped surface with magnetic effect. Journal of Naval Architecture and Marine 
Engineering, 18(1), 11-24. 
Bhavani,D. J., Gopal, S.T., Gnanasekar, S., Pandiaraj, S., Muthuramamoorthy, M., Alodhayb, A. N., & 

Andrews, N. G. Case Studies in Thermal Engineering. https://doi.org/10.1016/j.csite.2024.104120. 
Buongiorno, J. (2006). Convective transport in nanofluids. https://doi.org/10.1115/1.2150834. 
Bég, O. A. (2013). Numerical methods for multi-physical magnetohydrodynamics. Journal of 
Magnetohydrodynamics and Plasma Research, 18(2/3), 93. 
Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. 
ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab. (ANL), Argonne, IL (United States). 
Cui, J., Munir, S., Farooq, U., Rabie, M. E. A., Muhammad, T., & Razzaq, R. (2021). On numerical thermal 

transport analysis of three‐dimensional bioconvective nanofluid flow. Journal of Mathematics, 2021(1), 
5931989. https://doi.org/10.1155/2021/5931989. 
Chamkha, A. J., & Aly, A. M. (2010). MHD free convection flow of a nanofluid past a vertical plate in the 
presence of heat generation or absorption effects. Chemical Engineering Communications, 198(3), 425-441. 
https://doi.org/10.1080/00986445.2010.520232. 

https://doi.org/10.1016/j.csite.2022.102427
https://doi.org/10.3329/jname.v21i2.74923
https://banglajol.info/index.php/JNAME/article/view/79532
https://doi.org/10.1166/jon.2025.2244
https://doi.org/10.1515/nleng-2017-0055
https://doi.org/10.22055/jacm.2024.47689.4765
https://doi.org/10.18280/ijht.430220
https://doi.org/10.1016/j.csite.2024.104120
https://doi.org/10.1115/1.2150834
https://doi.org/10.1155/2021/5931989
https://doi.org/10.1080/00986445.2010.520232


       S. Peerusab  , S. A. Gaffar, A.Anjum/ Journal of Naval Architecture and Marine Engineering, 23(2026) 41-60 

Numerical investigation: of non-similar thermal convection in Buongiorno nanofluid with Darcy–Forchheimer drag…  

 

59 

Farooq, U., Razzaq, R., Khan, M. I., Chu, Y. M., & Lu, D. C. (2021). Modeling and numerical computation of 
nonsimilar forced convective flow of viscous material towards an exponential surface. International Journal of 
Modern Physics B, 35(08), 2150118. https://doi.org/10.1142/S0217979221501186. 
Forchheimer, P. H. (1901). Wasserbewegung. Ver. Dtsch. Ing., 45, 1782-1788. 
Gebhart, B., Jaluria, Y., Mahajan, R. L., Sammakia, B., & Yovanovich, M. M. (1989). Buoyancy-induced flows 

and transport. https://doi.org/10.1115/1.3226555 
Gebhart, B., & Pera, L. (1971). The nature of vertical natural convection flows resulting from the combined 
buoyancy effects of thermal and mass diffusion. International Journal of Heat and Mass Transfer, 14(12), 2025-
2050. https://doi.org/10.1016/0017-9310(71)90026-3. 
Gangadhar, K., Kumari, M. A., & Chamkha, A. J. (2022). EMHD flow of radiative second-grade nanofluid over 
a Riga Plate due to convective heating: Revised Buongiorno’s nanofluid model. Arabian Journal for Science and 

Engineering, 47(7), 8093-8103. https://doi.org/10.1007/s13369-021-06092-7 
Gaffar, S. A., Bég, O. A., Kuharat, S., & Bég, T. A. (2024). Computation of hydromagnetic tangent hyperbolic 
non-Newtonian flow from a rotating non-isothermal cone to a non-Darcy porous medium with thermal radiative 
flux. Physics Open, 19, 100216. https://doi.org/10.1016/j.physo.2024.100216. 
Humane, P. P., Patil, V. S., Patil, A. B., & Shamshuddin, M. D. (2023). Buongiorno modelled nanoliquid 
consequence of thermal and solutal convection on the Magneto-micropolar fluid inside an inclined porous 

stretching device. Journal of Nanofluids, 12(1), 211-222. https://doi.org/10.1166/jon.2023.1949. 
Hussain, M., Imran, M., Waqas, H., Muhammad, T., & Eldin, S. M. (2023). An efficient heat transfer analysis 
of MHD flow of hybrid nanofluid between two vertically rotating plates using the Keller box scheme. Case 
Studies in Thermal Engineering, 49, 103231. https://doi.org/10.1016/j.csite.2023.103231. 
Hossain, M. M., Nasrin, R., & Hasanuzzaman, M. (2024). Unsteady magneto-porous convective transport by 
micropolar binary fluid due to inclined plate: An inclusive analogy. Heliyon, 10(2).   

Khatun, S., & Nasrin, R. (2021). Numerical modeling of Buongiorno’s nanofluid on free convection: 
thermophoresis and Brownian effects. Journal of Naval Architecture and Marine Engineering, 18(2), 217-239.  
Khan, A. W., 2022. Impact of time-dependent heat and mass transfer phenomenon for magnetized Sutterby 
nanofluid flow. Waves in random and complex media, pp.1-15.https://doi.org/10.1080/17455030.2022.2140857 
Khan, W. A. (2023). Significance of magnetized Williamson nanofluid flow for ferromagnetic 
nanoparticles. Waves in Random and Complex Media, 1-20.https://doi.org/10.1080/17455030.2023.2207390  

Khan, Z. H., Makinde, O. D., Usman, M., Ahmad, R., Khan, W. A., & Huang, Z. (2023). Inherent irreversibility 
in unsteady magnetohydrodynamic nanofluid flow past a slippery permeable vertical plate with fractional-order 
derivative. Journal of Computational Design and Engineering, 10(5), 2049-2064. 
https://doi.org/10.1093/jcde/qwad090 
Keller, H. B. (1978). Numerical methods in boundary-layer theory. Annual Review of Fluid Mechanics, 10, 
417-433. https://doi.org/10.1146/annurev.fl.10.010178.002221. 

Khan, B. M. H., Gaffar, S. A., Beg, O. A., Kadir, A., & Reddy, P. R. (2020). Computation of Eyring-Powell 
micropolar convective boundary layer flow from an inverted non-isothermal cone: thermal polymer coating 
simulation. Computational Thermal Sciences: An International Journal, 12(4). 
https://doi.org/10.1615/ComputThermalScien.2020033860 
Khan, W. A. (2023). Dynamics of gyrotactic microorganisms for modified Eyring Powell nanofluid flow with 
bioconvection and nonlinear radiation aspects. Waves in Random and Complex Media, 1-11. 

https://doi.org/10.1080/17455030.2023.2168086 
Khan, Z. H., Makinde, O. D., Trounev, A., Khan, W. A., & Ahmad, R. (2024). Entropy generation and heat 
transfer in Time-Fractional mixed convection of nanofluids in Darcy-Forchheimer porous channel. Engineering 
Science and Technology, an International Journal, 60, 101908. https://doi.org/10.1016/j.jestch.2024.101908 
Kuznetsov, A. V., & Nield, D. A. (2010). Natural convective boundary-layer flow of a nanofluid past a vertical 
plate. International Journal of Thermal Sciences, 49(2), 243-247. 

https://doi.org/10.1016/j.ijthermalsci.2009.07.015. 
Muskat, M., & Wyckoff, R. (1946). The Flow of Homogeneous Fluids Through Porous Media: Ann 
Arbor. Michigan, JW Edwards, 763. 
Makinde, O. D., Khan, Z. H., Trounev, A., Khan, W. A., & Ahmad, R. (2024). Fractional dynamics of entropy 
generation in unsteady mixed convection of a reacting nanofluid over a slippery permeable plate in Darcy–
Forchheimer porous medium. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für 
Angewandte Mathematik und Mechanik, 104(9), e202400083. https://doi.org/10.1002/zamm.202400083 

Nadeem, S., Ijaz, M., & Ayub, M. (2021). Darcy–Forchheimer flow under rotating disk and entropy generation 
with thermal radiation and heat source/sink. Journal of Thermal Analysis and Calorimetry, 143(3), 2313-2328. 
https://doi.org/10.1007/s10973-020-09737-1. 

https://doi.org/10.1142/S0217979221501186
https://doi.org/10.1115/1.3226555
https://doi.org/10.1016/0017-9310(71)90026-3
https://doi.org/10.1007/s13369-021-06092-7
https://doi.org/10.1016/j.physo.2024.100216
https://doi.org/10.1166/jon.2023.1949
https://doi.org/10.1016/j.csite.2023.103231
https://doi.org/10.1080/17455030.2022.2140857
https://doi.org/10.1080/17455030.2023.2207390
https://doi.org/10.1093/jcde/qwad090
https://doi.org/10.1146/annurev.fl.10.010178.002221
https://doi.org/10.1080/17455030.2023.2168086
https://doi.org/10.1016/j.jestch.2024.101908
https://doi.org/10.1016/j.ijthermalsci.2009.07.015
https://doi.org/10.1002/zamm.202400083
https://doi.org/10.1007/s10973-020-09737-1


       S. Peerusab  , S. A. Gaffar, A.Anjum/ Journal of Naval Architecture and Marine Engineering, 23(2026) 41-60 

Numerical investigation: of non-similar thermal convection in Buongiorno nanofluid with Darcy–Forchheimer drag…  

 

60 

Narahari, M. (2018, April). Unsteady free convection flow past a semi-infinite vertical plate with constant heat 
flux in water-based nanofluids. In IOP Conference Series: Materials Science and Engineering (Vol. 342, No. 1, 
p. 012085). IOP Publishing. https:// 10.1088/1757-899X/342/1/012085 
Razzaq, R., Farooq, U., Cui, J., & Muhammad, T. (2021). Non‐similar solution for magnetized flow of Maxwell 
nanofluid over an exponentially stretching surface. Mathematical Problems in Engineering, 2021(1), 5539542. 

https://doi.org/10.1155/2021/5539542. 
Reddy, R. P., Gaffar, S. A.,  Beg, O. A., & Khan, B. M. H. (2022). Hall and ion‐slip effects on nanofluid 
transport from a vertical surface: Buongiorno's model. ZAMM‐Journal of Applied Mathematics and 
Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 102(3), e202000174. 
https://doi.org/10.1002/zamm.202000174.d 
Razzaq, R., & Farooq, U. (2021). Non-similar forced convection analysis of Oldroyd-B fluid flow over an 

exponentially stretching surface. Advances in Mechanical Engineering, 13(7), 16878140211034604. 
https://doi.org/10.1177/16878140211034604. 
Raees, A., Farooq, U., Hussain, M., Khan, W. A., & Farooq, F. B. (2021). Non-similar mixed convection 
analysis for magnetic flow of second-grade nanofluid over a vertically stretching sheet. Communications in 
Theoretical Physics, 73(6), 065801. https://doi10.1088/1572-9494/abe932. 
Reddy, R., & Gaffar, S. A. (2024). Chemical Reaction and Viscous Dissipative Effects on Buongiorno’s 

nanofluid model Past an inclined plane: A Numerical Investigation. International Journal of Applied and 
Computational Mathematics, 10(2), 81. http://dx.doi.org/10.1007/s40819-024-01723-7. 
Sparrow, E. M., Quack, H., & Boerner, C. J. (1970). Local nonsimilarity boundary-layer solutions. AIAA 
journal, 8(11), 1936-1942. https://doi.org/10.2514/3.6029 
Sparrow, E. M., & Yu, H. S. (1971). Local non-similarity thermal boundary-layer solutions. 
https://doi.org/10.1115/1.3449827. 

Shaheen, A., Waqas, H., Imran, M., Raza, M., & Rashid, S. (2024). The effects of thermal radiation and heat 
source/sink on the flow and heat transfer characteristics of a hybrid nanofluid over a vertical stretching cylinder: 
Regression analysis. International Journal of Modern Physics B, 38(29), 2450397. 
https://doi.org/10.1142/S0217979224503971 
Saeed, A., Tassaddiq, A., Khan, A., Jawad, M., Deebani, W., Shah, Z., & Islam, S. (2020). Darcy-Forchheimer 
MHD hybrid nanofluid flow and heat transfer analysis over a porous stretching cylinder. Coatings, 10(4), 391. 

https://doi.org/10.3390/coatings10040391. 
Siddiqa, S., Begum, N., Hossain, M. A., Abrar, M. N., Gorla, R. S. R., & Al-Mdallal, Q. (2021). Effect of 
thermal radiation on conjugate natural convection flow of a micropolar fluid along a vertical surface. Computers 
& Mathematics with Applications, 83, 74-83. https://doi.org/10.1016/j.camwa.2020.01.011 
Usman, M., Haq, R. U., Hamid, M., Lu, D., & Zhang, Z. (2024). Natural convection role in MHD flow of heat 
exchange inside a wavy cavity. International Communications in Heat and Mass Transfer, 159, 108250. 

https://doi.org/10.1016/j.icheatmasstransfer.2024.108250. 
Uddin, M. J., Nasrin, R., & Alatawi, E. S. (2025). Augmenting thermal-material transport in boundary-layer 
flow over an upright sheet: An explicit finite difference approach. Journal of Naval Architecture and Marine 
Engineering, 22(1), 21-40. 
Vedavathi, N., Dharmaiah, G., Abdul Gaffar, S., & Venkatadri, K. (2021). Entropy analysis of nanofluid 
magnetohydrodynamic convection flow past an inclined surface: a numerical review. Heat Transfer, 50(6), 

5996-6021. https://doi.org/10.1002/htj.22159 
Waqas, M., Khan, W. A., Pasha, A. A., Islam, N., & Rahman, M. M. (2022). Dynamics of bioconvective Casson 
nano liquid from a moving surface capturing gyrotactic microorganisms, magnetohydrodynamics , and 
stratifications. Thermal Science and Engineering Progress, 36, 101492. 
https://doi.org/10.1016/j.tsep.2022.101492 
Wang, F., Saeed, A. M., Puneeth, V., Shah, N. A., Anwar, M. S., Geudri, K., & Eldin, S. M. (2023). Heat and 

mass transfer of Ag–H2O nano-thin film flowing over a porous medium: A modified Buongiorno’s 
model. Chinese Journal of Physics, 84, 330-342. https://doi.org/10.1016/j.cjph.2023.01.001. 
Waqas, H., Farooq, U., Yang, S., Muhammad, T., & Imran, M. (2023). Heat transfer aspects in Carreau 
nanofluid having hybrid nanoparticles through a porous medium. ZAMM‐Journal of Applied Mathematics and 
Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 103(3), e202100414. 
https://doi.org/10.1002/zamm.202100414 
Yahyaee, A., Hærvig, J., & Sørensen, H. (2024). Nanoparticle migration in nanofluid film boiling: A numerical 

analysis using the continuous-species-transfer method. International Journal of Heat and Mass Transfer, 224, 
125344. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125344. 
 

https://doi.org/10.1155/2021/5539542
https://doi.org/10.1002/zamm.202000174
https://doi.org/10.1177/16878140211034604
https://doi10.1088/1572-9494/abe932
http://dx.doi.org/10.1007/s40819-024-01723-7
https://doi.org/10.2514/3.6029
https://doi.org/10.1115/1.3449827
https://doi.org/10.1142/S0217979224503971
https://doi.org/10.3390/coatings10040391
https://doi.org/10.1016/j.camwa.2020.01.011
https://doi.org/10.1016/j.icheatmasstransfer.2024.108250
https://doi.org/10.1002/htj.22159
https://doi.org/10.1016/j.tsep.2022.101492
https://doi.org/10.1016/j.cjph.2023.01.001
https://doi.org/10.1002/zamm.202100414
https://doi.org/10.1016/j.ijheatmasstransfer.2024.125344

