Original Article

EGG SUPPLEMENTATION AND DIETARY INTAKE VARIABILITY DURING CYTOTOXIC CHEMOTHERAPY CYCLES OF BREAST CANCER PATIENTS

Khursheda Akhtar¹, Saidul Arefin², Mahbuba Kawser³, Fahmida Faizha Sham⁴, Sheikh Nazrul Islam⁵

ABSTRACT

Background: The variability in dietary intake during chemotherapy, coupled with the adverse effects of cytotoxic agents, highlights the critical need for targeted nutritional strategies to mitigate malnutrition and support recovery. This study aims to assess dietary intake variability among breast cancer patients undergoing cytotoxic chemotherapy with egg supplementation.

Methods: The study was conducted among breast cancer patients receiving chemotherapy at the National Institute of Cancer Research and Hospital (NICRH) from December 2022 to November 2023. Fifty-two patients were enrolled in each group (control and experimental). The experimental group received a supplementation of three eggs (one whole egg and white portion of two eggs). Nutritional status was assessed using the 7-point Subjective Global Assessment (SGA) tool, classifying patients as well-nourished or moderately to severely malnourished. Dietary intake was evaluated using a 7-day food frequency questionnaire. **Results:** The intervention group showed significant improvements in dietary habits and health outcomes compared to the control group. Rice intake was higher in the intervention group (90.3% vs. 78.8%), and they consumed more roti (59.6% vs. 40.4%). Egg consumption increased to 100% in the experimental group, while the control group showed no change. Milk intake also increased in the intervention group (80.7% vs. 73.1%). Vegetable intake improved in both groups, with the experimental group increasing from 40.4% to 59.6%, while the control group saw a larger increase (21.2% to 76.9%). Fruit intake increased in the intervention group (78.8% to 84.5%) but decreased in the control group. The intervention group consumed significantly more egg protein (20.07 g vs. 12.53 g, p<0.001). The intervention group effectively mitigated weight loss over time, with 76.9% maintaining no weight loss at the end line compared to only 32.7% in the control group (p < 0.05) and better food habits and fewer GI symptoms compared to the control group.

Conclusion: Egg supplementation significantly increased egg protein intake in the experimental group, but overall dietary intake remained inadequate, highlighting the need for comprehensive nutritional interventions addressing barriers such as taste changes, gastrointestinal symptoms, and fatigue to improve nutritional status and quality of life for chemotherapy patients.

JOPSOM 2024; 43(2): 17-28 DOI: https://doi.org/10.3329/jopsom.v43i2.84194

Keywords: Dietary intake variability, Cytotoxic chemotherapy, Egg supplementation

- 1. Associate Professor, Public Health and Hospital Administration, National Institute of Preventive and Social Medicine (NIPSOM), Mohakhali, Dhaka.
- 2. Director, Institute of Nutrition and Food Science (INFS), University of Dhaka, 01729920381, msaidularefindmc@gmail.com
- 3. Institute of Nutrition and Food Science (INFS), University of Dhaka, 01715095605, mahbubakawser@gmail.com
- 4. Student of MPhil, National Institute of Preventive and Social Medicine (NIPSOM), Mohakhali, Dhaka. Mail: fahmidafaizha72@gmail.com, Mobile: 01925282338
- 5. Ex-Director, Institute of Nutrition and Food Science (INFS), University of Dhaka. 01554548543, sheiknazrul09@gmail.com

Correspondence: Dr. Khursheda Akhtar, Associate Professor, Public Health and Hospital Administration, National Institute of Preventive and Social Medicine (NIPSOM), Mohakhali, Dhaka. 01714712174, dr.khursheda1974@gmail.com.

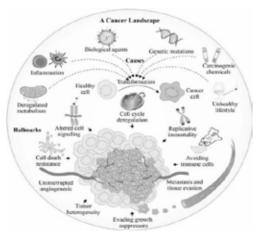
INTRODUCTION

Cancer remains a leading global health concern, with a projected 19.3 million new cases and about 10 million deaths from the disease in 2020 ¹. With 11.7%

of all new cancer cases, breast cancer is the most common kind among the others². Survival rates have increased dramatically due to advancements in oncological therapies, especially cytotoxic

DOI: https://doi.org/10.3329/jopsom.v43i2.84194

chemotherapy³. However, patients frequently experience nutritional intake variability as a result of the negative side effects of chemotherapy, which include nausea, vomiting, anorexia, mucositis, and impaired taste perception. Treatment tolerance, nutritional health, and general quality of life can all be adversely affected by such variations⁴.


The nutritional status significantly influences treatment outcomes in cancer care⁵. Malnutrition affects up to 40% of cancer patients receiving chemotherapy and is linked to heightened morbidity, decreased treatment adherence, and lower survival rates⁶. Optimal nutritional intake can enhance immune function, reduce treatment-related toxicities, and improve therapeutic efficacy⁷. The variability of dietary intake during chemotherapy cycles is significant yet underexplored8, especially in low- and middle-income countries (LMICs) Bangladesh, where distinct dietary practices and inadequate nutritional support services present further challenges.

During chemotherapy, nutritional intake varies depending on a number of factors⁹. Physiological elements such as gastrointestinal upsets, fatigue, and changes in metabolic needs interplay with psychological factors like anxiety and depression¹⁰. Furthermore, dietary practices are further shaped by sociocultural factors such as food preferences, meal schedules, and socioeconomic position¹¹. Crucially, research has revealed that patients' eating habits frequently worsen throughout the chemotherapy cycle, resulting in inadequate intake of protein, vitamins, and other vital nutrients that are necessary for sustaining energy levels and promoting the body's healing processes. New research highlights how customized dietary therapies may help address these issues¹².

From a systematic review it was said that In order to reduce treatment-related toxicities, promote treatment effectiveness, and avoid recurrence, food and beverage consumption and weight status can be integrated with cancer treatment¹³. However, these findings predominantly emerge from high-income settings, with limited representation of LMICs, where dietary habits and healthcare access differ significantly.

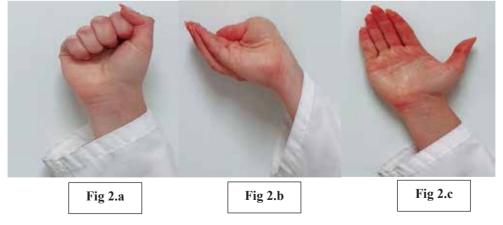
In Bangladesh, dietary patterns are characterized by high carbohydrate consumption, with limited intake of protein-rich and micronutrient-dense foods. These dietary habits, coupled with the metabolic demands and side effects of chemotherapy, may exacerbate malnutrition risk. To date, there is limited data on how chemotherapy impacts dietary intake variability in Bangladeshi breast cancer patients. Understanding this variability is crucial for developing context-specific nutritional interventions that align with cultural preferences and resource availability.

This study aims to assess dietary intake variability among breast cancer patients undergoing cytotoxic chemotherapy with egg supplementation. By identifying patterns of intake fluctuations and their underlying causes, the findings will inform evidence-based strategies to optimize nutritional support during chemotherapy. Such interventions could enhance treatment tolerance, improve nutritional status, and ultimately contribute to better clinical outcomes and quality of life. Additionally, this research addresses a critical gap in the literature, providing data from an LMIC perspective, which is essential for global cancer care strategies.

Figure 1: Schematic diagram showing different intrinsic and extrinsic biological/molecular events potentiating the transformation of a normal cell to the cancer cell, while the lower part of this diagram showing different hallmarks of a transformed cancer cell³.

METHODS

Participants: The study was performed in-patients receiving chemotherapy for breast cancer at the Department of Oncology at National Institute of Cancer Research and Hospital (NICRH) from December 2022 to November 2023. Patients in this trial were eligible if they had been receiving at least 2 cycles of chemotherapy with histopathological confirmed breast cancer. Exclusion criteria were as follows: Patients with a history of recurrence. metastasis, or treatment failure. Patients with advanced stages of breast cancer, extreme ages (<18 and >50 years), and Those who have comorbidities such as diabetes mellitus, thyroid disease, coronary or peripheral vascular insufficiency, renal disease, liver disease, para-thormone deficiency, high lipid profile. and blood pressure, and a history of mental illness or a history or taking drug(s) antagonist to omega 3 fatty acid or vitamin D will be excluded. H/O bleeding disorder. Fifty-two breast cancer patients in each group (control arm and experimental arm) were eligible for the study. Three eggs were supplemented (one full egg and two white portion of eggs). The study was performed in accordance with the Helsinki declaration; the subjects gave their written consent for the study. The control group showed a significant increase in vegetable intake, while the experimental group had improvements in fruit consumption, with both groups increasing the proportion consuming ≤½ cup of vegetables and fruits.


Nutritional status

The 7-point Subjective Global Assessment(SGA) tool was used to classify a patient's nutritional status as either well-nourished or moderately to severely malnourished on the basis of 7 point. From three components of SGA, in this article SGA uses

information focused on medical history (i.e., weight loss, changes in dietary intake, gastrointestinal symptoms); other parameters (functional capacity and physical examination i.e., loss of sub cutaneous fat, muscle wasting, and edema or ascites) were excluded from this study. Each of these factors is rated (1-7) to provide a comprehensive overview of the patient's nutritional health. The assessment begins by asking about unintentional weight loss, with specific attention to duration and amount, as this can indicate malnutrition. Patient was measured usual weight from height-weight chart, then measured current weight by bathroom scale(±0.5kg). Overall loss of weight was measured and % of loss was calculated. If increase weight trend, add 1 point, if decrease weight trend within 1 month, minus 1 point, and rated 1-7: 7=0% weight loss; 1 = 2.15% weight loss. Dietary intake history was taken to any change in past 2 weeks that was examined to detect reductions or changes due to illness or treatment. Gastrointestinal symptoms that persist for > 2 weeks like nausea, vomiting, diarrhea, or anorexia, are also noted as they can impact nutrient absorption and overall intake.

Dietary intake evaluation

Dietary intake was assessed using a 7-day food frequency questionnaire, with a dietitian verifying the completeness and accuracy of the data. Measurements were conducted at two time points: baseline and 12 weeks' post-intervention (end line). To estimate portion sizes, visual aids were utilized: one closed fist approximated a cup of cooked vegetables or fruits (Fig. 2a), one cupped hand represented half a cup of carbohydrates (Fig. 2b), and the palm of a hand equated to 3 to 4 ounces of protein (Fig. 2c). One glass means 250 ml glass.

Statistical analysis

Statistical analysis was performed with the use of statistical software (SPSS, version 23). For association chi square test and independent sample's t-tests was

done. Descriptive analysis was presented by mean standard deviation, frequency, percentage. Data were presented at 95 % confidence intervals (CI). The level of significance was set at $\alpha = 0.05$.

Table 1: Carbohydrate pattern before and after intervention for both group breast cancer patients

Amount of food items consumed		grou n	Consumed by the experimental group (n=52) n (%)		Consumed by the control group (n=52) n (%)	
		Baseline	End-line	Baseline	End-line	
	frequency	1	T	T	1	T
One-times		04 (7.7)	5 (9.6)	10 (19.2)	10 (19.2)	>0.05
Two-three	imes daily	46 (88.4)	47 (90.3)	40 (76.9)	41(78.8)	
>3-times		02 (3.9)	0 (0)	02 (3.9)	1(1.9)	
Every day/v		52 (100)	52 (100)	52 (100)	52 (100)	
Amount of	Rice					
<1 cup		07 (13.5)	09(17.3)	03 (5.7)	5(9.6)	
1 cup		27 (51.9)	25(48.1)	24 (46.2)	24(46.2)	
>1 cup		18 (34.6)	18 (34.6)	25 (48.1)	23(44.2)	
Roti intake	;					
No		19 (36.5)	18 (34.6)	24 (46.2)	24 (46.2)	>0.05
One-two	daily	30 (57.7)	31(59.6)	20 (38.5)	21(40.4)	
times	weekly	14 (26.9)	13 (25.0)	05 (9.6)	04(7.7)	
Two-three	imes daily	03 (5.8)	04 (7.7)	08 (15.3)	07(13.5)	
Every day/v	week	18 (34.6)	19 (36.5)	23 (44.8)	22(42.3)	
3-4 times/w	reek	01 (1.9)	0 (0)	0 (0)	0 (0)	
Quantities of	of Roti) í			
No		19 (36.5)	18 (34.6)	24 (46.2)	24 (46.2)	
Two		11 (21.2)	12 (23.1)	13 (25.0)	12 (23.1)	
Three		22 (42.3)	22 (42.3)	15 (28.8)	16(31.5)	1
Potato inta	ke					>0.05
No		07 (13.5)	06 (11.5)	06 (11.5)	07 (13.5)	
One-two	daily	22 (42.3)	23 (44.2)	17 (32.7)	17(33.4)	
times	weekly	10 (19.2)	12 (23.1)	10 (19.2)	10 (19.2)	1
Two-three		23 (44.2)	22 (42.3)	29 (55.8)	30 (57.7)	1
Every day/v		22 (42.3)	21(40.4)	24 (46.2)	24 (46.2)	1
3-4 times/week		13 (25.0)	13 (25.0)	12 (23.1)	13 (25.0)	1
Amount of		. , , ,	/	` /		
No	•	07 (13.5)		06 (11.5)		
≤ 1/2 cup		41 (78.8)	44(84.5)	46 (88.5)	44(84.5)	1
One cup		04 (7.7)	1(1.9)	-	02(3.8)	1

Table 1 summarized the carbohydrate consumption patterns among breast cancer patients in the experimental and control groups before and after the intervention. A notable finding was the higher frequency of rice intake (2–3 times daily) in the experimental group compared to the control group at the end line (90.3% vs. 78.8%). The control group consistently had a slightly greater proportion consuming more than 1 cup of rice at both baseline and end line (48.1% and 44.2% vs. 34.6% in the

experimental group). Regarding roti intake, the experimental group consumed roti 1-2 times daily more frequently at both baseline and end line compared to the control group (59.6% vs. 40.4% at end line). Additionally, a larger proportion of the experimental group consumed 3 rotis per serving at both time points. For potato intake, the majority in both groups consumed $\leq \frac{1}{2}$ cup of potatoes, with similar proportions at the end line (84.5% in both groups).

Table 2: Protein intake pattern before and after intervention for both group breast cancer patients

Amount of food ite consumed	ems		the experimental n=52) n (%)		by the control =52) n (%)	P value	
		Baseline	End line		nd line	_	
Fish intake		24501110	2114 11116	2501110			
No		01 (1.9)	01 (1.9)	03 (5.8)	03 (5.8)	>0.05	
One-two times	daily	50 (96.2)	50 (96.2)	27 (51.9)	27 (51.9)		
	weekly	14 (26.9)	14 (26.9)	09 (17.3)	09 (17.3)	_	
Two-three times dai		01 (1.9)	01 (1.9)	01 (1.9)	01 (1.9)		
Every day/week		22 (42.3)	22 (42.3)	22 (42.3)	22 (42.3)		
3-4 times/week		15 (28.8)	15 (28.8)	15 (28.8)	15 (28.8)		
Amount of fish		1 - (/		1 - ()	- (/		
No		01 (1.9)	01 (1.9)	03 (5.8)	03 (5.8)	>0.05	
One Piece		50 (96.2)	50 (96.2)	48 (92.3)	48 (92.3)		
Two		01 (1.9)	01 (1.9)	01 (1.9)	01 (1.9)		
Meat intake		. (===)	. (/	. (/	1 1 1 1 1		
No		10 (19.2)	8(15.4)	13 (25.0)	15 (28.8)	>0.05	
One-two times	daily	40 (76.9)	42(80.7)	37 (71.2)	35 (67.3)	1	
	weekly	34 (65.4)	36(69.2)	35 (67.3)	35 (67.3)	1	
Two-three times dai		02 (3.8)	02 (3.8)	02 (3.8)	02 (3.8)	1	
Every day/week		-	07 (13.5)	-	01(1.9)	1	
3-4 times/week		08 (15.4)	01(1.9)	04 (7.1)	01(1.9)		
		, , ,		(.)	- (-)		
Amount of meat in	take						
No		10 (19.2)	10 (19.2)	13 (25.0)	13 (25.0)		
One Piece		42 (80.8)	42 (80.8)	39 (75.0)	39 (75.0)		
Dal Intake		()	()	1 ()	()		
No		05 (9.6)	03 (5.8)	14 (26.9)	10 (19.2)	>0.05	
One-two times	daily	13 (25.0)	15(28.8)	18 (15.4)	22(42.3)		
	weekly	20 (38.5)	23(44.2)	14 (26.9)	14(26.9)		
Two-three times dai		34 (65.4)	34 (65.4)	30 (57.7)	20(57.7)		
Every day/week		11 (21.2)	12 (23.1)	13 (25.0)	15(28.8)		
3-4 times/week		16 (30.8)	14 (26.9)	11 (21.2)	13(25.0)	_	
Amount of Dal intal	ke	(= 1 - 7			- ()		
No		05 (9.6)	03 (5.8)	14 (26.9)	10 (19.2)		
≤ 1/2 cup		22 (42.3)	25 (48.1)	28 (53.9)	21(59.6)		
One cup		25 (48.1)	22 (42.3)	10 (19.2)	21(59.6)	_	
Egg intake frequer	ıcv		1 (12 /	1 - (/	1 (*/		
No	J.	06 (11.5)	0	09 (17.3)	11(21.2)	>0.05	
One times	daily	45 (86.5)	52(100)	42 (80.8)	40 (80.8)	1	
•	weekly	13 (25.0)	-	14 (26.9)	12 (23.1)	1	
Two times daily	,	01 (1.9)	-	01 (1.9)	01 (1.9)	1	
Every day/week		27 (51.9)	-	22 (42.3)	19(36.5)	1	
		06 (11.5)	-	07 (13.5)	10 (19.2)	1	
3-4 times/week		,				1	
Egg Amount		06 (11.5)	_	09 (17.3)	11(21.2)		
Egg Amount No		06 (11.5) 27 (51.9)		09 (17.3)	11(21.2) 40 (80.8)		
Egg Amount No One		27 (51.9)	-	42 (80.8)	40 (80.8)		
Egg Amount No One Two			- - - 52		40 (80.8) 01 (1.9)	- -	
Egg Amount No One Two Three		27 (51.9)	- - - 52	42 (80.8)	40 (80.8)		
Egg Amount No One Two Three Milk intake		27 (51.9) 01 (1.9)		42 (80.8) 01 (1.9)	40 (80.8) 01 (1.9) 0	>0.05	
	daily	27 (51.9)	- - - 52 10 (19.2) 38(73.1)	42 (80.8)	40 (80.8) 01 (1.9)	>0.05	

DOI: https://doi.org/10.3329/jopsom.v43i2.84194

Two-three times daily	-	4(7.7)	-	06 (11.5)	
Every day/week	13 (25.0)	8(15.4)	12 (23.1)	10 (19.2)	
3-4 times/week	09 (17.3)	10 (19.2)	02 (3.8)	09 (17.3)	
Amount of Milk					
No	14 (26.9)	10 (19.2)	29 (55.8)	23 (44.2)	
One glass	38 (73.1)	42 (80.7)	23 (44.2)	29 (55.8)	

Table 2 summarized the protein intake patterns of breast cancer patients in both the experimental and control groups before and after the intervention. Key findings revealed notable changes in dietary habits. In the experimental group, nearly all participants (96.2%) consumed fish 1-2 times daily at both baseline and end line, significantly higher than the control group (51.9%). Most participants in both groups consumed one piece of fish per serving (96.2% in the experimental group and 92.3% in the control group). Meat intake showed a slight increase in daily consumption in the experimental group (from 76.9% to 80.7%), while the control group experienced a decrease (from 71.2% to 67.3%). Weekly meat consumption remained stable in the control group (67.3%), while it increased slightly in the experimental group (from 65.4% to 69.2%). For dal intake, the experimental group had a modest increase in those consuming dal 1-2 times daily (from 25.0% to 28.8%), while the control group showed a substantial increase

from 15.4% to 42.3%. The proportion of participants consuming ≤½ cup of dal also rose in both groups, with the experimental group increasing from 42.3% to 48.1%. Regarding egg consumption, the experimental group saw a remarkable increase, with 100% of participants consuming eggs daily at the end of the intervention, compared to 86.5% at baseline. In contrast, the control group showed no change in the daily egg consumption (80.8% at both baseline and end line). The majority of participants in both groups consumed one egg daily (experimental: 51.9%; control: 80.8%). Finally, milk intake increased in the experimental group, with daily milk consumption rising from 73.1% to 80.7%, while the control group saw a smaller increase from 44.2% to 55.8%. The proportion of participants not consuming milk decreased in both groups, with a more notable reduction in the experimental group (from 26.9% to 19.2%).

Table 3: Vegetable and fruits intake pattern before and after intervention for both group breast cancer patients

Amount of food items consumed		group	he experimental (n=52) %)	Consumed I group n	P value	
		Baseline	End line	Baseline	End line	
Vegetables in	ntake					
No		00 (0.00)	00 (0.00)	01 (1.9)	01 (1.9)	>0.05
One/two	Daily	21 (40.4)	31 (59.6)	11 (21.2)	40 (76.9)	
times	Weekly	06 (13.5)	06 (13.5)	04 (7.7)	10 (19.2)	
Two-three tim	nes daily	31 (59.6)	21 (59.6)	40 (76.9)	11 (21.2)	
Every day/we	ek	33 (63.5)	33 (63.5)	37 (71.2)	27(51.9)	
3-4 times/wee	k	13 (25.0)	13 (25.0)	10 (19.2)	14 (26.9)	
Amount of vegetables						
No		00 (0.00)	00 (0.00)	01 (1.9)	1(1.9)	
≤ 1/2 cup		27 (51.9)	25(48.1)	37 (71.2)	40(76.9)	
One cup		25 (48.1)	27(51.9)	14 (26.9)	9(17.3)	
Fruits intake						>0.05
No		7 (13.5)	6(11.5)	09 (17.3)	11 (21.2)	
One/two	Daily	41 (78.8)	44 (84.5)	42 (80.8)	38(73.1)	
times	Weekly	13 (25.0)	15(28.8)	17 (32.7)	17(32.7)	
Two-three times daily		04 (7.7)	2(3.8)	-	03 (5.8)	
Every day/week		24 (46.2)	28(53.9)	22 (42.3)	18(15.4)	
3-4 times/week		08 (15.4)	03 (5.8)	05 (9.6)	6(11.6)	
Amount of F	ruits			. ,	. ,	
No		07 (13.5)	06 (11.5)	09 (17.3)	11 (21.2)	

≤ 1/2 cup	32 (61.5)	36(69.3)	06 (11.5)	24 (46.1)
One cup	14 (26.9)	10 (19.2)	37 (71.2)	17(32.7)

Table 3 summarized the vegetable and fruit intake patterns of breast cancer patients in both the experimental and control groups before and after the intervention. Key findings highlighted significant changes in vegetable and fruit consumption. In the experimental group, daily vegetable intake increased from 40.4% at baseline to 59.6% at end line, while the control group showed a remarkable rise from 21.2% to 76.9%. Weekly vegetable intake remained unchanged in the experimental group (13.5%), but it increased in the control group from 7.7% to 19.2%. The proportion of participants consuming ≤½ cup of vegetables

remained stable in the experimental group (51.9% to 48.1%), while it increased slightly in the control group (71.2% to 76.9%). For fruit intake, daily consumption rose in the experimental group from 78.8% to 84.5%, whereas it declined in the control group from 80.8% to 73.1%. Weekly fruit intake also increased in the experimental group (from 25.0% to 28.8%), while the control group maintained the same level at 32.7%. The proportion of participants consuming $\leq \frac{1}{2}$ cup of fruits grew significantly in the experimental group (from 61.5% to 69.3%), while the control group showed a substantial increase from 11.5% to 46.1%.

Table 4: Dietary Nutrients intake difference between intervention vs. controls

Variables	Group	N	Mean	SD	P*-value	
	•	Total kiloc	calorie			
Baseline	Control		1040.44	192.99	0.524	
	Experimental		1018.38	166.76	- 0.534	
End line	Control	52 -	1118.67	174.55	0.401	
	Experimental		1140.98	146.06	- 0.481	
	Т	otal carbo	hydrate			
Baseline	Control		119.93	18.74	0.565	
	Experimental		117.79	18.98	- 0.565	
End line	Control	52 -	120.75	17.66	0.042	
	Experimental		120.98	15.52	- 0.943	
		Egg pro	tein			
Baseline	Control		5.42	1.78	0.166	
	Experimental		4.84	2.38	- 0.166	
End line	Control	52 -	12.53	8.05	0.001	
	Experimental		20.07	4.46	- 0.001	
	Total prote	in with egg	supplementation	n		
Baseline	Control		75.93	29.79	0.540	
	Experimental		72.68	25.22	- 0.549	
End line	Control	52 -	88.12	31.02	0.404	
	Experimental		84.29	25.60	- 0.494	

*Independent sample's t-tests

Table 4 assessed dietary nutrient intake differences between the intervention and control groups among breast cancer patients. Notably, there was a significant difference in egg protein intake at the end line. The intervention group, which received egg protein supplementation, consumed significantly more egg protein (20.07 g) compared to the control group (12.53 g). There was significant association found between

egg protein (end line) intake between groups (p<0.001). For total kilocalorie, carbohydrate, and total protein intake (including egg protein), no significant differences were observed between the groups at either baseline or end line, indicating that the supplementation primarily impacted egg protein intake rather than overall nutrient intake.

Table 5. Categories of seven points Subjective Global Assessment (SGA) on Categories of weight loss between the intervention and control group

Seven points Subjective Global Assessment	Intervention group (n=52) across 3-timelines			Control greatimelines	P-value Between groups		
(SGA)	Baseline	Follow- up1	End line	Baseline	Follow- up1	End line	(Case Verses Control)
Comprehensive Sev	en points SG	A					Control
SGA1: Categories	n (%)	n (%)	n (%)	n (%)	n (%)	n (%)	
of weight loss	, ,	, ,	, ,	, , ,	, ,	, ,	
>15%	01 (1.9)	01 (1.9)	00 (0.0)	00 (0.0)	01 (1.9)	00 (0.0)	P*<0.05
10-<15%	02 (3.8)	00 (0.0)	01 (1.9)	00 (0.0)	02 (3.8)	07 (13.4)	
7-<10%	05 (9.6)	01 (1.9)	00 (0.0)	00 (0.0)	06 (11.5)	03 (6.5)	
5-<7%	08 (15.4)	03 (5.8)	02 (3.8)	06 (11.5)	08 (15.4)	07 (13.4)	
3-<7%	07 (13.5)	06 (11.5)	09 (17.4)	08 (15.4)	15 (28.8)	18 (34.6)	
<3%	01 (1.9)	01 (1.9)	00 (0.0)	00 (0.0)	06 (11.5)	00 (0.0)	
0% (No weight loss)	28 (53.8)	40 (76.9)	40 (76.9)	38 (73.1)	14 (26.9)	17 (32.7)	

Significant; *P<0.05. All are Chi-square tests

Table 5 highlights the significant differences in weight loss categories between the intervention and control groups over three timelines. In the intervention group, the proportion of participants with no weight loss increased from 53.8% at baseline to 76.9% at both follow-up and end line, while in the control group, this proportion declined markedly from 73.1% at baseline to 26.9% at follow-up and 32.7% at the end line. Severe weight loss (>15%) remained negligible in

both groups, but the proportion of participants with moderate weight loss (10–<15%) increased significantly in the control group, rising from 0% at baseline **to** 13.4% at the end line. Additionally, mild weight loss (3–<7%) rose in the control group from 15.4% to 34.6%, while the intervention group saw relatively stable trends in this category. These findings indicate that the intervention effectively mitigated weight loss over time compared to the control group.

Table 6. Categories of seven points Subjective Global Assessment (SGA) on Change of food habit between the intervention and control group

Seven points Subjective Global	Intervention timelines	n group (n=52)) across 3-	Control group (n=52) across 3- timelines				P-value Between		
Assessment (SGA)	Baseline	Follow-up1	End line			Follow- up1	End line	groups (Case Verses Control)		
SGA2: Change of foo	SGA2: Change of food habit									
Poor (<1/2 of usual meal intake), but increasing	06 (11.5)	00 (0.0)	00 (0.0)	00 (0.0)	07 (13.4)	07 (13.4)	P>0.05		
Borderline (1/2-3/4 of usual meal intake), no change or decreasing	45 (86.6)	18 (34.6)	18 (34.6)	30 (57.7)	34 (65.5)	42 (80.8)			
Good (>3/4 -<1 share of usual meal)	01 (1.9)	34 (66.7)	34 (66.7)	18 (34.6)	10 (19.2)	03 (5.8)			
Good (Full share of usual meal)	00 (0.0)	00 (0.0)	00 (0.0)	04 (7.7)	01 (1.9)	00 (0.0)			

Significant; *P<0.05. All are Chi-square tests

Table 6 illustrates the changes in food habits between the intervention and control groups across three timelines. In the intervention group, the proportion of participants with good food habits (>3/4 to <1 share of usual meal intake) increased significantly from 1.9% at baseline to 66.7% at both follow-up and end line. In contrast, the control group showed a decline in this category, from 34.6% at baseline to 19.2% at follow-

up and 5.8% at the end line. Additionally, the intervention group completely eliminated cases of poor food intake (<1/2 of usual meal intake) by the follow-up period, while the control group saw 13.4% of participants persist in this category at both follow-up and end line. These findings suggest a substantial improvement in food habits in the intervention group compared to the control group over time.

Table 7. Categories of seven points Subjective Global Assessment (SGA) on Gastro-Intestinal (GI) symptoms and changes between the intervention and control group

Seven points Subjective Global Assessment (SGA)	Intervention group (n=52) across 3-timelines			Control gr timelines	P-value Between groups		
	Baseline	Follow- up1	End line	Baseline	Follow-up1	End line	(Case Verses Control)
SGA 3: Gastro-Inte	stinal (GI) sy	mptoms					
No GI symptoms	26 (50.0)	02 (3.8)	00 (0.0)	31 (59.6)	02 (3.8)	06 (11.5)	P>0.05
Yes have	26 (50.0)	50 (96.2)	52 (100)	21 (40.4)	50 (96.2)	46 (88.5)	
Nausea	07 (13.5)	25 (48.1)	19 (36.5)	07 (13.5)	10 (19.2)	10 (19.2)	1
Anorexia	01 (1.9)	02 (4.3)	19 (36.5)	10 (19.2)	18 (34.6)	24 (46.2)	
Dysphasia	06 (11.5)	17 (32.7)	01 (1.9)	00 (0.0)	00 (0.0)	00 (0.0)	
Constipation	05 (9.6)	06 (11.5)	13 (25.5)	03 (5.8)	05 (9.6)	10 (19.2)	
Diarrhea	01 (1.9)	00 (0.0)	00 (0.0)	01 (1.9)	03 (5.8)	01 (1.9)	1
Vomiting	06 (11.5)	00 (0.0)	00 (0.0)	00 (0.0)	04 (7.7)	01 (1.9)	1
SGA 4: Category of	GI changes						
No change (2-3 symptoms)	01 (1.9)	00 (0.0)	00 (0.0)	00 (0.0)	07 (13.4)	03 (5.8)	P*<0.05
Improving (2-3 symptoms)	10 (19.2)	06 (11.5)	16 (30.8)	07 (13.5)	22 (42.3)	40 (76.9)	
Very few intermittent symptoms (1 symptoms)	15 (28.8)	43 (82.7)	36 (69.2)	14 (26.9)	21 (40.5)	03 (5.8)	
No Symptoms	26 (56.5)	03 (5.8)	00 (0.0)	31 (59.6)	02 (3.8)	06 (11.5)	1

Significant; *P<0.05. All are Chi-square tests

In Table 7, The intervention group experienced a notable increase in nausea and anorexia during the study, with nausea peaking at 48.1% at follow-up before decreasing to 36.5% at the end line, and anorexia rising sharply from 1.9% at baseline to 36.5% by the end line. In contrast, the control group showed a more gradual rise in anorexia, highlighting differing symptom trajectories. Despite these trends, the intervention group had a higher proportion of participants with very few intermittent symptoms (82.7% at follow-up), though this declined to 69.2% by the end line, while the control group saw a lower proportion in this category by the end line.

At the end line, participants with 2–3 GI symptoms were significantly higher in the control group (76.9%) compared to the intervention group (30.8%, p < 0.05).

DISCUSSION

The findings of this study align with existing literature that underscores the suboptimal dietary intake observed among breast cancer patients undergoing chemotherapy. At baseline, the mean energy intake was 1040.44 kcal for the control group and 1018.38 kcal for the experimental group, with no significant differences between the groups (p = 0.534). At the end-line, the control group consumed 1118.67 kcal

and the experimental group 1140.98 kcal, showing no statistically significant difference (p = 0.481). These energy intakes fall significantly below the recommended dietary intake of 1900-2300 kcal, as reported for similar populations, such as the Icelandic cohort¹⁴. The observation of low energy intake in this study is consistent with previous findings by Ravasco et al., who reported that chemotherapy patients often insufficient caloric exhibit intake, nearing approximately 25 kcal/kg body weight for normalweight and overweight patients but significantly lower for obese patients (12.3 kcal/kg). This trend can be attributed to chemotherapy's adverse effects, including appetite loss, taste alterations, and gastrointestinal disturbances¹⁵. Despite counselling and written guidance provided during the intervention, participants' energy intake remained inadequate, underscoring the challenges in achieving dietary recommendations during chemotherapy. On the other hand, carbohydrate consumption remained similar between the groups throughout the study. At baseline, the control group consumed 119.93 g, and the experimental group consumed 117.79 g (p = 0.565). At the end-line, carbohydrate intake was 120.75 g for the control group and 120.98 g for the experimental group (p = 0.943). Protein intake also showed no significant differences at baseline (control: 75.93 g, experimental: 72.68 g; P = 0.549) or end-line (control: 88.12 g, experimental: 84.29 g; P = 0.494). However, the experimental group demonstrated a significant increase in egg protein intake at the endline (control: 12.53 g, experimental: 20.07 g; P = 0.001), indicating the direct impact of the supplementation intervention. These results align with Ravasco's findings, which highlight that individualized nutritional counselling significantly improve energy and protein intake compared to standard dietary advice¹⁴. The variability in energy intake during chemotherapy cycles observed in this study resonates with Boltong et al.'s findings, which suggest that taste alterations peak within the first week post-treatment and resolve after a few cycles. These alterations, along with gastrointestinal symptoms and fatigue, contribute to the overall inadequate dietary intake during treatment.

Regarding nutritional outcome, from a study it was stated that Most RCTs of dietary interventions in cancer are small and measure nonclinical endpoints ¹⁶. However, the experimental group, which received egg protein supplementation, showed better weight maintenance and reduced weight loss compared to the control group. This finding is consistent with Burden et al.'s observation that dietary interventions can positively affect anthropometric outcomes, such as body weight and BMI, among women with breast

cancer¹⁷. Structured nutritional support and counseling in this study also resulted in marked improvements in food intake habits among the intervention group, further highlighting the value of dietary interventions during chemotherapy. Although gastrointestinal symptoms were more frequently reported in the experimental group, these symptoms were generally manageable, with most participants experiencing only intermittent issues by the end-line. This reflects the importance of addressing side effects associated with dietary interventions to optimize compliance and Moreover, the findings from the outcomes. Subjective Global Assessment (SGA) analysis emphasize the critical role of dietary interventions in improving nutritional outcomes during chemotherapy. The intervention group showed better outcomes in terms of weight stabilization, improved food habits, and manageable gastrointestinal symptoms compared to the control group. Additionally, this study's findings align with Ravasco et al.'s observation that improved nutritional intake is associated with enhanced quality of life (QoL) scores. After radiotherapy, patients in group 1 maintained or improved QoL function scores, whereas groups 2 and 3 reported deteriorations. This supports the notion that integrating nutrition-focused strategies into cancer care can significantly enhance patient outcomes and QoL.

Strength: Homogeneous breast cancer patients with no metastasis or recurrence were randomized. **Limitation:** The absence of methodologically similar studies makes it difficult to compare findings. It was a single-center study. These include insufficient blinding leading to an increased probability of a false negative finding due to contamination of the control arm.

CONCLUSION

Overall, while egg supplementation effectively increased egg protein intake in the experimental group, total dietary intake remained inadequate. This underscores the need for more robust nutritional interventions that address the multifaceted barriers to adequate dietary intake, including taste changes, gastrointestinal symptoms, and fatigue. Targeted nutritional strategies, combined with individualized counseling and symptom management, can help optimize dietary intake, improve nutritional status, and enhance the overall quality of life for breast cancer patients undergoing chemotherapy.

Ethical clearance: Ethical approval for the study was obtained from the National Ethical Review Committee (NREC) of the Bangladesh Medical Research Council

(BMRC) (Ref. No. BMRC/HPNSP-Grant/2019-2020/569(1-60)), the Faculty of Biological Sciences at the University of Dhaka (Ref. No. 92/Biol. Scs), and the National Institute of Cancer Research and Hospital (Ref. No. NICRH/Ethics/2020/240).

REFERENCES

- Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660
- 2. https://www.iarc.who.int/wp-content/uploads/2021/02/pr294_E.pdf, cited on 26/01/2025
- 3. Anand U, Dey A, Chandel AKS, et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics [published correction appears in Genes Dis. 2024 Jan 20;11(4):101211. doi: 10.1016/j.gendis.2024.101211]. *Genes Dis.* 2022;10(4):1367-1401. Published 2022 Mar 18. doi:10.1016/j.gendis.2022.02.007
- Sánchez-Lara K, Sosa-Sánchez R, Green-Renner D, et al. Influence of taste disorders on dietary behaviors in cancer patients under chemotherapy. *Nutr J.* 2010;9:15. Published 2010 Mar 24. doi:10.1186/1475-2891-9-15
- Muhamed AN, Tesema BB, Hiruy EG, Shiferaw SM, Aycheh DT, Abate MD. Nutritional Status and Its Determinants among Adult Cancer Patients Undergoing Chemotherapy Treatment at Hawassa University Comprehensive Specialized Hospital, Hawassa, Southern Ethiopia. *J Nutr Metab*. 2022; 2022: 8740272. Published 2022 Sep 28. doi:10.1155/2022/8740272
- Muscaritoli M, Lucia S, Farcomeni A, et al. Prevalence of malnutrition in patients at first medical oncology visit: the PreMiO study. *Oncotarget*. 2017;8(45):79884-79896. Published 2017 Aug 10. doi:10.18632/oncotarget.20168
- Golonko A, Pienkowski T, Swislocka R, et al. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. *Cell Death Dis*. 2024;15(4):254. Published 2024 Apr 9. doi:10.1038/s41419-024-06641-6
- 8. Mardas M, Mądry R, Stelmach-Mardas M. Dietary intake variability in the cycle of cytotoxic chemotherapy. *Support Care Cancer*.

- 2016;24(6):2619-2625. doi:10.1007/s00520-015-3072-3
- 9. de Vries YC, van den Berg MMGA, de Vries JHM, et al. Differences in dietary intake during chemotherapy in breast cancer patients compared to women without cancer. *Support Care Cancer*. 2017;25(8):2581-2591. doi:10.1007/s00520-017-3668-x
- Person H, Keefer L. Psychological comorbidity in gastrointestinal diseases: Update on the braingut-microbiome axis. *Prog Neuropsychopharmacol Biol Psychiatry*. 2021;107:110209. doi:10.1016/j.pnpbp.2020.110209
- 11. Monterrosa EC, Frongillo EA, Drewnowski A, de Pee S, Vandevijvere S. Sociocultural Influences on Food Choices and Implications for Sustainable Healthy Diets. Food and Nutrition Bulletin. 2020;41(2_suppl):59S-73S. doi:10.1177/0379572120975874
- 12. Trestini I, Sperduti I, Caldart A, Bonaiuto C, Fiorio E, Parolin V, Zambonin V, Zanelli S, Tregnago D, Avancini A, Cintoni M, Pilotto S, Mele MC, Gasbarrini A, Scambia G, Milella M, Tortora G, Bria E, Carbognin L, Evidence-based tailored nutrition educational intervention improves adherence to dietary guidelines, anthropometric measures and serum metabolic biomarkers in earlystage breast cancer patients: A prospective interventional study, The Breast (2021), doi: https://doi.org/10.1016/j.breast.2021.08.008.
- 13. Conigliaro T, Boyce LM, Lopez CA, Tonorezos ES. Food Intake During Cancer Therapy: A Systematic Review. *Am J Clin Oncol*. 2020;43(11):813-819. doi:10.1097/COC.000000000000000749
- Ravasco P, Monteiro-Grillo I, Marques Vidal P, Camilo ME. Impact of nutrition on outcome: a prospective randomized controlled trial in patients with head and neck cancer undergoing radiotherapy. *Head Neck*. 2005;27(8):659-668. doi:10.1002/hed.20221
- 15. Boltong A, Keast R. The influence of chemotherapy on taste perception and food hedonics: a systematic review. *Cancer Treat Rev.* 2012;38(2):152-163. doi:10.1016/j.ctrv.2011.04.008
- Ilerhunmwuwa NP, Abdul Khader AH, Smith C, Scheffer Cliff ER, Booth CM, Hottel E, Aziz M, Lee-Smith W, Goodman A, Chakraborty R, Mohyuddin GR. Dietary interventions in cancer:

a systematic review of all randomized controlled trials. JNCI J Natl Cancer Inst. 2024;116(7):1026–1034. doi:10.1093/jnci/djae051.

17. Burden S, Jones DJ, Sremanakova J, Sowerbutts AM, Lal S, Pilling M, Todd C. Dietary

interventions for adult cancer survivors. Cochrane Database of Systematic Reviews 2019, Issue 11. Art. No.: CD011287. DOI: 10.1002/14651858.CD011287.pub2. Accessed 27 January 2025.