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Abstract 
 

The binding energies of shallow hydrogenic impurity in a GaAs/GaAlAs quantum dot with 
spherical confinement, harmonic oscillator-like and rectangular well-like potentials are 
calculated as a function of dot radius using a variational procedure within the effective mass 
approximation. The calculations of the binding energy of the donor impurity as a function 
of the system geometry have been investigated. A comparison of the eigenstates of a 
hydrogenic impurity in all the confinements of dots is discussed in detail.  We have 
computed and compared the susceptibility for a hydrogenic donor in a spherical 
confinement, harmonic oscillator-like and rectangular well-like potentials for a finite QD 
and observe a strong influence of the shape of confining potential and geometry of the dot 
on the susceptibility. 
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1. Introduction 

 
Semiconductor quantum dots (QDs) unique features make them promising candidates for 
novel semiconductor devices [1]. This is because the study of the impurity states in these 
low dimensional structures is an important aspect on which many theoretical and 
experimental works are based. The deep understanding of the effects of impurities on the 
electronic states of semiconductor heterostructures is a fundamental issue in 
semiconductor physics because their presence dramatically alter the performance of 
quantum devices and tier optical and transport properties [2]. The binding energy of 
shallow donor impurities in nanoscopic systems depends on materials and geometry, size 
and shape, although it seems that shape has minor influence [3, 4]. 
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Using the variational method, Porras-Montenegro and Perez-Merchancano [5] studied 
a hydrogenic impurity in spherical QD systems with both in finite and  finite barriers. The 
results reveal that, as the size of the QD decreases for an infinite barrier, the binding 
energy of the impurity increases monotonically, and for a finite barrier, the binding energy 
increases to their maxima and then sharply decreases. The effect of parabolic confinement 
on the binding energy of shallow hydrogenic impurities in a spherical quantum dot has 
been computed as a function of the dot dimension for different impurity positions and also 
as a function of the impurity position for different dot sizes [6].  They show that the 
impurity binding energy increases with the reduction in the dot dimension. Also the 
binding energy is found to depend on the location of the impurity, and the same is the 
maximum for the on-centre impurity.  

In addition, quantum dots are excellent testing grounds for the applicability of various 
theoretical models. The effect of confinement can be seen either by varying the barrier 
height or by varying the dot size. Since in semiconductor applications dopants are used it 
is also of interest to see how a hydrogenic donor will behave under confined geometries. 
Several investigators have treated this problem either variationally with infinite barriers 
[7] or with spherical confinement [8].  A harmonic oscillator like potential has been used 
for confinement in few other investigations [9]. The binding energies and density of states 
of shallow impurities in spherical GaAs/Ga1-xAlxAs quantum dots have been calculated as 
a function of radius and the position of the impurity in the dot [10]. The more real zero 
dimensional quantum heterostructure (cubic dot) was studied by Ribeiro and Latgė [3]. 
They found that the values of donor binding energies for cubic and spherical quantum dots 
are very close, provided the dots have similar volumes. 

The pressure dependence of diamagnetic susceptibility of a donor has been worked out 
recently [11]. Diamagnetic susceptibility of shallow donors in Si is computed 
incorporating the multivalley conduction band structure and the spheroidal energy 
surfaces [12]. The diamagnetic susceptibility of a hydrogenic donor impurity has also 
been computed in low dimensional semiconductor systems (LDSS) in the infinite barrier 
model recently [13].  The effect of dimensionality on the binding energy of a donor has 
thus been shown both in the parabolic and non-parabolic band models in an low 
dimensional semiconductor system. One can also observe quantum chaos through 
diamagnetic susceptibility and electronic conductivity of electron gas in these nano 
structures. 

In this work, calculations of binding energies of the donor impurities in GaAs quantum 
dot with the barrier of AlGaAs, placed at the centre are performed using the effective 
mass approximation within a variational scheme. The dependence of the binding energy 
of a shallow hydrogenic of a spherical QD is evaluated with the QD sizes. A systematic 
study of variation of binding energy as the function of dot size has been attempted with 
parabolic confinement, spherical confinement and a cubical confinement with a 
rectangular potential well of a quantum dot.  A comparison of the eigenstates of a 
hydrogenic impurity in all the confinements of dots is discussed in detail.  We present the 
shift of diamagnetic susceptibility of a hydrogenic donor impurity in GaAs/Ga1-xAlxAs 
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quantum dot systems with the different confinements.  To our knowledge, there are no 
theoretical or experimental reports on these aspects. The method followed is presented in 
Section 2 while the results and discussion are provided in Section 3. 
 
2.  Theory and Model 
 
The Hamiltonian of the hydrogenic donor impurity, in the effective mass approximation, 
in a GaAs/Ga1-xAlxAs quantum dot, in the influence of electric field is given by   
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the carrier in the dot, whose value depends upon the Al concentration (x) in Ga1-x AlxAs 
which is the barrier medium in which we have assumed to have embedded the GaAs dot. 
Using for the band gap difference, Eg = 1.555x + 0.37x2 (eV) and assuming 60% 
contribution to the conduction band, for x=0.2, the value of V turns out to be 147.4 meV. 

The units of length and energy used throughout are the effective Bohr radius 
 and the effective Rydberg where22 */* emR oεh= 224* 2/* hoy emR ε= oε is the 

dielectric constant and m* is the effective mass of electron in the conduction band 
minimum of GaAs.     

In these units, the Hamiltonian given in Eq. (1) becomes,     
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VD is the parabolic confinement.  
 

2.1.  Finite parabolic dot 
 
The ground state energy of an electron in a parabolic quantum dot is with electric fields is 
estimated by variational method. We have assumed the trial wave function  
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where N2, N3 are normalization constants. By matching the wave functions and their 
derivatives at the boundaries of the QD, along with the normalization, we fix the values of 
N2, N3 and and .  We take ξ as the 
variational parameter. Since the inclusion of impurity potential leads to a 
nonseparable differential equation which cannot be solved analytically it is necessary to 
use a variational approach to calculate the eigen function and eigen value of the 
Hamiltonian for the ground state. Taking into account the parabolic confining geometry 
and the hydrogenic impurity potential, we use a trial wave function  for the ground state 
with the impurity present is taken as 
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where 1α  is   are  the variational parameter and N4, N5 are normalization constants. The 
second term in the wave function Eq. (6) refers the Gaussian type model and the third 
term describes the wave function of the  impurity of a donor. It is obvious that the trail 
wave function has two variational parameters.  
 
2.2. Finite spherical dot 
 
The ground state energy of an electron in a spherical quantum dot is with electric fields is 
estimated by variational method. We have assumed the trial wave function                
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boundaries of the QD, along with the normalization, we fix the values of N6 and N7, 
taking 
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We use a trial wave function  for the ground state with the impurity present is taken as 
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where α3  is the   variational parameter and N8, N9 are normalization constants. 
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2.3.  Finite cubical dot  
 
The ground state energy of an electron in a spherical quantum dot is with electric fields is 
estimated by variational method. We have assumed the trial wave function     
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where N10, N11 are normalization constants,    and 

. By matching the wave functions and their derivatives at the 
boundaries of the QD, along with the normalization, we fix the values of N10 and N11 ,and 
we take 
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We use a trial wave function  for the ground state with the impurity present is taken as 
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where α5   is  the variational parameter and N12, N13 are normalization constants.  
The ionization energy is given by 
 

min,
HEE subion −=                                                                      (9) 

 
Thus the ionization energy is obtained, varying α5  for different dot sizes. 
 
2.4. Diamagnetic susceptibility 
 
The Schrödinger equation is solved variationally to find the ground state wave function 
which has been used in the computation of diamagnetic susceptibility (χdia) of the 
hydrogenic donor in QD given as [14] 
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where c is the velocity of light and   is the mean square distance of the electrons from  the 
nucleus.  
 
3.  Results and Discussion  
 
Our results are presented in reduced atomic units which correspond to a length unit of an 
effective Bohr radius  and an energy unit of an effective Rydberg 22 */* emR oεh=
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224* 2/* hoy emR ε= where oε is the dielectric constant and m* is the effective mass of an 
electron in the conduction band minimum of GaAs. For GaAs/ GaAlAs quantum dots, 
these units are R*=103  and R*y = 5.29 meV. In our calculations, we have assumed a 
spherical effective mass for the donors and included the variations in the effective mass 
and dielectric constants throughout QD heterostructures.  

oA

We assume that the band gap discontinuity on a GaAs/Ga1-xAlxAs  QD heterostructure 
is distributed about 20% on the valence band and 60% on the conduction band with the 
total band gap difference gEΔ  between GaAs and Ga1-xAlxAs  given as a function of the 
Al concentration x = 0.2 and Eg = 1.555x + 0.37 x2. For a finite barrier case we choose 
x=0.2; hence V = 36.97 Ry*. 

The variation of lowest binding energy with dot sizes in a finite dot for three different 
confinements is shown in Fig. 1. In all the cases, the energy increases as the radius 
decreases and the energy goes to zero in the bulk limit for large radii. The decrease in 
energy with the increase of dot size is a common feature [15].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Variation   of   lowest binding energy with   dot 
sizes  for  (1)  parabolic, (2) spherical,  and (3) rectangular 
confinements. 

 
 
 
 
In Fig. 2 we present the ionization energy as a function of the dot radius for a 

hydrogenic donor for three different confinements. As the dot radius decreases the binding 
energy increases, reaches a maximum and then diminishes to a limiting value 
corresponding to a particular radius of the dot. It is observed that the binding energy goes 
to 1R* in the bulk limit for the larger radius. The value of binding energies is more when 
the rectangular confinement is included in the potential.  The binding energy is more 
when the rectangular confinement is used compared with the other geometries. This 
indicates that all the potentials are alike representations of the quantum-dot barrier 
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potential for a radius R. comparing the donor binding energies for cubic, spherical and 
parabolic quantum dots, we found that the values are very close provided the dots are 
smaller radii. Ribeiro and Latgė  [3] have found the values of binding energies, for cubic 
and spherical quantum dots are very close provided the dots have similar volumes, which 
are good agreement with our results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 2.  Variation   of   ionization energy with  dot sizes  

for  (1)  parabolic, (2) spherical,  and (3) rectangular 
confinements. 

 
 
 
In Fig. 3, we compare the susceptibility for a hydrogenic donor in all the confinements 

for various R and the results are presented.  We notice that the susceptibility value is 
higher for the donor confined in cubical QD with rectangular potential well than for a 
donor confined in a parabolic and spherical QD, since the wave function is highly 
localized and hence <r2> is higher in the cubical dot. This indicates that there is a strong 
influence of the shape of the confining potential and geometry of the dot on susceptibility. 
The veracity of our susceptibility value is justified by considering the bulk limit value as 
R →∞, <r2> → 3R* (R*, effective Bohr radius) and hence χdia → –1.1 a.u (–2.36 × 10–6 
cm3/mole).  

 In the present work, the variational approaches are used in a thorough study of the 
binding energy of on-center shallow donors in spherical GaAs/Ga1-xAlxAs quantum dots 
with potential barriers taken for r >R parabolic isotropic barriers and rectangular 
confinements. The binding energy has been calculated following a variational procedure 
within the effective mass approximation. We have compared the rectangular confinement 
with other confinements such as spherical and parabolic potentials as done in Ref. [16] in 
which the effect of diamagnetic susceptibility is not included. We have computed and 
compared the susceptibility for a hydrogenic donor in a spherical confinement, harmonic 
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oscillator-like and rectangular well-like potentials for a finite QD and observe a strong 
influence of the shape of confining potential and geometry of the dot on the susceptibility.  

 
 

Fig. 3.  Comparison   of   susceptibility with   dot sizes  
for (1) parabolic, (2) spherical,  and (3) rectangular 
confinements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
We  believe that our  investigations on the  susceptibility of a donor in a quantum  dot will  
be relevant to the interpretation of semiconductor-metal transition [17] in LDSS. The 
emerging field of spintronics also requires an extensive study of magnetic properties of 
nano systems and also facilitates an understanding of quantum chaos and electronic 
conductivity of electron gas in the nano structure.  Further results are required for large 
values of Al concentration, x and for narrow dots to test the effective mass theory. 
Experimental efforts are encouraged to lend support to our calculations and the 
susceptibility will soon be made to throw more light on donor wave function in confined 
systems. 
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