

The Pharmacological Prospects of *Curcuma*: A Review of Its Antimicrobial, Antioxidant, and Anticancer Properties

Farhad Hossain^{1,2}, ABM Ashraful², Md. Jamal Hossain³, Mohammad A. Rashid³ and A.H.M. Khurshid Alam²

¹Department of Pharmacy, State University of Bangladesh, Dhaka-1461, Bangladesh

²Department of Pharmacy, University of Rajshahi, Rajshahi-6205, Bangladesh

³Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka Dhaka-1000, Bangladesh

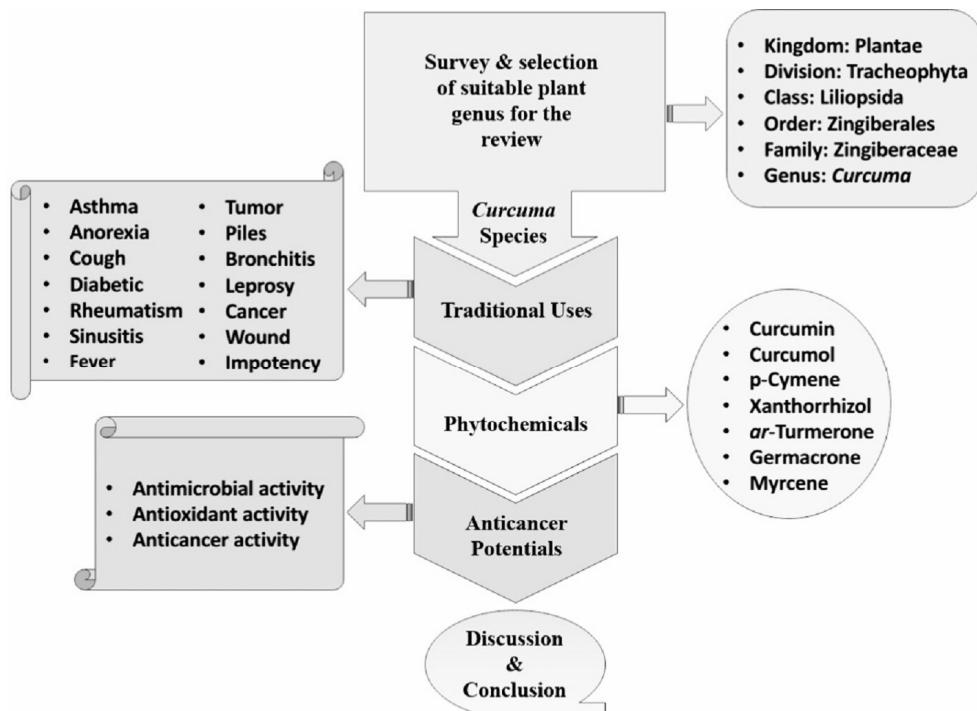
(Received: December 10, 2024; Accepted: May 12, 2025; Published (web): June 25, 2025)

ABSTRACT: Cancer stands as a global threat nowadays, and its impact is becoming worse, affecting millions and causing high mortality rates due to drug resistance, improper treatments, and a lack of early detection. Despite advances in therapy, cancer treatment continues to pose significant challenges, largely due to multidrug resistance, treatment inefficacy, and delayed diagnosis. While oxidative stress (OS) is widely recognized as a key driver of carcinogenesis, the role of microbial dysbiosis in cancer progression remains understudied despite its potential significance. Emerging evidence suggests that targeting microorganisms and OS with antibacterial agents and antioxidants could offer novel therapeutic avenues. Natural resources (fruits, vegetables, and plants), particularly the *Curcuma* genus with over 100 species, have traditionally been used for their antimicrobial, antioxidant, and anticancer properties for many years. This review critically evaluates the therapeutic potential of *Curcuma*'s bioactive compounds as natural anticancer agents, emphasizing the interconnected roles of antimicrobial and antioxidant activities in modulating cancer progression. Our evaluation underscores *Curcuma*'s potential as an emerging alternative in cancer treatment, connecting its antimicrobial and antioxidant effects with its role in inhibiting cancer progression.

Key words: Antimicrobial activity, antioxidant activity, anticancer activity, *Curcuma* species.

INTRODUCTION

Cancer begins when a cell develops out of control and then uses the blood and lymphatic systems to spread uncontrollably throughout the body until it destroys healthy cells and causes death.¹ It is a non-communicable disease that causes nearly 10 million deaths per year worldwide.² It's the 2nd worldwide top killer and 6th highest mortality rate in Bangladesh, and more than 8.2 and 9.6 million deaths were recorded in 2012 and 2018, respectively.^{3,4} Moreover, around 12.7 and 14.1 million new cases were reported in 2008 and 2012,


respectively.⁴ The global cancer burden is estimated to rise to 29.5 million new cases, and 16.4 million people will lose their lives to cancer by 2040.⁵ There are different modes (surgery, radiotherapy, chemotherapy, gene therapy, stem cell therapy, etc.) of cancer treatment, but the major drawbacks of these therapies are serious toxic effects on both cancer and normal cells.⁶ Based on traditional knowledge and several research findings, it is known that herbal or plant-based therapy provides better cancer treatment with fewer side effects.⁷ Numerous chemical compounds found in plants, such as tannins, alkaloids, terpenoids, flavonoids, pigments, and others, have vital biological roles, such as anti-inflammation, antioxidant, cancer-fighting, and contraceptive effects.⁸ Plants are a great source of substances that can fight cancer and interfere with

Correspondence to: A. H. M. Khurshid Alam
E-mail address: khurshid.jaist@gmail.com;
khurshid_alam@ru.ac.bd;
Phone Number: +8801719634499.

the specific stage of carcinogenesis.⁹ About 35,000 types of plants have been screened for suspected antitumor effects.¹⁰ The diversity of the plant

kingdom provides huge opportunities to establish new anticancer drugs.

Graphical Abstract

Microorganisms play important roles in the living body, especially in human health. Generally, the human body contains, on average, 30 trillion cells and 38 trillion bacteria.¹¹ A growing body of evidence proved that oncogenesis is greatly impacted by bacteria along with various non-virus microorganisms. Microbes can increase cancer risk by changing cellular constituents that maintain the ecosystems of the human body. For instance, *Salmonella typhi* is able to transform bile salts into substances that cause cancer.¹² It may cause hepatobiliary carcinoma,¹³ and gallbladder cancer.¹⁴ The synthesis of colibactin allows *Escherichia coli* (*E. coli*), as well as *Enterobacteriaceae*, to inflict breaks on both strands of the DNA of host cells.¹⁵ *Porphyromonas gingivalis* has strong antiapoptotic activity and can suppress chemically induced apoptosis.¹⁶ There are microbes that can cause DNA damage by producing free radicals. *B. fragilis* is a microorganism that produces ROS, which can

damage the host DNA, leading to the cause of colon cancer.^{17,18} *Helicobacter pylori* were determined to promote cell proliferation, and cancerous growths were formed in *Mongolian gerbils*.¹⁹ Many other microorganisms were found to cause oral cancer. These include several species of *Micrococcus*, *Staphylococcus aureus*, *Veillonella parvula*, *Prevotella melaninogenica*, and *Exiguobacterium oxidotolerans*.²⁰

When cellular antioxidant defenses are inadequate to neutralize free radicals such as reactive nitrogen species (RNS) and Reactive Oxygen species (ROS), a condition known as oxidative stress (OS) occurs.²¹ Free radicals contain unpaired electrons, which are highly reactive and unstable and want to become stable by reacting with large biological molecules like lipids, proteins, and DNA, resulting in abnormal functions of cells. Cancer and other devastating illnesses may have their roots in free radical damage to biological components.²²

Antioxidants are substances that inhibit a wide variety of physiological functions in the body due to their ability to undergo oxidation at low concentrations.²³ Like free radicals, antioxidants, such as glutathione, alpha lipoic acid, superoxide dismutase, catalase, and coenzyme Q10, are produced endogenously.²⁴ They are not often good enough to control the free radicals. Consequently, antioxidants like vitamin E, carotenoids, and vitamin C must be supplied from outside sources to the biological system through diets,²⁵ which can balance free radicals generated within the body during different metabolic processes and play a vital role in order to shield our cells from free radical damage.²⁶ In the field of cancer treatment, antioxidants have recently gained a lot of attention due to their ability to quench ROS, which are involved in both the initiation and progression of cancer, as well as their role in assisting cancer and precancer cells in surviving after malignant transformation has already taken place.²⁷ Natural antioxidants can be found in plants.²⁸

The use of plants in medicine has not diminished over the years. The World Health Organization estimates that there are 20,000 plants that are utilized for therapeutic purposes. Interest in researching medicinal plants and the powerful compounds they contain has grown in recent years.²⁹ More than a hundred species make up the genus *Curcuma*, which is in the family Zingiberaceae.³⁰ Species of *Curcuma* may be found all throughout the northern part of Australia, as well as in Southeast Asia, China, India, and New Guinea. *Curcuma* species are rhizomatous herbs consisting of underground parts, leafy shoots, and leaf blades. *Curcuma* rhizomes possess different colors, such as white, cream, yellow, pale yellow, orange, bluish-green, blue, and black on their inner side.³¹ The aerial stems are pseudo-stems formed by leaf-sheaths, and flowers are epigynous, bisexual, and zygomorphic.³² The rhizomes of *Curcuma* species are the main parts. They have several medical applications.³³ Traditional uses of *Curcuma* species include the treatment of tumors, hemorrhoids, allergies and asthma, inflammation, leprosy, injuries,

and many more medical conditions, according to a number of studies.³⁴ Furthermore, they include several bioactive chemicals that may have significant pharmacological effects, such as antibacterial, antioxidant, neurologically protective, liver-protective, anti-inflammatory, tumor-fighting, and anticancer actions.³⁵

Taxonomical hierarchy³⁶

Kingdom: Plantae; Phylum: Tracheophyta;
Class: Liliopsida; Order: Zingiberales;
Family: Zingiberaceae; Genus: *Curcuma*

Traditional uses. The *Curcuma* species are traditionally important throughout the world. Certain formulations, such as paste, powder, and decoction of different parts (rhizome, leaf, stem, flower, herbaceous material) of the plants of the *Curcuma* genus, have been used to treat several ailments, such as tonsillitis, cough, fever, flu, goiter, rheumatic pains, dysentery, diarrhea, stomachache, malaria, heart disease, tuberculosis, kidney disorders, tumors, cancer, etc.³⁷ Traditional medicine formulas, including rhizomes, are most commonly used to treat cancer. *Curcuma* species are mostly found in the Asian subcontinent. Table 1 provides a brief explanation of their traditional usage.

Phytochemicals isolated from *Curcuma*
Genus. *Curcuma* is a medical plant genus that is part of a big family. Numerous chemical phytochemicals have been revealed after extensive phytochemical investigations on *Curcuma* species. The major categories of phytochemicals were found to have flavonoids, tannins, saponins, carbohydrates, proteins, phenols, sterols, and terpenoids.⁶¹ Dried rhizomes were the most common source for the majority of the more than 700 chemicals discovered in *Curcuma* species.³⁰ Table 2 provides a list of significant chemicals found in *Curcuma* species that have antibacterial, antioxidant, and anticancer properties.

Table 1. A list of plants and parts of the plants belongs to the genus *Curcuma* with their locations where they are traditionally used as medicine.

Plant Name	Part	Indications	Region	References
<i>C. aeruginosa</i> Roxb.	Rhizome	Rheumatic disorder	Bangladesh	38
	Rhizome	White skin, asthma, tumor, piles, lung disease, contusion, soreness in the joints, diarrhea, dysentery, cough	India	39
	Rhizome	Flatulence, dyspepsia, diarrhea, parasitic infection	Thailand	40
<i>C. amada</i> Roxb.	Root	Impotency	Bangladesh	41
	Rhizome	Wound, cut, itching, sprain, skin disease	India, Myanmar and Thailand	42
<i>C. angustifolia</i> Roxb.	Rhizome	Stomachic, carminative, healing, sprain	Manipur, India	43
	Inflorescence	Bacterial and fungal infection, cough, diarrhea	Manipur, India	43
	Rhizome	Cut, wound, bleeding	Nepal	44
<i>C. aromatica</i> Salisb.	Rhizome and leaf	Indigestion, rheumatism, wound healing, dysentery, helminths infection	India	45
	Rhizome	Disease with blood stasis, cancer	China	46
<i>C. caesia</i> Roxb.	Tuber	Poisoning, liver pain	Bangladesh	41
	Rhizome	Asthma, tumor, piles, bronchitis, leprosy, cancer, wound, impotency, fertility, tooth ache, vomiting, allergy	India	47
<i>C. glans</i> K. Larsen and Mood	Rhizome	Headaches, tonsillitis, sore throats, nosebleeds, and herpes simplex virus	Thailand	40
<i>C. heyneana</i> Valeton & Zijp	Rhizome	Skin scrub, wound	Malaysia and Indonesia	48
<i>C. inodora</i> Blatt.	Tuber	Muscular pain	India	49
<i>C. leucorrhiza</i> Roxb.	Rhizome	Cough	India	50
	Rhizome	Enlarged liver and spleen, stomach ulcer, diabetes and cancer	Manipur	51
<i>C. longa</i> L.	Rhizome	Blood purification	Bangladesh	52
	Rhizome	Biliary disorder, anorexia, cough, diabetic wound, hepatic disorder, rheumatism, sinusitis	India	53
<i>C. mangga</i> Valeton & Zijp	Rhizome	Abdominal pain	China	53
	Rhizome	Abdominal illness, chest pain, fever, wound healing	Thailand	54
<i>C. montana</i> Roxb.	Rhizome	Fever	India	55
<i>C. parviflora</i> Wall.	Rhizome	Snakebite	Thailand	56
<i>C. phaeocaulis</i> Valeton.	Rhizome	Gastritis, controlling blood circulation	China	57
<i>C. rubescens</i> Roxb.	Rhizome	Poisoning	Indonesia	37
<i>C. thorelii</i> Gagnep.	Rhizome	Snakebite	Thailand	56
<i>C. xanthorrhiza</i> Roxb.	Rhizome	Skin disease	Thailand	40
		Illnesses affecting the digestive tract, liver, constipation, diarrhea with blood, dysentery, fever in children, hemorrhoids, high blood pressure, diabetes, cancer	Indonesia	58,59
<i>C. zedoaria</i> (Christm.) Roscoe	Rhizome	Diarrhea	Bangladesh	52
	Tuber	Cold and infection	India	60
	Rhizome	Complications such as indigestion, toothache, stagnation of blood, leukoderma, TB, enlarged spleen, common cold, infection, vomiting, and diarrhea	Indonesia	48

Table 2. List of major compounds isolated from *Curcuma* species having antimicrobial, antioxidant, and anticancer activity with mechanisms.

Isolated Compounds	Pharmacological Activities	Mechanisms	Plant Sources (<i>Curcuma</i> species)
β -Caryophyllene (I)	Cytotoxic ⁶²	Inhibits K562 human erythroleukemic cells ⁶²	<i>C. longa</i> L. ⁶³
1,8-Cineole (II)	Antioxidant ⁶⁴	Suppresses Jurkat cell death induced by NO_2 ⁶⁴	<i>C. aeruginosa</i> Roxb., ⁶⁶ <i>C. amada</i> Roxb., ⁶⁷ <i>C. aromatica</i> Salisb., ⁶³ <i>C. caesia</i> Roxb., ⁶⁸ <i>C. harmandii</i> Gagnep., ⁶⁹ <i>C. longa</i> L., ⁶⁸ <i>C. zedoaria</i> (Christm.) Roscoe ⁶³
	Anticarcinogenic ⁶⁵	Causes apoptosis in Molt 4B and HL-60 leukemia cells ⁶⁵	
Curdione (III)	Antibacterial ⁷⁰	Disrupts microbial membranes, inhibits key enzymes, and induces oxidative stress through ROS generation ⁷⁰	<i>C. angustifolia</i> Roxb., ⁷² <i>C. harmandii</i> Gagnep., ⁶⁹ <i>C. trichosantha</i> Gagnep., ⁷³ <i>C. zedoaria</i> (Christm.) Roscoe ⁷⁴
	Antifungal ⁷⁰	Increases membrane permeability, leading to leakage of vital intracellular contents and cell lysis ⁷⁰	
	Anticancer ⁷¹	Increases expression of pro-apoptotic proteins such as cleaved caspase-3 and Bax ⁷¹	
Curcumenol (IV)	Antibacterial ⁷⁵	Disrupts bacterial cell membranes and inhibit essential metabolic processes ⁷⁵	<i>C. aeruginosa</i> Roxb., ⁶⁸ <i>C. aromatica</i> Salisb., ⁷⁷ <i>C. harmandii</i> Gagnep., ⁶⁹ <i>C. longa</i> L. ⁷⁸
	Antitumor ⁷⁶	Suppresses Akt-mediated NF- κ B activation and inhibits the p38 MAPK signaling pathway ⁷⁶	
α -Curcumene (V)	Antitumor ⁷⁹	Inhibits tumor cell proliferation ⁷⁹	<i>C. xanthorrhiza</i> Roxb. ⁷⁹
Curcumin (VI)	Antiviral ⁸⁰	Inhibits viral replication and entry ⁸⁰	<i>C. longa</i> L. ⁸⁰
	Antioxidant ⁸⁰	Scavenges free radical by neutralizing ROS ⁸⁰	
	Anticancer ⁸⁰	Downregulates NF- κ B and other pro-survival signaling pathways ⁸⁰	
Curcumol (VII)	Antitumor ⁸¹	Causes apoptosis in human lung adenocarcinoma ASTC-a-1 cells through a caspase-independent mitochondrial pathway ⁸¹	<i>C. aromatica</i> Salisb., ⁸² <i>C. trichosantha</i> Gagnep., ⁷³ <i>C. zedoaria</i> (Christm.) Roscoe ⁸³
Curzerene (VIII)	Antioxidant ⁸⁴	Scavenges free radical like DPPH \bullet by donating hydrogen atom ⁸⁴	<i>C. aeruginosa</i> Roxb., ⁸⁶ <i>C. aurantiaca</i> Zijp, ⁸⁷ <i>C. phaeocaulis</i> Valeton, ⁸⁸ <i>C. purpurascens</i> Blume, ⁸⁹ <i>C. zedoaria</i> (Christm.) Roscoe ⁷⁴
	Antiproliferative ⁸⁵	Arrests the cells in the G2/M cell cycle and promoted or induced apoptosis of SPC-A1 cells ⁸⁵	
Curzerenone (IX)	Anticancer ⁹⁰	Induces apoptosis via alteration of apoptosis related proteins (Bax, Bcl-2) and ROS mediated alterations in the MMP ⁹⁰	<i>C. aeruginosa</i> Roxb., ⁶⁶ <i>C. amada</i> Roxb., ⁹¹ <i>C. angustifolia</i> Roxb., ⁹² <i>C. aromatica</i> Salisb., ⁹³ <i>C. inodora</i> Blatt., ⁹⁴ <i>C. zedoaria</i> (Christm.) Roscoe ⁹⁵
p-Cymene (X)	Antioxidant ⁹⁶	Decreases lipid peroxidation and nitrite content, increase SOD and catalase activity ⁹⁶	<i>C. aromatica</i> Salisb., ⁶³ <i>C. longa</i> L., ⁹⁸ <i>C. xanthorrhiza</i> Roxb., ⁴⁰ <i>C. zedoaria</i> (Christm.) Roscoe ⁶³
	Antiviral ⁹⁷	Impairs the replication of viruses ⁹⁷	
	Antibacterial ⁹⁷	Exhibits broad-spectrum antibacterial properties ⁹⁷	
	Antifungal ⁹⁷	Inhibits mycelial growth and aflatoxin production by down-regulating genes ⁹⁷	
	Antitumor ⁹⁷	Reduces tumor formation by modulating inflammatory factors and promoting beneficial gut microbiota ⁹⁷	

8,9-Dehydro-9-formyl-cycloisolongifolene (XI)	Antioxidant ⁹⁹ Antitumor ⁹⁹	Scavenges free radicals ⁹⁹ Suppresses cancer cell migration and invasion ⁹⁹	<i>C. aeruginosa</i> Roxb., ¹⁰⁰ <i>C. aromatica</i> Salisb., ⁹⁹ <i>C. phaeocaulis</i> Valeton ⁸⁸
β-Elemene (XII)	Antitumor ¹⁰¹	Inhibits cellular proliferation in cancer cells ¹⁰¹	<i>C. aromatica</i> Salisb., ⁶⁸ <i>C. harmandii</i> Gagnep., ⁶⁹ <i>C. longa</i> L., ⁶⁸ <i>C. phaeocaulis</i> Valeton, ⁸⁸ <i>C. zedoaria</i> (Christm.) Roscoe ⁷⁴
Germacrone (XIII)	Antibacterial ¹⁰² Antioxidant ¹⁰³ Antitumor ¹⁰⁴	Disrupts bacterial cell membranes ¹⁰² Scavenges free radical ¹⁰³ Induces G2/M cell cycle arrest and promoting apoptosis ¹⁰⁴	<i>C. aeruginosa</i> Roxb., ¹⁰⁵ <i>C. angustifolia</i> Roxb., ¹⁰⁶ <i>C. aromatica</i> Salisb., ¹⁰⁷ <i>C. glans</i> K. Larsen and Mood, ⁴⁰ <i>C. harmandii</i> Gagnep., ⁶⁹ <i>C. inodora</i> Blatt., ⁹⁴ <i>C. longa</i> L., ¹⁰⁸ <i>C. zedoaria</i> (Christm.) Roscoe ⁹⁵
Myrcene (XIV)	Antioxidant ¹⁰⁹	Scavenges free radical ¹⁰⁹	<i>C. amada</i> Roxb., ⁶³ <i>C. longa</i> L., ¹¹⁰ <i>C. mangga</i> Valeton and Zijp, ⁶⁶
α-Phellandrene (XV)	Antioxidant ¹¹¹	Scavenges nitric oxide ¹¹¹	<i>C. longa</i> L., ¹¹² <i>C. zedoaria</i> (Christm.) Roscoe ⁶³
β-Pinene (XVI)	Antimicrobial ¹¹³ Anticancer ¹¹⁴	Inhibits phospholipase and esterase activities ¹¹³ Reduces cell viability ¹¹⁴	<i>C. aeruginosa</i> Roxb., ⁶⁸ <i>C. glans</i> K. Larsen and Mood, ⁴⁰ <i>C. harmandii</i> Gagnep., ⁶⁹ <i>C. longa</i> L., ¹¹⁵ <i>C. mangga</i> Valeton and Zijp, ¹¹⁶ <i>C. xanthorrhiza</i> Roxb. ⁴⁰
β-Sesquiphellandrene (XVII)	Antioxidant ⁸⁴ Anticancer ¹¹⁷	Scavenges free radical like DPPH• by donating hydrogen atom ⁸⁴ Suppresses cancer cell colony formation and induce apoptosis ¹¹⁷	<i>C. aromatica</i> Salisb., ⁹⁹ <i>C. longa</i> L., ¹¹⁸ <i>C. zedoaria</i> (Christm.) Roscoe ⁶⁸
Terpinolene (XVIII)	Antioxidant ¹¹⁹	Scavenges free radical ¹¹⁹	<i>C. longa</i> L. ^{120,121}
ar-Turmerone (XIX)	Antifungal ⁷⁰ Anticancer ⁷¹	Increases membrane permeability, leading to leakage of vital intracellular contents and cell lysis ⁷⁰ Increases expression of pro-apoptotic proteins such as cleaved caspase-3 and Bax ⁷¹	<i>C. aromatica</i> Salisb., ¹²⁴ <i>C. caesia</i> Roxb., ¹²⁵ <i>C. longa</i> L., ⁷⁸ <i>C. purpurascens</i> Blume, ⁸⁹ <i>C. rubescens</i> Roxb. ¹²⁶
Xanthorrhizol (XX)	Antimicrobial ¹²⁷ Antioxidant ¹²⁷ Anticancer ¹²⁷	Causes leakage of intracellular components and eventual cell death ¹²⁷ Scavenges free radical ¹²⁷ Induces apoptosis and cell cycle arrest, inhibits NF-κB ¹²⁷	<i>C. alismatifolia</i> Gagnep., ¹²⁸ <i>C. angustifolia</i> Roxb., ⁷² <i>C. aromatica</i> Salisb. ¹²⁹

Antimicrobial activity of *Curcuma* Species.

When substances have antimicrobial properties, they stop microbes from multiplying, stop them from forming colonies, and eventually kill them.¹³⁰ Many different kinds of antimicrobial compounds are available for use in the fight against microbes; they include those that are antimicrobial, antiviral, antifungal, antiprotozoal, etc. Currently, antimicrobial medicines are used to treat cancers linked to viruses along with bacteria. Cancers of the stomach, cervix, hematological system, liver, and brain often require antimicrobial medication treatment. Antimicrobials not only have direct anticancer benefits, but they are also useful when taken in conjunction with other traditional anticancer

treatments.¹³¹ For example, anthracycline antibiotics (doxorubicin and daunomycin) and some fluoroquinolones are very effective in cancer treatment.^{132,133}

Antibacterial activity. Antibacterial activity is the ability to destroy bacteria or suppress their growth or their ability to reproduce.^{134,135} Several antibacterial agents have been discovered from different sources through extensive studies over 50 years. It has been reported that several bacterial strains, such as *Bartonella* spp., *Lawsonia intracellularis*, and *Citrobacter* *dentium*, etc. are able to stimulate cell division.^{136,137} Besides, *Helicobacter pylori* can cause gastric MALT lymphomas, gastric carcinomas, eye, breast, and lung

cancer.¹³⁸ According to the recommendations of the FDA and WHO, the treatment of *Helicobacter pylori* infection involves the use of proton pump inhibitors in conjunction with amoxicillin and clarithromycin.¹³⁹ Low-grade MALT lymphomas are currently being treated with these antibiotics as a first line of defense since they are safe, inexpensive, and effective.¹⁴⁰ The rise of MDR-resistant bacteria has rendered antimicrobial medication development insufficient for the provision of adequate healthcare in the modern day.¹⁴¹ Therefore, identification of new antibacterial agents is very much essential. Antibacterial activity against *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Klebsiella pneumoniae*, and *E. coli* was observed in the water-soluble extracts of *C. longa* rhizome.¹⁴² *C. longa* exhibited antibacterial activity against *Staphylococcus aureus* as well as *Bacillus subtilis* in the form of methanolic extract.¹⁴³ Extracts from *C. zedoaria* in petroleum ether, chloroform, and

methanol showed antibacterial action against *Escherichia coli* with *Pseudomonas aeruginosa*, *Bacillus cereus*, and *Staphylococcus aureus*.¹⁴⁴ A significant inhibitory effect against *Staphylococcus aureus* as well as *Bacillus cereus* was observed in the essential oil isolated from the rhizome of *C. xanthorrhiza*.^{40,145} *C. malabarica* tuber extracts in acetone alongside n-hexane showed antibacterial action against *Staphylococcus aureus*.⁶⁰ The tuber extract of *C. leucorrhiza*, exhibited potent anti-Staphylococcal action.¹⁴⁶ There was antibacterial action against several bacterial strains demonstrated by petroleum ether and chloroform extracts of *C. aromatica* rhizome. These strains included *Bacillus subtilis*, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Shigella sonnei*, and *Shigella dysenteriae*.¹⁴⁷ The antibacterial activity of the essential oil of *C. phaeocaulis* ranged from mild to high, and it was tested against *Staphylococcus aureus*, *E. coli*, and *Pseudomonas aeruginosa*.⁸⁸

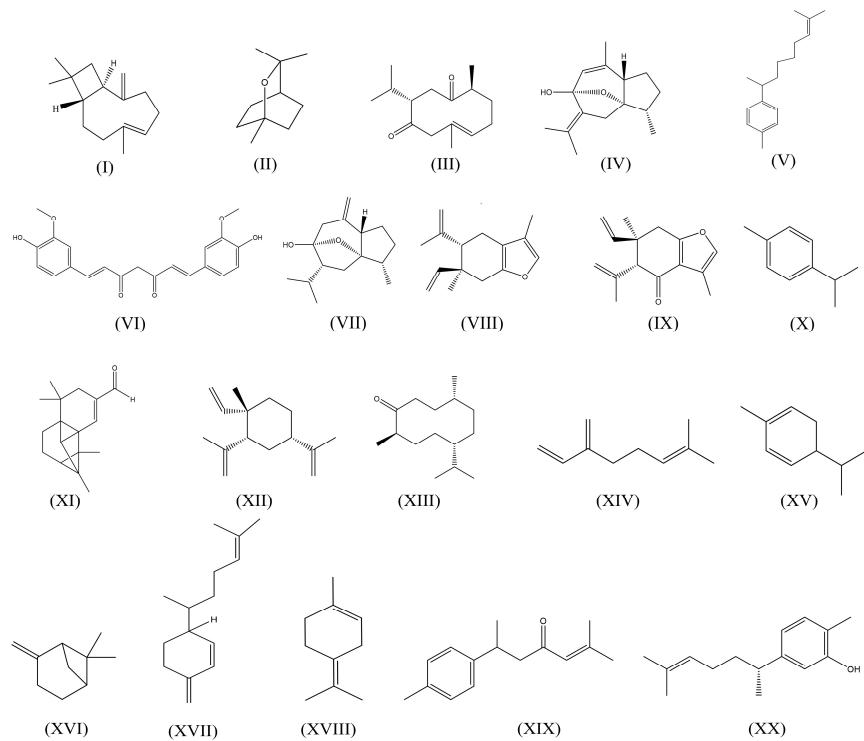


Figure 1. Structure of some phytochemicals found in *Curcuma* species.

Antiviral activity. There is a need to find novel chemicals that are effective against viruses since

there are currently no treatments that work, because antiviral medication resistance is becoming more

common, and because some antiviral medicines are rather expensive.¹⁴⁸ On the other hand, current antiviral medications may not always have enough antiviral efficacy or be well-tolerated by all patients.¹⁴⁹ An agent that kills a virus or suppresses its ability to replicate is known as an antiviral agent.¹⁵⁰ Multiple investigations have demonstrated that certain antiviral drugs possess anticancer properties.¹⁵¹ For instance, ribavirin, an antiviral agent, was reported to have beneficial effects in acute myeloid leukemia.¹⁵² Also, another antiviral drug called zidovudine can inhibit telomerase and make glioma cells more radiosensitive, which means it helps fight cancer.¹⁵³ For a long time, people have looked to plants for a variety of phytochemicals, which have many biological uses, especially antiviral properties.¹⁵⁴ Antiviral and anti-viremia effects were shown in *C. longa* extract against DENV-2.¹⁵⁵ Several viruses, including HIV, influenza, herpes simplex virus type 1, herpes simplex virus type 2, Coxsackievirus, herpes simplex virus type 3, herpes simplex virus type 4, herpes simplex virus type 5, HTLV-1, and many more, have been shown to be susceptible to curcumin's antiviral effects.¹⁵⁶ Moreover, curcumin exhibited antiviral activity against the Zika and Chikungunya virus.¹⁵⁷ A robust antiviral action against the hepatitis-C virus was observed in the ethanol extracts of *C. domestica*, *C. xanthorrhiza*, and *C. heyneana*.¹⁵⁸

Antifungal activity. Fungi play some important roles in cancer. It can increase the risk of cancer by activating an ancient, first-responder part of the immune system, the complement cascade.¹⁵⁹ Cancer patients undergoing myelotoxic treatment are also at increased risk of developing invasive fungal infections (IFI), which can be fatal.¹⁶⁰ The latest research indicates that *Candida albicans* can promote cancer through many pathways.¹⁶¹ To have antifungal activity means to be able to kill or slow the growth of fungus while causing little harm to the host.¹⁶² Significant antifungal activity against *Candida albicans* and *Saccharomyces cerevisiae* was demonstrated by the essential oil of *C. phaeocaulis*.⁸⁸ There have been reports of *C. longa* having antifungal properties. *Phytophthora infestans*,

Rhizoctonia solani, and *Erysiphe graminis* were among the fungi that *C. longa* hexane extract inhibited. *Rhizoctonia solani*, *Phytophthora infestans*, *Puccinia recondita*, and *Botrytis cinerea* were all inhibited by the antifungal effects of *C. longa* ethyl acetate extract.¹⁶³ Moreover, *C. longa* possessed broad-spectrum antifungal activity against a wide number of pathogenic fungi, including *Aspergillus flavus*, *Fusarium verticillioides*, *Curvularia pallescens*, *Colletotrichum falcatum*, *Aspergillus niger*, *Aspergillus terreus*, *Fusarium oxysporum*, *Fusarium moniliforme*, *Fusarium graminearum*, *Phoma wasabiae*, *Alternaria alternate*, *Botrytis cinerea*, *Chaetomium olivaceum*, *Penicillium pallidum*, *Mycogone perniciosa*, *Verticillium dahliae*, etc.¹⁶³ The effects against *Candida albicans* were seen in the essential oil extracted from the rhizome of *C. xanthorrhiza*. Multiple investigations have demonstrated that *C. aromatica* has potent antifungal effects against *Saccharomyces cerevisiae* and *Candida albicans*.¹⁶⁴ Acetone and chloroform fractions of *C. xanthorrhiza* exhibited antifungal activity against *Aspergillus fumigatus*, *Epidermophyton sp.*, *Penicillium sp.*, and *Trichophyton rubrum*. The antifungal activity of *C. soloensis* was found to be weak to moderate.¹⁶⁵ *C. longa*, *C. amada*, *C. xanthorrhiza*, and *C. zedoaria* are just a few of the *C.* species that have been found to have antifungal activity against *Fusarium solani* *sensu lato*, according to a recent study.¹⁶⁶

Antioxidant activity of the species of the Genus Curcuma. Unstable chemicals known as free radicals are key players in carcinogenesis because of their ability to destroy DNA within cells. Enzymatic and non-enzymatic processes both contribute to the production of free radicals in the body. In the respiratory chain, phagocytosis, prostaglandin production, and the cytochrome P-450 system, enzyme reactions play an important role; in contrast, non-enzymatic reactions include oxygen's interactions with organic molecules and those started by ionizing processes.¹⁶⁷ Antioxidants are chemicals that halt the oxidation process; they achieve this by locating and destroying free radicals.¹⁶⁸ ROS induces

oxidative carcinogenic damage in DNA. Antioxidants can protect from cancer by scavenging ROS.¹⁶⁹ The free radical scavenging activity was robust due to the curcumin found in both the ethanolic and methanolic extracts of *C. longa*. Antioxidant activity was weak to moderate in the ethanolic *C. aromatica* extracts.¹⁷⁰ *C. purpurascens*, *C. mangga*, *C. phaeocaulis*, *C. heyneana*, and *C. aeruginosa* were among the several *Curcuma* species whose methanolic extracts showed DPPH radical scavenging.¹⁷¹ Moreover, chloroform extract of *C. heyneana* scavenged DPPH radicals.¹⁷² Ethyl acetate fraction of *C. manga* exerted strong H₂O₂-scavenging activity.¹⁷³ *C. caesia* extracts in chloroform, benzene, and ethyl acetate were highly effective antioxidants. Chloroform extract outperformed the others in terms of its ability to donate electrons and scavenge free radicals.¹⁷⁴ *C. xanthorrhiza* has been found to possess potent DPPH radical scavenging capabilities in both its ethanolic and aqueous extracts.¹⁷⁵ In addition, *C. angustifolia* exhibited strong antioxidant activity.¹⁷⁶ Different studies have shown that *C. amada*, *C. aromatica*, *C. aurantiaca*, *C. comosa*, *C. latifolia*, *C. longa*, *C. parviflora*, *C. xanthorrhiza*, and *C. zedoaria* were found to have strong antioxidant activity.^{171,177}

Anticancer activity of the species of the Genus *Curcuma*. The capacity of a substance or agent to combat cancer is known as its anticancer activity.¹⁷⁸ The drug or agent used to combat cancer has the potential to stop, slow, or even reverse the disease's development. Current anticancer medications have their roots in plant sources, accounting for over 80% of the total.¹⁷⁸ It was shown that both the oral and topical administration of *C. longa* extract significantly reduced the risk of N-methyl-N-nitrosourea (MNU)-induced mammary cancer in rats.¹⁷⁹ Ethanol extract of *C. longa* rhizome was cytotoxic to lymphocytes and Dalton's lymphoma, and it inhibited cell proliferation in CHO cells.¹⁸⁰ The n-hexane extract of *C. longa* was found to have cytotoxic effects on the A549 human lung cancer cell line.¹⁸¹ In addition, several cancer cell lines, including U937, Molt4, A549, and HeLa, were found to have anticancer activity when treated with

C. longa.^{182,183} The anticancer effects of curcumin, a compound derived from the root of the *C. longa*, were shown in a dose- and time-dependent manner when tested on human breast cancer cells (MCF-7).¹⁸⁴ Anticancer activity was demonstrated by several *C. amada* extracts against NCI-H460 and A-549 cells, which are human large-cell lung carcinomas.¹⁸⁵ *C. aromatica* with multiple ingredients was reported to show anticancer property.¹⁸⁶ Human colon carcinoma (LS-174-T) cells were found to be resistant to the anticancer effects of an aqueous *C. aromatica* extract.¹⁸⁷ Further investigation revealed that *C. aromatica* inhibited cell proliferation in Hepa1-6 human hepatocellular carcinoma cells by apoptosis induction.¹⁸⁸ *C. caesia* was reported to show anticancer properties against diethyl nitrosamine (DEN)-induced liver cancer.¹⁸⁹ Mice implanted with Ehrlich's ascites carcinoma (EAC) cells exhibited substantial anticancer activity when treated with an ethanol extract of *C. caesia*.¹⁹⁰ A number of cancer cell lines were shown to have their growth inhibition mechanisms exhibited by extracts of *C. mangga*. These cell lines included MCF-7, HT-29 (human colorectal adenocarcinoma), and PC-3 (human prostate cancer). Furthermore, *C. mangga* exhibited potent cytotoxic effects on Raji cells produced by the Epstein-Barr virus early antigen (EBV-EA).¹⁸⁷ The HT-29 cells were cytotoxically affected by the *C. mangga* n-hexane and ethyl acetate extracts.¹⁹¹ The oils of *C. phaeocaulis* were highly effective in killing LNCaP and B16 cells.⁸⁸ Inducing apoptosis by boosting ROS production, reducing ΔΨm, modulating Bcl-2 family protein expression, and activating caspases, several chemicals found in the ethanol extract of *C. phaeocaulis*, including furanodienone, germacrone, and furanodiene, halted the growth of MCF-7 cells.¹⁹² It was shown that *C. purpurascens* exhibited anticancer properties by triggering cell death in HT-29 human cancer cells.¹⁹³ The hexane extract of *C. xanthorrhiza* exhibited strong cytotoxic activities.¹⁹⁴ Furthermore, when tumor-bearing mice were administered 7,12-dimethylbenz[α]anthracite and 12-O-tetradecanoylphorbol-13-acetate, the methanol extract of *C. xanthorrhiza* exhibited anticancer

effects.¹⁹⁵ In addition, several types of cancer, including those of the colon, cervix, liver, skin, lungs, tongue, mouth, throat, and ovaries, have demonstrated anticancer effectiveness when treated with *C. xanthorrhiza*.¹²⁷ Isopropyl extract of *C. zedoaria* exerted strong anticancer activity against human NCI-H40 cell line,¹⁹⁶ and hexane extract of *C. zedoaria* exerted cytotoxicity against human cervix squamous cell carcinoma (SiHa) and human HepG2.¹⁹⁷ *C. zedoaria* exerted antitumor activity against EAC cell in mice.¹⁹⁸

DISCUSSION

In recent years, significant progress has been made in cancer treatment through diverse therapeutic strategies. However, the emergence of drug resistance in cancer cells has become a major challenge, fueling the search for novel anticancer agents with distinct mechanisms of action. The role of microbes in cancer is increasingly recognized; several studies suggest that certain bacterial strains can contribute to carcinogenesis by promoting malignant transformation within cells. In addition, during cancer, treatment microbial infections may impair the therapeutic efficacy, leading to serious complications.¹⁹⁹ Antibiotics have shown encouraging results in treating a variety of malignancies, and their use in treating infectious infections has led to significant strides in combating a large number of germs. Interestingly, antibiotics not only control infections but have also been reported to exert direct anticancer effects in some malignancies. When it comes to cancer therapy, antioxidants are a crucial component. It reacts with oxidized free radicals and removes them from cells, protecting them from harm.^{200,201} Antioxidant supplementation, used by 87% of cancer patients, has been reported to enhance chemotherapy outcomes by improving drug efficacy.²⁰² Protecting cells against free radicals, which might cause chemotherapy-induced OS, is a crucial function of endogenous antioxidants.²⁰³ Exogenous antioxidants must be consumed through food in order to prevent cell damage caused by free radicals if the body does

not produce enough endogenous antioxidants. Dietary sources such as vegetables, fruits, synthetic antioxidants, and supplements serve as important contributors of exogenous antioxidants.²⁰⁴

The genus *Curcuma* contains a number of promising medicinal plants having pharmacological activities. Several studies have shown that the *Curcuma* species possess anticancer, antimicrobial, antioxidant, and antitumor activity. In particular, *C. longa* and other *Curcuma* species have demonstrated anticancer potential across various cancer cell lines, including A549, U937, Molt4, MCF-7, and HeLa.²⁰⁵ When tested on MCF-7 human breast cancer cells, curcumin, a compound from the spice *C. longa*, showed strong anticancer effects. Moreover, furanodienone, germacrone, and furanodiene from *C. phaeocaulis* reduced the proliferation of MCF-7 cells by triggering apoptosis by increasing the generation of ROS, reducing mitochondrial membrane potential ($\Delta\Psi_m$), controlling the expression of Bcl-2 family proteins, and activating caspases. Additionally, *C. xanthorrhiza* demonstrated anticancer effects in tumor-bearing mice treated with 7,12-dimethylbenz[α]anthracene and 12-O-tetradecanoylphorbol-13-acetate.²⁰⁶ Collectively, these findings highlight the therapeutic potential of *Curcuma* species as sources of anticancer, antioxidant, and antimicrobial agents, warranting further investigation into their mechanisms and clinical applicability.

CONCLUSION

This is a review paper, and all the information has been collected from papers such as indexed Scopus journals, ScienceDirect, and similar sources. In this review, a wide number of the species of the *Curcuma* genus have been discussed to provide a link between their anticancer potentiality and their antimicrobial and antioxidant activities. Many nations, including Bangladesh, employ herbal components from the *Curcuma* genus, which has over 100 species, in traditional medical treatments. Additionally, rural people have long employed *Curcuma* species for the treatment of many maladies,

such as carcinoma, hemorrhoids, allergies and asthma, inflammation, leprosy, wounds, and so on, since ancient times. The traditional medicinal usage of these species is backed by their diverse array of bioactive phytochemicals. In addition, we noticed that the species of the *Curcuma* genus and their phytochemicals were found to show potential anticancer activity in different ways, and it was associated with antioxidant and antimicrobial activities. However, very few species of this genus have been studied so far. Therefore, there is a huge scope for working on the remaining the species to discover new anticancer drugs with the least toxicity.

ACKNOWLEDGEMENT

The authors are grateful to the Department of Pharmacy, University of Rajshahi, Bangladesh, for providing a desktop facility with an internet connection.

Funding

The authors declare that they do not have any financial support.

Conflict of Interest

The authors declare that they do not have any competing interest.

REFERENCES

1. National Cancer Institute. *NCI Dictionary of Cancer Terms*. 2020 [cited 2020 December 6]; Available from: <https://www.cancer.gov/publications/dictionaries/cancer-terms/def/cancer>
2. *Cancer*. 2024 [cited 2024 October 27]; Available from: <https://ncip.moh.gov.jm/cancers/>
3. WHO. *Cancer*. 2018 [cited 2020 December 6]; Available from: <https://www.who.int/news-room/fact-sheets/detail/cancer>
4. Shegokar, R. and Sawant, S. 2014. Cancer research and therapy: Where are we today? *Int. J. Cancer Ther. Oncol.* **2**, 02048.
5. National Cancer Institute. *Cancer Statistics - National Cancer Institute*. 2015 [cited 2020 December 7]; Available from: <https://www.cancer.gov/about-cancer/understanding/statistics>
6. Bijauliya, R.K., Alok, S., Singh, M. and Mishra, S.B. 2017. A comprehensive review on cancer and anticancer herbal drugs. *Int. J. Pharm. Sci. Res.* **8**, 2740-2761.
7. Singh, S., Sharma, B., Kanwar, S.S. and Kumar, A. 2016. Lead phytochemicals for anticancer drug development. *Front. Plant Sci.* **7**, 1667.
8. Kooti, W., Servatyari, K., Behzadifar, M., Asadi-Samani, M., Sadeghi, F., Nouri, B. and Zare Marzouni, H. 2017. Effective medicinal plant in cancer treatment, part 2: review study. *J. Evid. Based Complement. Altern. Med.* **22**, 982-995.
9. Bartlett, C. Plants can be game-changers in cancer treatment. 2024 [cited 2024 February 04]; Available from: <https://360info.org/plants-can-be-game-changers-in-cancer-treatment/>
10. Gahtori, R., Tripathi, A.H., Kumari, A., Negi, N., Paliwal, A., Tripathi, P., Joshi, P., Rai, R.C. and Upadhyay, S.K. 2023. Anticancer plant-derivatives: Deciphering their oncopreventive and therapeutic potential in molecular terms. *Futur. J. Pharm. Sci.* **9**, 14.
11. Sender, R., Fuchs, S. and Milo, R. 2016. Revised estimates for the number of human and bacteria cells in the body. *PLoS Biol.* **14**, e1002533.
12. Di Domenico, E.G., Cavallo, I., Pontone, M., Toma, L. and Ensoli, F. 2017. Biofilm producing *Salmonella typhi*: chronic colonization and development of gallbladder cancer. *Int. J. Mol. Sci.* **18**, 1887.
13. Welton, J., Marr, J. and Friedman, S. 1979. Association between hepatobiliary cancer and typhoid carrier state. *The Lancet*. **313**, 791-794.
14. Ferreccio, C. 2012. *Salmonella typhi* and Gallbladder Cancer. In: *Bacteria and Cancer*, A.A. Khan, Editor., Springer Netherlands: Dordrecht. pp. 117-137.
15. Tang-Fichaux, M., Branchu, P., Nougayrède, J.P. and Oswald, E. 2021. Tackling the Threat of Cancer Due to Pathobionts Producing Colibactin: Is Mesalamine the Magic Bullet? *Toxins*. **13**.
16. Arjunan, P., Meghil, M.M., Pi, W., Xu, J., Lang, L., El-Awady, A., Sullivan, W., Rajendran, M., Rabelo, M.S. and Wang, T. 2018. Oral pathobiont activates anti-apoptotic pathway, promoting both immune suppression and oncogenic cell proliferation. *Sci. Rep.* **8**, 16607.
17. Bhatt, A.P., Redinbo, M.R. and Bultman, S.J. 2017. The role of the microbiome in cancer development and therapy. *CA Cancer J. Clin.* **67**, 326-344.
18. Goodwin, A.C., Shields, C.E.D., Wu, S., Huso, D.L., Wu, X., Murray-Stewart, T.R., Hacker-Prietz, A., Rabizadeh, S., Woster, P.M. and Sears, C.L. 2011. Polyamine catabolism contributes to enterotoxigenic *Bacteroides fragilis*-induced colon tumorigenesis. *Proc. Natl. Acad. Sci.* **108**, 15354-15359.

19. Wang, F., Pan, J., Luo, L., Huang, L., Lu, H., Guo, Q., Xu, C. and Shen, S. 2011. Chronic *Helicobacter pylori* infection induces the proliferation and apoptosis in gastric epithelial cells and gastric precancerosis in Mongolian gerbils. *Zhong Nan Da Xue Xue Bao Yi Xue Ban.* **36**, 865-71.
20. Faden, A.A. 2016. The potential role of microbes in oncogenesis with particular emphasis on oral cancer. *Saudi Med. J.* **37**, 607-612.
21. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. and Bitto, A. 2017. Oxidative stress: harms and benefits for human health. *Oxid. Med. Cell. Longev.* **2017**, 8416763.
22. Al-Oubaide, S.A. and Mekkey, A.M. 2021. Free radicals have an important role in cancer initiation and development. *Med. J. Babylon.* **18**, 1-5.
23. Kozlov, A.V., Javadov, S. and Sommer, N. 2024. Cellular ROS and Antioxidants: Physiological and Pathological Role. *MDPI.* p. 602.
24. UkeSSays. Endogenous And Exogenous Antioxidants Benefits. 2018 [cited 23 July 2021]; Available from: <https://www.ukeSSays.com/essays/biology/using-endogenous-and-exogenous-antioxidants-biology-essay.php>
25. Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Abdull Razis, A.F., Modu, B., Calina, D. and Sharifi-Rad, J. 2023. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. *Front. Chem.* **11**, 1158198.
26. Yoshikawa, T. and You, F. 2024. Oxidative Stress and Bio-Regulation. *Int. J. Mol. Sci.* **25**.
27. Poljsak, B. and Milisav, I. 2018. The role of antioxidants in cancer, friends or foes? *Curr. Pharm. Des.* **24**, 5234-5244.
28. Xu, D.P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., Zhang, J.J. and Li, H.B. 2017. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. *Int. J. Mol. Sci.* **18**.
29. Keskin, C. 2018. Medicinal Plants and their Traditional Uses. *J. Adv. Plant Biol.* **1**, 8-12.
30. Sun, W., Wang, S., Zhao, W., Wu, C., Guo, S., Gao, H., Tao, H., Lu, J., Wang, Y. and Chen, X. 2017. Chemical constituents and biological research on plants in the genus *Curcuma*. *Crit. Rev. Food Sci. Nutr.* **57**, 1451-1523.
31. Omosa, L., Midiwo, J. and Kuete, V. 2017. *Curcuma longa*. In: *Medicinal spices and vegetables from Africa*. Elsevier. pp. 425-435.
32. Rahaman, M.M., Rakib, A., Mitra, S., Tareq, A.M., Emran, T.B., Shahid-Ud-Daula, A.F.M., Amin, M.N. and Simal-Gandara, J. 2020. The Genus *Curcuma* and Inflammation: Overview of the Pharmacological Perspectives. *Plants.* **10**.
33. Chen, M., Sun, J., Yao, H., Gong, F., Cai, L., Wang, C., Shao, Q. and Wang, Z. 2023. Analysis of genetic and chemical variability of five *Curcuma* species based on DNA barcoding and HPLC fingerprints. *Front. Plant Sci.* **14**, 1229041.
34. Rahmani, A.H., Alsahli, M.A., Aly, S.M., Khan, M.A. and Aldeebasi, Y.H. 2018. Role of Curcumin in Disease Prevention and Treatment. *Adv. Biomed. Res.* **7**, 38.
35. El-Saadony, M.T., Yang, T., Korma, S.A., Sitohy, M., Abd El-Mageed, T.A., Selim, S., Al Jaouni, S.K., Salem, H.M., Mahmmod, Y., Soliman, S.M., Mo'men, S.A.A., Mosa, W.F.A., El-Wafai, N.A., Abou-Aly, H.E., Sitohy, B., Abd El-Hack, M.E., El-Tarabily, K.A. and Saad, A.M. 2022. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. *Front. Nutr.* **9**, 1040259.
36. Gbif. *Curcuma* L. 2021 [cited 2021 May 22]; Available from: <https://www.gbif.org/species/2757518>
37. Subositi, D. and Wahyono, S. 2019. Study of the genus *Curcuma* in Indonesia used as traditional herbal medicines. *Biodiversitas.* **20**, 1356-1361.
38. Hossain, C.F., Al-Amin, M., Sayem, A.S.M., Siragee, I.H., Tunan, A.M., Hassan, F., Kabir, M.M. and Sultana, G.N.N. 2015. Antinociceptive principle from *Curcuma aeruginosa*. *BMC Complement. Altern. Med.* **15**, 1-7.
39. Choudhury, D., Ghosal, M., Das, A.P. and Mandal, P. 2013. Development of single node cutting propagation techniques and evaluation of antioxidant activity of *Curcuma aeruginosa* Roxburgh rhizome. *Int. J. Pharm. Pharm. Sci.* **5**, 227-234.
40. Akarchariya, N., Sirilun, S., Julsrigival, J. and Chansakaowa, S. 2017. Chemical profiling and antimicrobial activity of essential oil from *Curcuma aeruginosa* Roxb., *Curcuma glans* K. Larsen & J. Mood and *Curcuma cf. xanthorrhiza* Roxb. collected in Thailand. *Asian Pac. J. Trop. Biomed.* **7**, 881-885.
41. Partha, P. and Hossain, A.E. 2007. Ethnobotanical investigation into the Mandi ethnic community in Bangladesh. *Bangladesh J. Plant Taxon.* **14**, 129-145.
42. Jatoi, S.A., Kikuchi, A., Gilani, S.A. and Watanabe, K.N. 2007. Phytochemical, pharmacological and ethnobotanical studies in mango ginger (*Curcuma amada* Roxb.; Zingiberaceae). *Phytother. Res.* **21**, 507-516.
43. Devi, T.I., Devi, K.U. and Singh, E. 2015. Wild medicinal plants in the hill of Manipur, India: a traditional therapeutic potential. *Int. J. Sci. Res. Publ.* **5**, 1-9.
44. Rai, S. 2004. Medicinal plants used by Meche people of Jhapa district, eastern Nepal. *Our Nature.* **2**, 27-32.
45. Umar, N.M., Parumalivaram, T., Aminu, N. and Toh, S.-M. 2020. Phytochemical and pharmacological properties of *Curcuma aromatica* Salisb (wild turmeric). *J. Appl. Pharm. Sci.* **10**, 180-194.
46. Sikha, A., Harini, A. and Hegde, P.L. 2015. Pharmacological activities of wild turmeric (*Curcuma aromatica* Salisb): a review. *J. Pharmacogn. Phytochem.* **3**, 1-4.
47. Sahu, B., Kenwat, R. and Chandrakar, S. 2016. Medicinal value of *Curcuma cassia* Roxb: an overview. *Pharm. Biosci.* **4**, 69-74.

48. Widjowati, R. and Agil, M. 2018. Chemical constituents and bioactivities of several Indonesian plants typically used in Jamu. *Chem. Pharm. Bull.* **66**, 506-518.

49. Jagtap, S.D., Deokule, S., Pawar, P. and Harsulkar, A. 2009. Traditional ethnomedicinal knowledge confined to the Pawra tribe of Satpura Hills, Maharashtra, India. *Ethnobotanical Leaflets*. **13**, 98-115.

50. Devi, N.B., Singh, P. and Das, A.K. 2014. Ethnomedicinal utilization of Zingiberaceae in the valley districts of Manipur. *IOSR J. Environ. Sci. Toxicol. Food Technol.* **8**, 21-23.

51. Devi, L.R., Rana, V.S., Devi, S.I., Verdeguer, M. and Amparo Blázquez, M. 2012. Chemical composition and antimicrobial activity of the essential oil of *Curcuma leucorrhiza* Roxb. *J. Essent. Oil Res.* **24**, 533-538.

52. Uddin, M.Z., Hassan, M.A. and Sultana, M. 2006. Ethnobotanical survey of medicinal plants in Phulbari Upazila of Dinajpur District, Bangladesh. *Bangladesh J. Plant Taxon.* **13**, 63-68.

53. Chattopadhyay, I., Biswas, K., Bandyopadhyay, U. and Banerjee, R.K. 2004. Turmeric and curcumin: Biological actions and medicinal applications. *Curr. Sci.* **87**, 44-53.

54. Abas, F., Lajis, N.H., Shaari, K., Israf, D.A., Stanslas, J., Yusuf, U.K. and Raof, S.M. 2005. A Labdane Diterpene Glucoside from the Rhizomes of *Curcuma mangga*. *J. Nat. Prod.* **68**, 1090-1093.

55. Smita, R., Sangeeta, R., Kumar, S.S., Soumya, S. and Deepak, P. 2013. An ethnobotanical survey of medicinal plants in Semiliguda of Koraput District, Odisha, India. *Res. J. Recent Sci.* **2**, 20-30.

56. Daduang, S., Sattayasai, N., Sattayasai, J., Tophrom, P., Thammathaworn, A., Chaveerach, A. and Konkchaiyaphum, M. 2005. Screening of plants containing *Naja naja siamensis* cobra venom inhibitory activity using modified ELISA technique. *Anal. Biochem.* **341**, 316-325.

57. Oh, S., Han, A.R., Park, H.R., Jang, E.J., Kim, H.K., Jeong, M.G., Song, H., Park, G.H., Seo, E.K. and Hwang, E.S. 2014. Suppression of inflammatory cytokine production by ar-turmerone isolated from *Curcuma phaeocaulis*. *Chem. Biodivers.* **11**, 1034-1041.

58. Hwang, J., Shim, J. and Pyun, Y. 2000. Antibacterial activity of xanthorrhizol from *Curcuma xanthorrhiza* against oral pathogens. *Fitoterapia*. **71**, 321-323.

59. Salleh, N.A.M., Ismail, S. and Ab Halim, M.R. 2016. Effects of *Curcuma xanthorrhiza* extracts and their constituents on phase II drug-metabolizing enzymes activity. *Pharmacogn. Res.* **8**, 309-315.

60. Wilson, B., Abraham, G., Manju, V., Mathew, M., Vimala, B., Sundaresan, S. and Nambisan, B. 2005. Antimicrobial activity of *Curcuma zedoaria* and *Curcuma malabarica* tubers. *J. Ethnopharmacol.* **99**, 147-151.

61. Anjusha, S. and Gangaprasad, A. 2014. Phytochemical and antibacterial analysis of two important *Curcuma* species, *Curcuma aromatica* Salisb. and *Curcuma xanthorrhiza* Roxb. (Zingiberaceae). *J. Pharmacogn. Phytochem.* **3**, 50-53.

62. Lampronti, I., Saab, A.M. and Gambari, R. 2006. Antiproliferative activity of essential oils derived from plants belonging to the Magnoliophyta division. *Int. J. Oncol.* **29**, 989-995.

63. Singh, G., Singh, O.P. and Maurya, S. 2002. Chemical and biocidal investigations on essential oils of some Indian *Curcuma* species. *Prog. Cryst. Growth Charact. Mater.* **45**, 75-81.

64. Saito, Y., Shiga, A., Yoshida, Y., Furuhashi, T., Fujita, Y. and Niki, E. 2004. Effects of a novel gaseous antioxidative system containing a rosemary extract on the oxidation induced by nitrogen dioxide and ultraviolet radiation. *Biosci. Biotechnol. Biochem.* **68**, 781-786.

65. Moteki, H., Hibasami, H., Yamada, Y., Katsuzaki, H., Imai, K. and Komiya, T. 2002. Specific induction of apoptosis by 1,8-cineole in two human leukemia cell lines, but not a in human stomach cancer cell line. *Oncol. Rep.* **9**, 757-760.

66. Jantan, I.b., Ahmad, A.S., Ali, N.A.M., Ahmad, A.R. and Ibrahim, H. 1999. Chemical composition of the rhizome oils of four *Curcuma* species from Malaysia. *J. Essent. Oil Res.* **11**, 719-723.

67. Srivastava, A., Srivastava, S. and Shah, N. 2001. Constituents of the rhizome essential oil of *Curcuma amada* Roxb. from India. *J. Essent. Oil Res.* **13**, 63-64.

68. Angel, G.R., Menon, N., Vimal, B. and Nambisan, B. 2014. Essential oil composition of eight starchy *Curcuma* species. *Ind. Crops Prod.* **60**, 233-238.

69. Dũng, N.X., Truong, P.X., Ky, P.T. and Leclercq, P.A. 1997. Volatile constituents of the leaf, stem, rhizome, root and flower oils of *Curcuma harmandii* Gagnep. from Vietnam. *J. Essent. Oil Res.* **9**, 677-681.

70. Naz, S., Ilyas, S., Parveen, Z. and Javed, S. 2010. Chemical analysis of essential oils from turmeric (*Curcuma longa*) rhizome through GC-MS. *Asian J. Chem.* **22**, 3153-3158.

71. Li, J., Bian, W.-H., Wan, J., Zhou, J., Lin, Y., Wang, J.-R., Wang, Z.-X., Shen, Q. and Wang, K.-M. 2014. Curdione inhibits proliferation of MCF-7 cells by inducing apoptosis. *Asian Pac. J. Cancer Prev.* **15**, 9997-10001.

72. Srivastava, S., Nitin, C., Srivastava, S., Dan, M., Rawat, A. and Pushpangadan, P. 2006. Pharmacognostic evaluation of *Curcuma aeruginosa* Roxb. *Nat. Prod. Sci.* **12**, 162-165.

73. Ky, P.T., Ven, L.V.D., Leclercq, P. and Dung, N.X. 1994. Volatile constituents of the essential oil of *Curcuma trichosantha* Gagnep. from Vietnam. *J. Essent. Oil Res.* **6**, 213-214.

74. Zhou, L., Zhang, K., Li, J., Cui, X., Wang, A., Huang, S., Zheng, S., Lu, Y. and Chen, W. 2013. Inhibition of vascular endothelial growth factor-mediated angiogenesis involved in reproductive toxicity induced by sesquiterpenoids of *Curcuma zedoaria* in rats. *Reprod. Toxicol.* **37**, 62-69.

75. Sugita, P., Firdaus, S., Ilmiawati, A. and Rahayu, D.U.C. 2018. Curcumenol: A guaiane-type sesquiterpene from indonesian *Curcuma Heyneana* rhizome and its antibacterial activity towards *Staphylococcus aureus* and *Escherichia coli*. *J. Chem. Pharm. Res.* **10**, 68-75.

76. Lo, J.Y., Kamarudin, M.N.A., Hamdi, O.A.A., Awang, K. and Kadir, H.A. 2015. Curcumenol isolated from *Curcuma zedoaria* suppresses Akt-mediated NF- κ B activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells. *Food Funct.* **6**, 3550-3559.

77. Cao, J., Qi, M., Zhang, Y., Zhou, S., Shao, Q. and Fu, R. 2006. Analysis of volatile compounds in *Curcuma wenyujin* Y.H. Chen et C. Ling by headspace solvent microextraction-gas chromatography-mass spectrometry. *Anal. Chim. Acta.* **561**, 88-95.

78. Jantan, I., Saputri, F.C., Qaisar, M.N. and Buang, F. 2012. Correlation between chemical composition of *Curcuma domestica* and *Curcuma xanthorrhiza* and their antioxidant effect on human low-density lipoprotein oxidation. *Evid. Based Complement. Alternat. Med.* **2012**, 438356.

79. Itokawa, H., Hirayama, F., Funakoshi, K. and Takeya, K. 1985. Studies on the antitumor bisabolane sesquiterpenoids isolated from *Curcuma xanthorrhiza*. *Chem. Pharm. Bull. (Tokyo)* **33**, 3488-3492.

80. AloK, A., Singh, I.D., Singh, S., Kishore, M. and Jha, P.C. 2015. Curcumin-pharmacological actions and its role in oral submucous fibrosis: a review. *J. Clin. Diagn. Res.* **9**, ZE01-ZE03.

81. Zhang, W., Wang, Z. and Chen, T. 2011. Curcumol induces apoptosis via caspases independent mitochondrial pathway in human lung adenocarcinoma ASTC-a-1 cells. *Med. Oncol.* **28**, 307-314.

82. Tsai, S.Y., Huang, S.-J., Chyau, C.-C., Tsai, C.-H., Weng, C.C. and Mau, J.-L. 2011. Composition and antioxidant properties of essential oils from *Curcuma* rhizome. *Asian J. Arts Sci.* **2**, 57-66.

83. Shi, H., Tan, B., Ji, G., Lu, L., Cao, A., Shi, S. and Xie, J. 2013. Zedoary oil (Ezhu You) inhibits proliferation of AGS cells. *Chin. Med.* **8**, 1-11.

84. Zhao, J., Zhang, J.-S., Yang, B., Lv, G.-P. and Li, S.-P. 2010. Free radical scavenging activity and characterization of sesquiterpenoids in four species of *Curcuma* using a TLC bioautography assay and GC-MS analysis. *Molecules.* **15**, 7547-7557.

85. Wang, Y., Li, J., Guo, J., Wang, Q., Zhu, S., Gao, S., Yang, C., Wei, M., Pan, X. and Zhu, W. 2017. Cytotoxic and antitumor effects of curzerene from *Curcuma longa*. *Planta Med.* **83**, 23-29.

86. Dũng, N.X., Tuyêt, N.T.B. and Leclercq, P.A. 1995. Characterization of the leaf oil of *Curcuma aeruginosa* Roxb. from Vietnam. *J. Essent. Oil Res.* **7**, 657-659.

87. Liu, Z.L., Zhao, N.N., Liu, C.M., Zhou, L. and Du, S.S. 2012. Identification of insecticidal constituents of the essential oil of *Curcuma wenyujin* rhizomes active against *Liposcelis bostrychophila* Badonnel. *Molecules.* **17**, 12049-12060.

88. Zhang, L., Yang, Z., Wei, J., Su, P., Pan, W., Zheng, X., Zhang, K., Lin, L., Tang, J., Fang, Y. and Du, Z. 2017. Essential oil composition and bioactivity variation in wild-growing populations of *Curcuma phaeocaulis* Valeton collected from China. *Ind. Crops Prod.* **103**, 274-282.

89. Hong, S.-L., Lee, G.-S., Rahman, S.N.S.A., Hamdi, O.A.A., Awang, K., Nugroho, N.A. and Malek, S.N.A. 2014. Essential oil content of the rhizome of *Curcuma purpurascens* Bl. (Temu Tis) and its antiproliferative effect on selected human carcinoma cell lines. *Sci. World J.* **2014**.

90. Zheng, T., Xiao, H., Shen, Y., Zhang, X., Jiang, K., Liu, L., Bai, X., Peng, J. and Chen, Y. 2019. Anticancer effects of curzerenone against drug-resistant human lung carcinoma cells are mediated via programmed cell death, loss of mitochondrial membrane potential, ROS, and blocking the ERK/MAPK and NF- κ B signaling pathway. *J. BUON.* **24**, 907-912.

91. Padalia, R.C., Verma, R.S., Sundaresan, V., Chauhan, A., Chanotiya, C.S. and Yadav, A. 2013. Volatile terpenoid compositions of leaf and rhizome of *Curcuma amada* Roxb. from northern India. *J. Essent. Oil Res.* **25**, 17-22.

92. Jena, S., Ray, A., Banerjee, A., Sahoo, A., Nasim, N., Sahoo, S., Kar, B., Patnaik, J., Panda, P.C. and Nayak, S. 2017. Chemical composition and antioxidant activity of essential oil from leaves and rhizomes of *Curcuma angustifolia* Roxb. *Nat. Prod. Res.* **31**, 2188-2191.

93. Herath, H.M.I.C., Wijayasiriwardene, T.D.C.M.K. and Premakumara, G.A.S. 2017. Comparative GC-MS analysis of all *Curcuma* species grown in Sri Lanka by multivariate test. *Ruhuna J. Sci.* **8**, 103-111.

94. Malek, S.N., Seng, C.K., Zakaria, Z., Ali, N.A., Ibrahim, H. and Jalil, M.N. 2006. The essential oil of *Curcuma inodora* aff. Blatter from Malaysia. *J. Essent. Oil Res.* **18**, 281-283.

95. Singh, P., Singh, S., Kapoor, I., Singh, G., Isidorov, V. and Szczepaniak, L. 2013. Chemical composition and antioxidant activities of essential oil and oleoresins from *Curcuma zedoaria* rhizomes, part-74. *Food Biosci.* **3**, 42-48.

96. de Oliveira, T.M., de Carvalho, R.B.F., da Costa, I.H.F., de Oliveira, G.A.L., de Souza, A.A., de Lima, S.G. and de Freitas, R.M. 2015. Evaluation of p-cymene, a natural antioxidant. *Pharm. Biol.* **53**, 423-428.

97. Balahbib, A., El Omari, N., Hachlafi, N.E., Lakhdar, F., El Meniyi, N., Salhi, N., Mrabti, H.N., Bakrim, S., Zengin, G. and Bouyahya, A. 2021. Health beneficial and pharmacological properties of p-cymene. *Food Chem. Toxicol.* **153**, 112259.

98. Garg, S.N., Mengi, N., Patra, N.K., Charles, R. and Kumar, S. 2002. Chemical examination of the leaf essential oil of *Curcuma longa* L. from the north Indian plains. *Flavour Fragr. J.* **17**, 103-104.

99. Xiang, H., Zhang, L., Yang, Z., Chen, F., Zheng, X. and Liu, X. 2017. Chemical compositions, antioxidative, antimicrobial, anti-inflammatory and antitumor activities of *Curcuma aromatica* Salisb. essential oils. *Ind. Crops Prod.* **108**, 6-16.

100. Kamazeri, T.S.A.T., Samah, O.A., Taher, M., Susanti, D. and Qaralleh, H. 2012. Antimicrobial activity and essential oils of *Curcuma aeruginosa*, *Curcuma mangga* and *Zingiber cassumunar* from Malaysia. *Asian Pac. J. Trop. Med.* **5**, 202-209.

101. Li, Q.Q., Wang, G., Huang, F., Banda, M. and Reed, E. 2010. Antineoplastic effect of β -elemene on prostate cancer cells and other types of solid tumour cells. *J. Pharm. Pharmacol.* **62**, 1018-1027.

102. Diastuti, H., Syah, Y.M., Juliawaty, L.D. and Singgih, M. 2014. Antibacterial activity of germacrane type sesquiterpenes from *Curcuma heyneana* rhizomes. *Indones. J. Chem.* **14**, 32-36.

103. Hamdi, O.A.A., Ye, L.J., Kamarudin, M.N.A., Hazni, H., Paydar, M., Looi, C.Y., Shilpi, J.A., Kadir, H.A. and Awang, K. 2015. Neuroprotective and antioxidant constituents from *Curcuma zedoaria* rhizomes. *Rec. Nat. Prod.* **9**, 349-355.

104. Liu, Y., Wang, W., Fang, B., Ma, F., Zheng, Q., Deng, P., Zhao, S., Chen, M., Yang, G. and He, G. 2013. Anti-tumor effect of germacrone on human hepatoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. *Eur. J. Pharmacol.* **698**, 95-102.

105. Theanhong, O., Mingvanish, W. and Kirdmanee, C. 2015. Chemical constituents and biological activities of essential oil from *Curcuma aeruginosa* Roxb. rhizome. *BHST* **13**, 6-16.

106. Thongkhwan, P., Chaibunga, T., Kwanboonjan, H. and Theanhong, O. 2017. Essential oil constituents of the fresh root and rhizome of *Curcuma angustifolia* Roxb. from Thailand. *BHST* **15**, 52-53.

107. Choudhury, S., Ghosh, A.C., Saikia, M., Choudhury, M. and Leclercq, P.A. 1996. Volatile constituents of the aerial and underground parts of *Curcuma aromatica* Salisb from India. *J. Essent. Oil Res.* **8**, 633-638.

108. Sirat, H.M., Jamil, S. and Rahman, A.A. 1997. Rhizome oil of *Curcuma ochrorhiza* Val. *J. Essent. Oil Res.* **9**, 351-353.

109. Mitić-Ćulafić, D., Žegura, B., Nikolić, B., Vuković-Gačić, B., Knežević-Vukčević, J. and Filipić, M. 2009. Protective effect of linalool, myrcene and eucalyptol against t-butyl hydroperoxide induced genotoxicity in bacteria and cultured human cells. *Food Chem. Toxicol.* **47**, 260-266.

110. Behura, S. and Srivastava, V. 2004. Essential oils of leaves of *Curcuma* species. *J. Essent. Oil Res.* **16**, 109-110.

111. Erukainure, O.L., Kayode, F.O., Adeyoju, O.A., Adenekan, S.O., Asieba, G., Ajayi, A., Adegbola, M.V. and Sarumi, B.B. 2015. Antioxidant and chemical properties of essential oil extracted from blend of selected spices. *J. Coast. Life Med.* **3**, 575-578.

112. Sindhu, S., Chempakam, B., Leela, N. and Bhai, R.S. 2011. Chemoprevention by essential oil of turmeric leaves (*Curcuma longa* L.) on the growth of *Aspergillus flavus* and aflatoxin production. *Food Chem. Toxicol.* **49**, 1188-1192.

113. Rivas da Silva, A.C., Lopes, P.M., Barros de Azevedo, M.M., Costa, D., Alviano, C.S. and Alviano, D.S. 2012. Biological activities of α -pinene and β -pinene enantiomers. *Molecules* **17**, 6305-6316.

114. Basholli-Salihu, M., Schuster, R., Hajdari, A., Mulla, D., Viernstein, H., Mustafa, B. and Mueller, M. 2017. Phytochemical composition, anti-inflammatory activity and cytotoxic effects of essential oils from three *Pinus* spp. *Pharm. Biol.* **55**, 1553-1560.

115. Dünd, N.X., Tuyecirc;t, N.T.B. and Leclercq, P.A. 1995. Constituents of the leaf oil of *Curcuma domestica* L. from Vietnam. *J. Essent. Oil Res.* **7**, 701-703.

116. Wahab, I.R.A., Blagojević, P.D., Radulović, N.S. and Boylan, F. 2011. Volatiles of *Curcuma mangga* Val. & Zijp (Zingiberaceae) from Malaysia. *Chem. Biodivers.* **8**, 2005-2014.

117. Tyagi, A.K., Prasad, S., Yuan, W., Li, S. and Aggarwa, B.B. 2015. Identification of a novel compound (β -sesquiphellandrene) from turmeric (*Curcuma longa*) with anticancer potential: Comparison with curcumin. *Invest. New Drugs* **33**, 1175-1186.

118. Ling, J., Wei, B., Lv, G., Ji, H. and Li, S. 2012. Anti-hyperlipidaemic and antioxidant effects of turmeric oil in hyperlipidaemic rats. *Food Chem.* **130**, 229-235.

119. Kim, H.-J., Chen, F., Wu, C., Wang, X., Chung, H.Y. and Jin, Z. 2004. Evaluation of antioxidant activity of Australian tea tree (*Melaleuca alternifolia*) oil and its components. *J. Agric. Food Chem.* **52**, 2849-2854.

120. Chane-Ming, J., Vera, R., Chalchat, J.-C. and Cabassu, P. 2002. Chemical composition of essential oils from rhizomes, leaves and flowers of *Curcuma longa* L. from Reunion Island. *J. Essent. Oil Res.* **14**, 249-251.

121. Oguntimein, B.O., Weyerstahl, P. and Marschall-Weyerstahl, H. 1990. Essential oil of *Curcuma longa* L. leaves. *Flavour Fragr. J.* **5**, 89-90.

122. Schmidt, E., Ryabchenko, B., Wanner, J., Jäger, W. and Jirovetz, L. 2015. Cytotoxic active constituents of essential oils of *Curcuma longa* and *Curcuma zanthorrhiza*. *Nat. Prod. Commun.* **10**, 139-141.

123. Paek, S.H., Kim, G.J., Jeong, H.S. and Yum, S.K. 1996. Ar-tumerone and β -atlantone induce internucleosomal DNA fragmentation associated with programmed cell death in human myeloid leukemia HL-60 cells. *Arch. Pharm. Res.* **19**, 91-94.

124. Bordoloi, A.K., Sperkova, J. and Leclercq, P.A. 1999. Essential oils of *Curcuma aromatica* Salisb. from northeast India. *J. Essent. Oil Res.* **11**, 537-540.

125. Pandey, A.K. and Chowdhury, A.R. 2003. Volatile constituents of the rhizome oil of *Curcuma caesia* Roxb. from central India. *Flavour Fragr. J.* **18**, 463-465.

126. Xiang, H., Zhang, L., Xi, L., Yang, Y., Wang, X., Lei, D., Zheng, X. and Liu, X. 2018. Phytochemical profiles and bioactivities of essential oils extracted from seven *Curcuma* herbs. *Ind. Crops Prod.* **111**, 298-305.

127. Oon, S.F., Nallappan, M., Tee, T.T., Shohaimi, S., Kassim, N.K., Sa'ariwijaya, M.S.F., and Cheah, Y.H. 2015. Xanthorrhizol: A review of its pharmacological activities and anticancer properties. *Cancer Cell Int.* **15**, 1-15.

128. Theanhong, O. and Mingyanish, W. 2017. Chemical constituents and antioxidant activities of essential oils from roots and rhizomes of *Curcuma alismatifolia* Gagnap. from Thailand. *J. Appl. Sci.* **16**, 105-111.

129. Nampoothiri, S.V., Philip, R.M., Kankangi, S., Kiran, C.R. and Menon, A.N. 2015. Essential oil composition, α -amylase inhibition and antiglycation potential of *Curcuma aromatica* Salisb. *J. Essent. Oil-Bear. Plants.* **18**, 1051-1058.

130. Microbiology Society. What Are Antimicrobials and How Do They Work? 2024 [cited 2024 December 19]; Available from: <https://microbiologysociety.org/why-microbiology-matters/knocking-out-antimicrobial-resistance/amr-explained/what-are-antimicrobials-and-how-do-they-work.html>

131. Devi, S., Sharma, M. and Manhas, R.K. 2023. Purification and biological analysis of antimicrobial compound produced by an endophytic *Streptomyces* sp. *Sci. Rep.* **13**, 15248.

132. Huang, C.Y., Yang, J.L., Chen, J.J., Tai, S.B., Yeh, Y.H., Liu, P.F., Lin, M.W., Chung, C.L. and Chen, C.L. 2021. Fluoroquinolones suppress TGF- β and PMA-induced MMP-9 production in cancer cells: implications in repurposing quinolone antibiotics for cancer treatment. *Int. J. Mol. Sci.* **22**.

133. Kłoskowski, T., Fekner, Z., Szeliski, K., Paradowska, M., Balcerzyk, D., Rasmus, M., Dąbrowski, P., Kaźmierski, Ł., Drewa, T. and Pokrywczyńska, M. 2023. Effect of four fluoroquinolones on the viability of bladder cancer cells in 2D and 3D cultures. *Front. Oncol.* **13**, 1222411.

134. MedicineNet. Definition of Antibacterial. 2021 [cited 2021 May 6]; Available from: <https://www.medicinenet.com/antibacterial/definition.htm>

135. Alihosseini, F. 2016. Plant-based compounds for antimicrobial textiles. In: *Antimicrobial Textiles*. Elsevier. pp. 155-195.

136. Hoffman, P.S. 2020. Antibacterial Discovery: 21st Century Challenges. *Antibiotics (Basel)*. **9**, 213.

137. Ali, S.M., Siddiqui, R. and Khan, N.A. 2018. Antimicrobial discovery from natural and unusual sources. *J. Pharm. Pharmacol.* **70**, 1287-1300.

138. Tamim, H.M., Musallam, K.M., Kadri, H.M.F.A., Boivin, J.-F. and Collet, J.-P. 2011. Antibiotic use and risk of gynecological cancer. *Eur. J. Obstet. Gynecol. Reprod. Biol.* **159**, 388-393.

139. Pabón-Carrasco, M., Keco-Huerga, A., Castro-Fernández, M., Saracino, I.M., Fiorini, G., Vaira, D., Pérez-Aisa, Á., Tepes, B., Jonaitis, L. and Voynovan, I. 2024. Role of proton pump inhibitors dosage and duration in *Helicobacter pylori* eradication treatment: Results from the European Registry on *H. pylori* management. *United European Gastroenterol. J.* **12**, 122-138.

140. Kuo, S.-H., Yeh, K.-H., Wu, M.-S., Lin, C.-W., Wei, M.-F., Liou, J.-M., Wang, H.-P., Chen, L.-T. and Cheng, A.-L. 2017. First-line antibiotic therapy in *Helicobacter pylori*-negative low-grade gastric mucosa-associated lymphoid tissue lymphoma. *Sci. Rep.* **7**, 14333.

141. Miethke, M., Pieroni, M., Weber, T., Brönstrup, M., Hammann, P., Halby, L., Arimondo, P.B., Glaser, P., Aigle, B. and Bode, H.B. 2021. Towards the sustainable discovery and development of new antibiotics. *Nat. Rev. Chem.* **5**, 726-749.

142. Ciucă, M.D. and Racovita, R.C. 2023. Curcumin: Overview of extraction methods, health benefits, and encapsulation and delivery using microemulsions and nanoemulsions. *Int. J. Mol. Sci.* **24**, 8874.

143. El Feghali, P., Ibrahim, R. and Nawas, T. 2018. Antibacterial activity of *Curcuma longa*, *Opuntia ficus-indica* and *Linum usitatissimum*. *MOJ Toxicol.* **4**, 214-220.

144. Gcharge, S., Hiremath, S.I., Kagawad, P., Jivaje, K., Palled, M.S. and Suryawanshi, S.S. 2021. *Curcuma zedoaria* Rosc (Zingiberaceae): a review on its chemical, pharmacological and biological activities. *Futur. J. Pharm. Sci.* **7**, 1-9.

145. Mary, H.P., Susheela, G.K., Jayasree, S., Nizzy, A., Rajagopal, B. and Jeeva, S. 2012. Phytochemical characterization and antimicrobial activity of *Curcuma xanthorrhiza* Roxb. *Asian Pac. J. Trop. Biomed.* **2**, S637-S640.

146. Teow, S.Y., Liew, K., Ali, S.A., Khoo, A.S. and Peh, S.C. 2016. Antibacterial Action of Curcumin against *Staphylococcus aureus*: A Brief Review. *J. Trop. Med.* **2016**, 2853045.

147. Atom, R.S., Shaikh, S.A.M., Laitonjam, W.S., Ningthoujam, R.S. and Kunwar, A. 2021. Phytochemical profiling of petroleum ether and chloroform extracts of *Curcuma caesia* rhizome by GC-MS and comparing their bioactivities. *JOSAC*. **30**.

148. Amponsah, S.K. and Tagoe, B. 2023. Drug Resistance in Antiviral Therapy, in *Viral Drug Delivery Systems: Advances in Treatment of Infectious Diseases*. 17-26.

149. Del Borgo, C., Garattini, S., Bortignon, C., Carraro, A., Di Trento, D., Gasperin, A., Grimaldi, A., De Maria, S.G., Corazza, S., Tieghi, T., Belvisi, V., Kertusha, B., De Masi, M., D'Onofrio, O., Bagaglini, G., Bonanni, G., Zuccalà, P., Fabietti, P., Tortellini, E., Guardiani, M., Spagnoli, A., Marocco, R., Alunni Fegatelli, D., Lichtner, M. and Latina, C.-G. 2023. Effectiveness, Tolerability and Prescribing Choice of Antiviral Molecules Molnupiravir, Remdesivir and Nirmatrelvir/r: A Real-World Comparison in the First Ten Months of Use. *Viruses*. **15**.

150. MedicineNet. Medical Definition of Antiviral. 2021 [cited 2021 May 8]; Available from: <https://www.medicinenet.com/antiviral/definition.htm>

151. Reddy, D., Kumavath, R., Barh, D., Azevedo, V. and Ghosh, P. 2020. Anticancer and antiviral properties of cardiac glycosides: a review to explore the mechanism of actions. *Molecules*. **25**, 3596.

152. Assouline, S., Culjkovic, B., Cocolakis, E., Rousseau, C., Beslu, N., Amri, A., Caplan, S., Leber, B., Roy, D.-C., Jr, W.H.M. and Borden, K.L. 2009. Molecular targeting of the oncogene eif4e in acute myeloid leukemia (aml): A proof-of-principle clinical trial with ribavirin. *Blood*. **114**, 257-260.

153. Zhou, F.-X., Liao, Z.-K., Dai, J., Xiong, J., Xie, C.-H., Luo, Z.-G., Liu, S.-Q. and Zhou, Y.-F. 2007. Radiosensitization effect of zidovudine on human malignant glioma cells. *Biochem. Biophys. Res. Commun.* **354**, 351-356.

154. Kumar, A., P. N., Kumar, M., Jose, A., Tomer, V., Oz, E., Proestos, C., Zeng, M., Elobeid, T., K, S. and Oz, F. 2023. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. *Molecules*. **28**, 887.

155. Ichsyani, M., Ridhanya, A., Risanti, M., Desti, H., Ceria, R., Putri, D.H., Sudiro, T.M. and Dewi, B.E. 2017. Antiviral effects of *Curcuma longa* L. against dengue virus *in vitro* and *in vivo*. *IOP Conf. Ser. Earth Environ. Sci.* **101**, 012005.

156. Ardebili, A., Pouriayevali, M.H., Aleshikh, S., Zahani, M., Ajorloo, M., Izanloo, A., Siyadatpanah, A., Nikoo, H.R., Wilairatana, P. and Coutinho, H.D.M. 2021. Antiviral Therapeutic Potential of Curcumin: An Update. *Molecules*. **26**, 6994.

157. Mounce, B.C., Cesaro, T., Carrau, L., Vallet, T. and Vignuzzi, M. 2017. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. *Antiviral Res.* **142**, 148-157.

158. Wahyuni, T.S., Permatasari, A.A., Widiandani, T., Fuad, A., Widyawaruyanti, A., Aoki-Utsubo, C. and Hotta, H. 2018. Antiviral activities of *Curcuma* genus against hepatitis C virus. *Nat. Prod. Commun.* **13**, 1579-1582.

159. Sciencedaily. Fungal invasion of pancreas creates cancer risk. 2019 [cited 17 May 2021]; Available from: <https://www.sciencedaily.com/releases/2019/10/191002140317.htm>

160. Ruhnke, M., Cornely, O.A., Schmidt-Hieber, M., Alakel, N., Boell, B., Buchheidt, D., Christopeit, M., Hasenkamp, J., Heinz, W.J. and Hentrich, M. 2020. Treatment of invasive fungal diseases in cancer patients—Revised 2019 Recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). *Mycoses*. **63**, 653-682.

161. Ramirez-Garcia, A., Rementeria, A., Aguirre-Urizar, J.M., Moragues, M.D., Antoran, A., Pellon, A., Abad-Diaz-de-Cerio, A. and Hernando, F.L. 2016. *Candida albicans* and cancer: Can this yeast induce cancer development or progression? *Crit. Rev. Microbiol.* **42**, 181-193.

162. Merriam-webster. Definition of ANTIFUNGAL. 2021 [cited 18 May 2021]; Available from: <https://www.merriam-webster.com/dictionary/antifungal>

163. Chen, C., Long, L., Zhang, F., Chen, Q., Chen, C., Yu, X., Liu, Q., Bao, J. and Long, Z. 2018. Antifungal activity, main active components and mechanism of *Curcuma longa* extract against *Fusarium graminearum*. *PLoS One*. **13**, e0194284.

164. Dosoky, N.S. and Setzer, W.N. 2018. Chemical composition and biological activities of essential oils of *Curcuma* species. *Nutrients*. **10**, 1196.

165. Diastuti, H., Asnani, A. and Chasani, M. 2019. Antifungal activity of *Curcuma xanthorrhiza* and *Curcuma soloensis* extracts and fractions. *IOP Conf. Ser. Mater. Sci. Eng.* **509**, 012060.

166. Akter, J., Hossain, M.A., Sano, A., Takara, K., Islam, M.Z. and Hou, D.-X. 2018. Antifungal activity of various species and strains of turmeric (*Curcuma* spp.) against *Fusarium solani* sensu lato. *Pharm. Chem. J.* **52**, 320-325.

167. Bagchi, K. and Puri, S. 1998. Free radicals and antioxidants in health and disease. *East. Mediterr. Health J.* **4**, 350-360.

168. Fox Chase Cancer Center. Do Antioxidants Prevent Cancer? 5 Things to Know. 2019 [cited 19 May 2021]; Available from: <https://www.foxchase.org/blog/do-antioxidants-prevent-cancer-5-things-know>

169. Zhao, Y., Ye, X., Xiong, Z., Ihsan, A., Ares, I., Martínez, M., Lopez-Torres, B., Martínez-Larrañaga, M.-R., Anadón, A. and Wang, X. 2023. Cancer metabolism: the role of ROS in DNA damage and induction of apoptosis in cancer cells. *Metabolites*. **13**, 796.

170. Nurrulhidayah, A., Rafi, M., Lukitaningsih, E., Widodo, H., Rohman, A. and Windarsih, A. 2020. Review on *in vitro* antioxidant activities of *Curcuma* species commonly used as herbal components in Indonesia. *Food Res.* **4**, 286-293.

171. Burapan, S., Kim, M., Paisooksantivatana, Y., Eser, B.E. and Han, J. 2020. Thai *Curcuma* Species: Antioxidant and Bioactive Compounds. *Foods*. **9**, 1219.

172. Yusoff, N.Z.B.M. 2017. Chemical constituents of *Curcuma heyneana* and *Curcuma zedoaria*. Universiti Teknologi Malaysia: Malaysia.

173. Pujiimulyani, D., Yulianto, W.A., Setyowati, A., Arumwardana, S. and Rizal, R. 2018. Antidiabetic and antioxidant potential of *Curcuma mangga* Val extract and fractions. *Asian J. Agric. Biol.* **6**, 162-168.

174. Devi, H.P. and Mazumder, P.B. 2016. Methanolic Extract of *Curcuma caesia* Roxb. Prevents the Toxicity Caused by Cyclophosphamide to Bone Marrow Cells, Liver and Kidney of Mice. *Pharmacogn. Res.* **8**, 43-49.

175. Dahlia, A.A., Daim, M. and Najib, A. 2023. Comparative study of antioxidant activity of turmeric ethanol extract (*Curcuma longa* L.) and ethanol extract of curcuma (*Curcuma xanthorrhiza* Roxb.) using the 1,1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging method. *AIP Conf. Proc.* **2588**, 050003.

176. Jena, S., Ray, A., Banerjee, A., Sahoo, A., Nasim, N., Sahoo, S., Kar, B., Patnaik, J., Panda, P.C. and Nayak, S. 2017. Chemical composition and antioxidant activity of essential oil from leaves and rhizomes of *Curcuma angustifolia* Roxb. *Nat. Prod. Res.* **31**, 2188-2191.

177. Akter, J., Hossain, M.A., Takara, K., Islam, M.Z. and Hou, D.-X. 2019. Antioxidant activity of different species and varieties of turmeric (*Curcuma* spp): Isolation of active compounds. *Comp. Biochem. Physiol. C Toxicol. Pharmacol.* **215**, 9-17.

178. Hossain, F., Mostofa, M.G. and Alam, A.K. 2021. Traditional uses and pharmacological activities of the genus *Leea* and its phytochemicals: A review. *Helicon.* **7**, e06222.

179. Annapurna, A., Suhasin, G., Raju, B., Jaya, G. and Siva, C. 2011. Anti-cancer activity of *Curcuma longa* Linn. (Turmeric). *J. Pharm. Res.* **4**, 1274-1276.

180. Esfini-Farahani, M., Farshdousti-Hagh, M., Bashash, D., Esmaili, S., Dehghan-Nayeri, N., Yazdanpanah, S. and Gharehbaghian, A. 2017. Analysis of cytotoxic activity and synergistic effect of *Curcuma longa* extract in combination with prednisolone on acute lymphoblastic leukemia cell lines. *Int. J. Cancer Manag.* **10**.

181. Araya-Sibaja, A.M., Vargas-Huertas, F., Quesada, S., Azofeifa, G., Vega-Baudrit, J.R. and Navarro-Hoyos, M. 2024. Characterization, Antioxidant and Cytotoxic Evaluation of Demethoxycurcumin and Bisdemethoxycurcumin from *Curcuma longa* Cultivated in Costa Rica. *Separations.* **11**, 23.

182. Tomeh, M.A., Hadianamrei, R. and Zhao, X. 2019. A Review of Curcumin and Its Derivatives as Anticancer Agents. *Int. J. Mol. Sci.* **20**.

183. Gull, N., Arshad, F., Naikoo, G.A., Hassan, I.U., Pedram, M.Z., Ahmad, A., Aljabali, A.A., Mishra, V., Satija, S. and Charbe, N. 2023. Recent advances in anticancer activity of novel plant extracts and compounds from *Curcuma longa* in hepatocellular carcinoma. *J. Gastrointest. Cancer.* **54**, 368-390.

184. Koohpar, Z.K., Entezari, M., Movafagh, A. and Hashemi, M. 2015. Anticancer activity of curcumin on human breast adenocarcinoma: Role of Mcl-1 gene. *Iran. J. Cancer Prev.* **8**, e2331.

185. Hadem, K.L. and Sen, A. 2017. *Curcuma* species: a source of anticancer drugs. *J. Tumor Med. Prev.* **1**, 555572.

186. Do, D.M., Vo, T.H., Nguyen, D.H., Le, K.M., Huynh, T.H., Le, T.D.Q. and Huynh, T.T. 2019. Identification of *Curcuma aromatica* growing in Vietnam and its potential anticancer components. *MedPharmRes.* **3**, 12-18.

187. Yin, Z.H., Tan, W.H. and Jiang, Y.L. 2024. Exploration of the molecular mechanism of *Curcuma aromatica* Salisb's anticolorectal cancer activity via the integrative approach of network pharmacology and experimental validation. *ACS omega.* **9**, 21426-21439.

188. Li, Y., Shi, X., Zhang, J., Zhang, X. and Martin, R.C. 2014. Hepatic protection and anticancer activity of *Curcuma*: A potential chemopreventive strategy against hepatocellular carcinoma. *Int. J. Oncol.* **44**, 505-513.

189. Hadem, K.L.H., Sharan, R.N. and Kma, L. 2014. Inhibitory potential of methanolic extracts of *Aristolochia tagala* and *Curcuma caesia* on hepatocellular carcinoma induced by diethylnitrosamine in BALB/c mice. *J. Carcinog.* **13**, 7.

190. Karmakar, I., Dolai, N., Suresh Kumar, R., Kar, B., Roy, S.N. and Haldar, P.K. 2013. Antitumor activity and antioxidant property of *Curcuma caesia* against Ehrlich's ascites carcinoma bearing mice. *Pharm. Biol.* **51**, 753-759.

191. Hong, G.W., Hong, S.L., Lee, G.S., Yaacob, H. and Malek, S.N. 2016. Non-aqueous extracts of *Curcuma mangga* rhizomes induced cell death in human colorectal adenocarcinoma cell line (HT29) via induction of apoptosis and cell cycle arrest at G0/G1 phase. *Asian Pac. J. Trop. Med.* **9**, 8-18.

192. Hou, Y., Lu, C.-L., Zeng, Q.-H. and Jiang, J.-G. 2015. Anti-inflammatory, antioxidant and antitumor activities of ingredients of *Curcuma phaeocaulis* Val. *Excli J.* **14**, 706.

193. Rouhollahi, E., Moghadamousi, S.Z., Paydar, M., Fadaeinabab, M., Zahedifard, M., Hajrezaie, M., Hamdi, O.A.A., Looi, C.Y., Abdulla, M.A. and Awang, K. 2015. Inhibitory effect of *Curcuma purpurascens* Bl. rhizome on HT-29 colon cancer cells through mitochondrial-dependent apoptosis pathway. *BMC Complement. Altern. Med.* **15**, 1-12.

194. Nurcholis, W., Ambarsari, L. and Purwakusumah, E.D. 2016. Curcumin analysis and cytotoxic activities of some *Curcuma xanthorrhiza* Roxb. accessions. *Int. J. Pharmtech Res.* **9**, 175-180.

195. Simamora, A., Timotius, K.H., Yerer, M.B., Setiawan, H. and Mun'im, A. 2022. Xanthorrhizol, a potential anticancer agent, from *Curcuma xanthorrhiza* Roxb. *Phytomedicine.* **105**, 154359.

196. Kumar, T.M., Christy, A.M.V., Mangadu, A., Malaisamy, M., C.Sivaraj, Arjun, P., Raaman, N. and Balasubramanian, K. 2012. Anticancer and antioxidant activity of *Curcuma zedoaria* and *Curcuma amada* rhizome extracts. *J. Acad. Indus. Res.* **1**, 91-96.

197. Khaing, S.L., Omar, S.Z., Looi, C.Y., Arya, A., Mohebali, N. and Mohd, M.A. 2017. Identification of active extracts of *Curcuma zedoaria* and their real-time cytotoxic activities on ovarian cancer cells and HUVEC cells. *Biomed. Res.* **28**, 9182-9187.

198. Fitriana, N., Rifa'i, M., Masruri, Wicaksono, S.T. and Widodo, N. 2023. Anticancer effects of *Curcuma zedoaria* (Berg.) Roscoe ethanol extract on a human breast cancer cell line. *Chem. Pap.* **77**, 399-411.

199. Garg, P., Malhotra, J., Kulkarni, P., Horne, D., Salgia, R. and Singhal, S.S. 2024. Emerging Therapeutic Strategies to Overcome Drug Resistance in Cancer Cells. *Cancers.* **16**.

200. Singh, K., Bhoru, M., Kasu, Y.A., Bhat, G. and Marar, T. 2018. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity - Exploring the armoury of obscurity. *Saudi Pharm. J.* **26**, 177-190.

201. Islam, S., Nasrin, S., Khan, M.A., Hossain, A.S., Islam, F., Khandokhar, P., Mollah, M.N.H., Rashid, M., Sadik, G., Rahman, M.A.A. and Alam, A.K. 2013. Evaluation of antioxidant and anticancer properties of the seed extracts of *Syzygium fruticosum* Roxb. growing in Rajshahi, Bangladesh. *BMC Complement. Altern. Med.* **13**, 1-10.

202. Block, K.I., Koch, A.C., Mead, M.N., Tothy, P.K., Newman, R.A. and Gyllenhaal, C. 2008. Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. *Int. J. Cancer.* **123**, 1227-1239.

203. Zhu, J., Lian, J., Wang, X., Wang, R., Pang, X., Xu, B., Wang, X., Li, C., Ji, S. and Lu, H. 2023. Role of endogenous and exogenous antioxidants in risk of six cancers: evidence from the Mendelian randomization study. *Front. Pharmacol.* **14**, 1185850.

204. Rahaman, M.M., Hossain, R., Herrera-Bravo, J., Islam, M.T., Atolani, O., Adeyemi, O.S., Owolodun, O.A., Kambizi, L., Daştan, S.D., Calina, D. and Sharifi-Rad, J. 2023. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. *Food Sci. Nutr.* **11**, 1657-1670.

205. Shukla, D.P., Shah, K.P., Rawal, R.M. and Jain, N.K. 2016. Anticancer and cytotoxic potential of turmeric (*Curcuma longa*), neem (*Azadirachta indica*), tulasi (*Ocimum sanctum*) and ginger (*Zingiber officinale*) extracts on HeLa cell line. *Int. J. Life Sci. Sci. Res.* **2**, 309-315.

206. Kim, H., Lee, D.-W. and Hwang, J.-K. 2024. *Curcuma xanthorrhiza* extract and xanthorrhizol ameliorate cancer-induced adipose wasting in CT26-bearing mice by regulating lipid metabolism and adipose tissue browning. *Integr. Med. Res.* **13**, 101020.

List of Abbreviations

A549: Human lung-cancer cells
 CHO: Chinese hamster ovary
 DNA: Deoxy ribonucleic acid
 ROS: Reactive oxygen species
 RNS: Reactive nitrogen species
 EAC: Ehrlich's ascites carcinoma
 HIV: Human immunodeficiency virus
 HSV-1: Herpes simplex virus 1
 HSV-2: Herpes simplex virus 2
 HCV: Hepatitis C virus
 HPV: Human papillomavirus
 JEV: Japanese encephalitis virus
 HTLV-1: Human T-lymphotropic virus 1
 MNU: N-methyl-N-nitrosourea
 IC₅₀: Half-maximal inhibitory concentration

EBV-EA: Epstein-Barr virus early antigen
 HeLa: Human cervical-adenocarcinoma cells
 HepG2: Human liver hepatocellular carcinoma cells
 HT-29: Human colorectal adenocarcinoma cells
 PC-3: Prostate cancer cells
 Hepa1-6: Hepatocellular carcinoma
 DEN: Diethyl nitrosamine
 LS-174-T: Human colon carcinoma cell
 NCI-H460: Human large cell lung cancer
 MCF-7: Human breast cancer cell
 LNCaP: human prostate acedocarcinoma cells
 B16: Melanoma cells
 DPPH: 2,2-diphenyl-1-picrylhydrazyl
 U937: Myeloid leukemia
 Molt4: Lymphoblastic leukemia