http://www.banglajol.info/index.php/JNINB

Original Article

Journal of National Institute of Neurosciences Bangladesh, January 2020, Vol. 6, No. 1, pp. 3-8

ISSN (Online) 2518-6612 ISSN (Print) 2410-8030

Management Strategy of Patients Attending at Epilepsy Clinic in a Tertiary Care Hospital of Bangladesh

Mohammad Sayeed Hassan¹, Md. Shafikul Islam Khan², Paritosh Kumar Sarkar³, Anwar Israil⁴, Ferdous Ara⁵, Mohammad Ariful Islam⁶, Sheikh Farjana Sonia⁷, Junaid Abdul Qayyum⁸, Ariful Islam⁹, Uttam Kumar Saha¹⁰

¹Assistant Professor, Department of Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; ²Medical Officer, Department of Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; ³Associate Professor, Department of Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; ⁴Assistant Professor, Department of Neurology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh; ⁵Professor, Department of Transfusion Medicine, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; ⁶Assistant Professor, Department of Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; ⁶Assistant Professor, Department of Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; ⁷Assistant Professor, Department of Pediatrics, Institute of Child Health, Dhaka, Bangladesh; ⁸Medical Officer, Department of Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; ⁹Associate Professor, Department of Paediatric Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; ⁹Associate Professor, Department of Paediatric Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; ⁹Associate Professor, Department of Paediatric Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; ¹⁰Professor of Neurology, (In the post of Senior Consultant), Department of Neurology, Apollo Hospital, Dhaka, Bangladesh

[Received: 12 October 2019; Accepted: 20 November 2019; Published: 1 January 2020]

Abstract

Background: Epilepsy is a neuronal disorder that is observed globally but still it is not explored very well in most parts of the world. **Objective:** The aim of our study was to determine the types of epilepsies along with their treatment strategies among patients attending the outdoor epilepsy clinic in a referral tertiary care hospital. **Methodology:** This cross sectional study was carried out from the records of weekly epilepsy clinic of Department of Neurology at National Institute of Neurosciences and Hospital, Dhaka, Bangladesh from January 2018 to August 2019. Data were collected through a predesigned questionnaire containing information about demography, clinical features, EEG and imaging findings and treatment of patients. Results: A total number of 1832 patients were recruited. There was a male (55.3%) and urban (61.1%) predominance. Most (75.1%) of the patients were young (age range from 10 to 29 years). A large number of patients were student (44.4%) and 24.2% were unemployed. The duration of epilepsy in most patients were less than 5 years (40.7%). 58.3% patients took various forms of indigenous treatment prior to attending this clinic. 54.7% patients had no comorbid illness. EEG was abnormal in 34.5% patients of which 24.4% had focal abnormality and 10.1% had generalized epileptic discharge. In brain imaging (CT/MRI) only 16.4% showed abnormal findings. 49.5% patients were suffering from generalized epilepsy whereas 44.6% had partial epilepsy. Among the generalized epilepsy group, most of them had generalized tonic clonic seizure (GTCS) (75.4%), while 8.9% had absence seizure and 7.9% had tonic seizure. In partial epilepsy group, the majority were secondary generalized seizure (74.7%), followed by complex partial seizure (CPS) (18.7%) and simple partial seizure (6.6%).42.7% patients got single antiepileptic drug whereas 37.4% patients received dual drug. Polytherapy (three or more drugs) were prescribed in 14% patients. Valproic acid was the highest prescribed drug (29.3%) either as monotherapy or in combination. Carbamazepine (27.4%) was the second common drug followed by Levetiracetam (15.1%). Conclusion: Epilepsy affects almost all groups of the society. Most of the patients remain seizure-free with judicious anti-epileptic drugs. Therefore, more effort is needed for early accurate diagnosis and appropriate treatment of epilepsy. [Journal of National Institute of Neurosciences Bangladesh, 2020;6(1):3-87

Keywords: Management Strategy; Epilepsy Clinic; Bangladesh

Correspondence: Dr. Mohammad Sayeed Hassan, Assistant Professor, Department of Neurology, National Institute of Neurosciences & Hospital, Sher-E-Bangla Nagar, Agargaon, Dhaka, Bangladesh; Email: dr.sayeed@yahoo.com; Cell no.: +8801711442626 **Conflict of interest:** There is no financial conflict of interest relevant to this paper to disclose.

Funding agency: This research project was not funded by any group or any institution.

Contribution to authors: Hassan MS, Khan MSI, Sarkar PK contributed from the protocol preparation, data collection up to report writing. Manuscript writing was performed by Ara F, Israil A, Islam MA, Sonia SF. Qayyum JA, Islam A and Saha UK have revised the manuscript.

How to cite this article: Hassan MS, Khan MSI, Sarkar PK, Israil A, Ara F, Islam MA, Sonia SF, Qayyum JA, Islam A, Saha UK. Management Strategy of Patients Attending at Epilepsy Clinic in a Tertiary Care Hospital of Bangladesh. J Natl Inst Neurosci Bangladesh, 2020;6(1): 3-8

Copyright: ©2020. Hassan et al. Published by Journal of National Institute of Neurosciences Bangladesh. This article is published under the Creative Commons CC BY-NC License (https://creativecommons.org/licenses/by-nc/4.0/). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited, and is not used for commercial purposes.

Introduction

Epilepsy is a chronic neuronal disorder or group of disorders, which is characterized by the recurrent (two or more) epileptic seizures that usually recur unpredictably in the absence of provoking factors. An epileptic seizure is a clinical presentation which is linked to an abnormal and excessive discharge from a set of neurons in a specific locus of the brain. There are an estimated 50 million people with epilepsy in the world, of whom up to 75.0% live in resource-poor countries with little or no access to medical services or treatment¹⁻³.

World Health Organization (WHO) estimates that there are at least 1.5 to 2.0 million people with epilepsy in Bangladesh4. About half of the total epilepsy population lives in Asia⁵.The risk of having epilepsy at some point in average life span of any individual varies between 2.0 to 5.0%⁴. It has been found that up to 30% of those attending tertiary referral centers with refractory epilepsy do not in fact have epilepsy⁶. Neurologists are better at the diagnosis of epilepsy than non-specialists and the mistake rate is 5.6% and 18.9% cases respectively⁶.

Bangladesh is one of the densely populated countries in the world where many chronic neurological disorders are quite common. Although there is no national statistics yet in the country but there are some hospital based studies that reflect to some extent the situation of epilepsy in Bangladesh. Studies in developed countries shows prevalence rate of about 5 per 1,000 populations whereas in developing countries it is higher⁷. Men are more often affected than female and rural populations are affected more than the urban populations⁸. The etiology varies with age. Birth trauma, birth asphyxia, central nervous system infections are common in neonate and infancy whereas head trauma, brain tumor, stroke, infections are common causes in middle aged and elderly¹.

The Neurology Department of National Institute of Neurosciences and Hospital, Dhaka, Bangladesh has been providing service to epilepsy patients through specialized outdoor clinic. This epilepsy clinic is the highest referral center in Bangladesh. Therefore, the aim of this present study was to obtain a demographic profile of epilepsy patients attending the outdoor epilepsy clinic and to determine the types of epilepsies along with their treatment strategies.

Methodology

This cross-sectional study was carried out from the

Vol.6 No.1, January 2020

records of weekly epilepsy clinic of Department of Neurology at National Institute of Neurosciences and Hospital, Dhaka, Bangladesh from January 2018 to August 2019. Patients with history suggestive of seizure disorder attended this clinic. All patients who had been seen in the epilepsy clinic were enrolled into the study. A preformed questionnaire was used containing information on age, sex, habitat, clinical history from patients and observers, examination findings, previous and current medications, result of EEG and imaging studies for data collection. A review of baseline clinical information, EEG reports, other investigations, and follow-up records was performed. An EEG was advised routinely to all patients suggestive of epilepsy. EEG was performed at either first presentation or at any stage during the follow-up period. The findings were grouped into two main categories 'normal' and 'abnormal'. The abnormal EEG was defined as the presence of interictal or ictal epileptiform discharges and/or the presence of abnormal background activity with focal or generalized, slow waves or excessive fast waves, abnormal for the age and state of the patients. EEG abnormalities were considered focal if there was a localized spike and sharp wave discharge or persistent focal slowing. Neuroimaging (MRI, CT scan) were advised for all patients. Epilepsy was diagnosed when there was a history of two or more unprovoked seizures. These were classified with a simplified International League Against Epilepsy classification as generalized epilepsy which included myoclonic seizures, absence seizures, atonic seizures, generalized tonic-clonic seizures, generalized clonic seizures, or tonic seizures; partial epilepsy, which included simple or complex partial seizures, or secondarily generalized seizures9. Antiepileptics were prescribed when diagnosis of epilepsy was made by neurologist. Type of drug was chosen considering the efficacy, economic status and side effect profile. Statistical analysis was done by using SPSS version 21.0 for Windows. Assumptions of normality and homogeneity of variance were initially checked.

Results

A total number of 1832 patients were recruited. The majority of patients attending outdoor clinic were <30 years (10 to 29 years) age group (75.1%). Out of 1832 patients, 1013 were male and 819 were female. There was a slight male (55.3%) predominance (Table 1).

Hassan et al

Table 1: Age and Sex Distribution of the Study Population (n=1832)

Variables	Frequency	Percent
Age Group		
10 to 19 Years	762	41.6
20 to 29 Years	613	33.5
30 to 39 Years	306	16.7
40 to 49 Years	95	5.2
\geq 50 Years	56	3.0
Gender		
Male	1013	55.3
Female	819	44.7
Total	1832	100

Urban patients were residing in cities and in municipal corporations. All patients other than from urban areas were called as rural patients. There was urban (61.1%) predominance. A large number of patients were student (44.4%). Many of them were unemployed (24.2%) (Table 2).

Table 2: Residence and Occupation of Patients (n=1832)

Variables	Frequency	Percent
Residence		
Urban	1119	61.1
Rural	713	38.9
Occupation		
Student	815	44.4
House wife	170	9.3
Service	152	8.3
Business	95	5.2
Others	157	8.6
Unemployed	443	24.2
Total	1832	100

However, 1069(58.3%) patients took various forms of indigenous treatment prior to attending this clinic. Furthermore, 1002 (54.7%) patients had no comorbid illness. Mental retardation was the commonest comorbid illness (13.7%) followed by cerebral palsy (7.9%) (Table 3).

The duration of epilepsy in most patients were less than 5 years (40.7%) whereas 35.2% patients were suffering for ≥ 10 years (Table 4).

EEG were done in 1303 patients (71.1%). We could not do EEG in rest of the patients (28.9%). EEG was normal in 51.4% patients and abnormal in 48.6% patients. 34.3% had focal abnormality and 14.3% had generalized epileptic discharge. Brain imaging (CT/MRI) were done in 1079 patients (58.8%). Among them 778 (42.4%) revealed no abnormality. 301 (16.4%) showed various types of abnormal findings (Table 5).

Table	3:	Comorbidity	and	History	of	Indigenous
Treatm	ent a	among the Stud	y Pop	oulation (n=	=183	32)

Variables	Frequency	Percent
Comorbid illness		
None	1002	54,7
Mental retardation	251	13.7
Cerebral Palsy	145	7.9
Headache	143	7.8
Psychiatric illness	106	5.8
Hypertension	71	3.9
Others	114	6.2
Total	1832	100
History of Indigenous tr	eatment	
Yes	1069	58,3
No	763	42.7
Total	1832	100

Table 4: Duration of epilepsy (n=1832)

Duration	Frequency	Percent
<5 Years	745	40.7
5 to <10 Years	443	24.1
≥ 10 Years	644	35.2
Total	1832	100

Table	5:	EEG	and	CT/MRI	Findings	of	the	Patients
(n = 18)	32))			-			

Variables	Frequency	Percent
EEG finding		
Normal	670	36.6
Focal abnormality	447	24.4
Generalized abnormality	186	10.1
EEG not done	529	28.9
CT/MRI finding		
Normal	778	42.4
Abnormal	301	16.4
CT/MRI not done	753	41.2
Total	1832	100

Among the 1832 patient, 907 (49.5%) was suffering from various form of generalized seizures. 818 (44.6%) had various forms of partial seizure. 107 (5.9%) had no seizure disorder (Table 6). Most of non-epileptic patients were suffering from psychiatric disorders or syncope.

Among the generalized seizure group (n= 907), most of them had GTCS (75.4%), while 8.9% had absence seizure and 7.9% had tonic seizure(Table 7).

Journal of National Institute of Neurosciences Bangladesh

Table 6: Types of Epilepsy among the Study Population (n=1832)

Diagnosis	Frequency	Percent
Generalized Epilepsy	907	49.5
Partial Epilepsy	818	44.6
Non epileptic disorder	107	5.9
Total	1832	100

Table 7: Classification of generalized epileptic seizure (n=907)

Seizure type	Frequency	Percent
Generalized tonic	683	75.4
clonic seizure (GTCS)		
Absence	81	8.9
Tonic	72	7.9
Atonic	19	2.1
Myoclonic	40	4.4
Unclassified	12	1.3
Total	907	100

In partial seizure group (n=818), the majority were secondary generalized seizure (74.7%), followed by complex partial seizure (CPS) (18.7%) and simple partial seizure (6.6%) (Table 8).

Table 8: Classification of Partial Epileptic Seizure (n=818)

Seizure type	Frequency	Percent
Simple partial seizure (SPS)	54	6.6
Complex partial seizure (CPS)	153	18.7
Secondary GS (SGS)	611	74.7
Unclassified	24	2
Total	818	100

Out of 1832 patents, antiepileptic drugs were prescribed in 1725 (94.1%) patients. Antiepileptic drugs were not prescribed in 107 (5.9%) patients as they were not suffering from epilepsy. 783 (42.7%) patients got single antiepileptic drug whereas 685 (37.4%) patients received dual antiepileptic drug. Polytherapy (three or more drugs) were prescribed in 257 (14%) patients(Table 9).

Table 9: Number of antiepileptic drugs prescribed (n=1832)

Number of antiepileptic	Frequency	Percent
drug		
None	107	5.9
1	783	42.7
2	685	37.4
≥3	257	14.0
Total	1832	100

Valproic Acid was the highest prescribed drug (29.3%) either as monotherapy or in combination with other antiepileptic drugs. Carbamazepine/ Oxcarbazepine (27.4%) was the second common drug followed by newer antiepileptic drug Levetiracetam (15.1%)(Table 10).

Table 10: Name of antiepileptic drugs prescribed (either as monotherapy or in combination)

Name of drug	Frequency	Percent
Valproic Acid	537	29.3
Carbamazepine/Oxcarbazepine	e 501	27.4
Levetiracetam	276	15.1
Benzodiazepine	212	11.6
Phenobarbital	133	7.3
Lamotrigine	98	5.4
Phenytoin	71	3.9
Others	30	1.6

Discussion

The most common age of presentation of epilepsy was <30 years (75.1%) in this study. This result coincides with findings of Mannan et al⁸ in Bangladesh which is 16 to 31 years. In a study, Sridharan and Murthy¹⁰ showed similar findings with the onset of epilepsy reported mostly in the first three decades of the sample population's lives. Mac et al¹¹ showed a bimodal age distribution of epilepsy patients in developed country with a first peak in childhood and another one in old age. Except for Shanghai in China, most of the Asian countries have younger epileptic patients¹¹. The probable reason for the missing peak in the older age group in many Asian countries is due to the fact that most of the population are younger compared to number of old people ^{11,12}.

Here a male predominant (55.3%) picture is seen. Similar to reports from other Asian countries, there was slightly male predominance¹³. Epilepsy is slightly more common in men than in women but the sex-specific prevalence is not, in general, significantly different¹¹. Reports are similar in other Asian countries¹³. Many studies report a higher incidence in males than female in both developed and developing countries¹⁴. The difference in incidence may be due some sex hormones which has some association with epilepsy. It is proved scientifically that two female sex hormones (estrogen and progesterone) affect the threshold of seizure to some extent which lead to differences in gender^{15,16}.

In this study there is slight urban predominance (53%). A meta-analysis of published and non-published community-based studies in India showed a higher prevalence rate of epilepsy of 5.5 per 1000 (95% CI

Hassan et al

4.0-6.9) in rural areas than that of 5.1 per 1000 (3.5-6.7) in urban areas¹⁰. Again in some studies it is also found that urban men and women had a higher prevalence of epilepsy compared with rural ones, however the difference was not statistically significant⁸.

The highest number of patients were student (44.4%), followed by unemployed (24.2%). The report coincides with Mannan et al. [15] (16-31 years) in Bangladesh⁷. The students came to epilepsy clinic as they are the knowledgeable group of society who have an easy access to a tertiary health care system. They draw attention through their teachers and fellows and also the parents are more concerned with the illness of their kids.

However,58.3% patients took indigenous treatment prior to or concomitant with medical treatment. Superstitious belief about epilepsy is a strong barrier for total care of patients with epilepsy. The epilepsy patients are often reluctant to seek advice from physicians. A previous study showed that close to 70% of patients visited indigenous medicine practitioners, exorcists, spiritualists prior to consulting the clinic⁷.

Most of the patients (59.3%) had history of epilepsy for \geq 5 years. This is because patients came to this referral hospital from various parts of the country who were not responding to treatment for many years. Patients with epilepsy often have other medical illnesses, of which hypertension and diabetes are commonly observed comorbidities in these patients¹⁷. Inthis study 1002 (54.7%) patients had no comorbid illness. Mental retardation was the commonest comorbid illness (13.7%) followed by cerebral palsy (7.9%). The difference of finding is probably because most of our index population was younger. Previous study in Bangladesh also found higher frequency of mental retardation (13.7%), cerebral palsy (5%) which is similar to our finding¹⁸.

In a previous study in Bangladesh it has been found EEG the abnormalities in 48.7% cases of which 23.7% cases showed focal epileptic discharge; 10.5% cases showed focal or generalized slowing and 51.0% cases were normal¹⁹. In our study, EEG were done in 1303 patients (71.1%). EEG was normal in 51.4% patients and abnormal in 48.6% patients. 34.3% had focal abnormality and 14.3% had generalized epileptic discharge. In another study in Bangladesh, EEG was done in 1386 patients. Among them, 36% had abnormal EEG findings¹⁸.

Brain imaging (CT/MRI) were done in 1079 patients

(58.8%). Among them 778 (42.4%) revealed no abnormality. 301 (16.4%) showed various types of abnormal findings. A previous study among epilepsy patient found 61.5% various types of abnormality in MRI and 50% in CT scan of brain¹⁹. In another study CT scan abnormality was present in 10% patients while MRI was found abnormal only in 2% patients¹⁸.

Among 1832 patient, clinically 907 (49.5%) was suffering from various form of generalized seizures. 818 (44.6%) had various forms of partial seizures. This is similar to the reports from most of the Asian countries, where the IGE ranges from 50-69% and partial seizure from 31-50%²⁰⁻²¹. Eight incidence studies performed in developing countries, particularly in Africa, reported a greater proportion of individuals to have epilepsy characterized by generalized onset seizures than epilepsy characterized by partial seizures^{15,22}.But in a hospital based study in Srilanka, Senanayake classified 59.7% patients as secondary generalized seizure²³. Several series of studies from Liberia, Mumbai, Madras, Brazil reported the frequency between 40-50%23,24. Earlier study of Bangladesh showed a high frequency of partial epilepsies which was 54.0%¹⁸.

In this study, among the generalized seizure group (n= 907), most of them had GTCS (75.4%), while 8.9% had absence seizure and 7.9% had tonic seizure. A previous hospital based study showed among generalized seizure patients, the majority being GTCS (70%), the frequency of Absence seizure was 12%, Tonic seizure 8.0%. Only 2.0% patients had Myoclonic seizure¹⁸. In partial seizure group (n=818), the majority were secondary generalized seizure (74.7%), followed by complex partial seizure (CPS) (18.7%) and simple partial seizure (6.6%).Earlier study of Bangladesh showed among the LRE group highest number of patients had secondary generalized seizure (63.0%). Frequency of CPS and SPS were comparatively lower (21.0% and 11.0%)¹⁸.

Monotherapy has been the gold standard of epilepsy treatment for many years. Various first generation AEDs are widely used as monotherapy in most of the Asian countries²⁵⁻²⁸. A series of trials by Reynolds and Shorvon also showed similar effectiveness with monotherapy²⁹. In this study, 42.7% patients received single antiepileptic drug while 37.4% dual and 14% three or more antiepileptic drugs. In a previous study done in a tertiary care hospital in Bangladesh, the number of patients on monotherapy and dual AED therapy were 67.0% and 24.0% respectively and polytherapy (i.e. >3 AEDs) was used only in 9.0%30.

Vol.6 No.1, January 2020

The number of polytherapy was higher in our study because most patients referred to this hospital were not responding to treatment with monotherapy for years.

In this study, Valproic acid was the highest prescribed drug (29.3%) either as monotherapy or in combination with other antiepileptic drugs. Carbamazepine (27.4%) was the second common drug followed by Levetiracetam (15.1%) and Benzodiazepines (11.6%). In a previous study done in a tertiary care hospital in Bangladesh, Carbamazepine (67.0%) was the most frequently prescribed AED, followed by valproic acid (43.0%), Phenobarbital (17.0%), and Phenytoin (8.0%). Carbamazepine was prescribed in 37.0% patients as monotherapy followed by Sodium valproate in 21% and Phenobarbital in 8.0% patients. Newer generation drugs - lemotrigine and topiramate were used only as add on therapy in combination with CBZ and VPA in only 2% patients³⁰.

Conclusion

Epilepsy is a significant health problem in Bangladesh but it is still not properly out of shadow. Most of the patients are young and a significant portion of them are unemployed. It takes several years for a patient to consult with a neurologist. Detailed history, clinical examination and routine EEG and imaging studies have helped in classifying many of the previously undiagnosed seizures. Most of the patients remained seizure-free with commonly used anti-epileptic drugs. So more awareness about epilepsy is needed for early detection and treatment of this troublesome illness.

References

1. Meinardi H, Scott RA, Reis R, Sander JW. The treatment gap in epilepsy: the current situation and ways forward. Epilepsia 2001;42:136-4

2. World Health Organization: Epilepsy: epidemiology, aetiology and prognosis. WHO fact sheet; 2001. Available at: http://www.who.int/inf-fs/en/fact165.html.

3. Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia. 2010;51(5):883-90

4. How Common is Epilepsy in South-East Asia? Some facts and figures on Epilepsy. Available at: http://tinyurl.com/ngcl4bd

5. Ngugi AK, Kariuki SM, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Incidence of epilepsy: a systematic review and meta-analysis. Neurology. 2011;77(10):1005-12

6. Neligan A, Sander JW. The incidence and prevalence of epilepsy.London: UCL Institute of Neurology. 2009

7. Banu S, Khan N, Hossain M, Jahan A, Parveen M, Rahman N, et al. Profile of childhood epilepsy in Bangladesh. Dev Med ChildNeurol. 2003;45:477-82

8. Mannan MA. Epilepsy in Bangladesh. Neurology Asia 2004; 9 (Supplement 1): 18

9. ILAE. Commission on Classification and Terminology of International League against Epilepsy: proposal for revised

classification of epilepsies and epileptic syndrome. Epilepsia 1989; 30: 389–99

10. Sridharan R, Murthy BN; Prevalence and pattern of epilepsy inIndia. Epilepsia 1999;40(5):631-6

11. Mac TL, Tran DS, Quet F, Odermatt P, Preux PM, Tan CT. Epidemiology,etiology, and clinical management of epilepsy in Asia: ASystematic Review. Lancet Neurol 2007;6:533–543

12. Singhal BS: Neurology in developing countries: population perspective. Arch Neurol 1998;55:1019–1021

13. Fong G, Mak W, Cheng T, Chan K, Fong J, Ho S. A prevalencestudy of epilepsy in Hong Kong. Hong Kong Med J 2003;9:252-7

14. Noronha AL, Borges MA, Marques LH, Zanetta DM, Fernandes PT, De Boer H, et al. Prevalence and pattern of epilepsy treatment in different socioeconomic classes in Brazil. Epilepsia. 2007;48(5):880-5

15. Saraceno B.Epilepsy in the Who European Region. 2005

16. Lavados J, Germain L, Morales A, Campero M, Lavados P. A descriptive study of epilepsy in the district of El Salvador, Chile, 1984–1988. Acta neurologica scandinavica. 1992;85(4):249-56

17. Ahmad N, Othaman NI, Islahudin FA. Medication adherence and quality of life in epilepsy patients. Int J Pharm Pharm Sci. 2013;5(suppl 2):401-4

18. Khan SU. Characteristics of epilepsy patients at a tertiary care hospital in Bangladesh. Research 2014;1:74

19. Salam A, Quddus MR, Sheikh MS, Azim MA, Hussain ME. Clinico-Demographic Characteristics and Different Diagnostic Findings of Epilepsy Patients in a Specialized Hospital outside Dhaka in Bangladesh. Journal of National Institute of Neurosciences Bangladesh. 2016;2(1):3-9

20. Radhakrishnan K, Pandian JD, Santhoshkumar T, Thomas SV, Deetha TD, Sarma PS, et al. Prevalence, knowledge, attitude, and practice of epilepsy in Kerala, South India. Epilepsia. 2000;41(8):1027-35

21. Kwong KL, Chak WK, Wong SN, So KT. Epidemiology of childhood epilepsy in a cohort of 309 Chinese children. Pediatric neurology. 2001;24(4):276-82

22. Wright J, Pickard N, Whitfield A, Hakin N. A population-based study of the prevalence, clinical characteristics and effect of ethnicity in epilepsy. Seizure. 2000;9(5):309-13

23. Senanayake N. Classification of epileptic seizures: a hospital-based study of 1,250 patients in a developing country. Epilepsia 1993;34(5):812–818

24. Mani KS, Rangan G. Epilepsy in the Third World-Asian aspects. In: Comprehensive epileptology. Edited by Dam M, Gram L. New York: Raven Press; 1990:781–793

25. Krishnan A, Sahariah SU, Kumar KS. Cost of epilepsy in patients attendinga secondary-level hospital in India. Epilepsia 2004;45:289–291

26. Gunawan D. Epilepsy management with limited resources. Indonesianexperience. Neurol Asia 2004;9(suppl 1):16–17

27. Seneviratne U, Rajapakse P, Pathirana R, Seetha T. Knowledge, attitude, and practice of epilepsy in rural Sri Lanka. Seizure. 2002;11(1):40-3

28. Liu L, Yiu CH, Yen DJ, Chou MH, Lin MF. Medication education for patients with epilepsy in Taiwan. Seizure 2003;12(7):473-7

29. Shorvon SD, Reynolds EH. Unnecessary polypharmacy for epilepsy.BMJ 1977;1:1635–1637

30. Habib M, Khan SU, Hoque MA, Mondal MB, Hasan AH, Chowdhury RN, et al. Antiepileptic drug utilization in Bangladesh: experience from dhaka medical college hospital. BMC research notes. 2013;6(1):473