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Abstract 

 

In this research, we presented two classical numerical techniques to solve some oscillatory 
problems arised in various applications of sciences and engineering. Adomian 
decomposition method (ADM) and Haar wavelet method (HWM) are utilized for this 
purpose. Some numerical examples have been performed to illustrate the accuracy of the 

present methods. 
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1. Introduction 

 

One of the most difficult problem in numerical solutions of the ordinary differential 

equations is the development of numerical methods which are dealing with oscillatory 

solutions. Classical numerical methods require a huge number of time steps to track the 

oscillations and with the small step size, they can alter the dynamics. Many numerical 

methods have been developed for solving these second order differential equations such as 

Runge-Kutta method, Finite difference method (FDM) and Finite element method (FEM). 

A new explicit Runge-Kutta method of fifth algebraic order has been developed by 

Hussain et al. for solving second-order ordinary differential equations with oscillatory 

solutions [1]. A set of order condition for block explicit hybrid method up to order five 

has been presented for the approximation of special second order delay differential 

equations with oscillatory solutions [2]. Runge-Kutta methods have been adapted to the 
numerical integration of oscillatory problems [3].  Finite element method based Galerkin 

weighted residual technique is used for solving natural convection flow in a hexagonal 

enclosure with a single vertical fin attached to its heated bottom wall [4]. The mixed 

convection in square lid-driven with internal elliptic body and constant flux heat source on 

the bottom wall has been numerically simulated by Munshi et al. with finite element 

method [5]. The Adomian Decomposition method (ADM) was firstly introduced by 
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Adomian [6] in 1981. This method has been applied for solving linear and nonlinear 

differential and integral equations arising in mathematics, physics, biology and chemistry 

and up to now large number of research papers have been published to show the 

feasibility of the decomposition method. The main advantage of this method is that it can 

be applied directly to all types of differential and integral equations which are 

homogeneous or non-homogeneous, with constant or variable coefficients. Another 
important advantage of this method is that it greatly reduces the size of computation work 

while still maintaining high accuracy of the numerical solution as discussed by Somali 

and Gokmen [7]. The ADM decomposes a solution into an infinite series which converges 

rapidly to the exact solution. The convergence of the ADM has been investigated by 

Cherruault [8] and Mustafa [9]. Wavelet transform and wavelet analysis are recently 

developed mathematical tools for solving differential and integral equations. Chen and 

Hsiao [10] gave a method for solving linear systems of ordinary differential equations and 

partial differential equations based on Haar wavelet. Haar wavelet is the simplest 

orthonormal wavelet with compact support and has been utilized for solving linear as well 

as non-linear differential and integral equations. Haar wavelet method has been used for 

solving ordinary and partial differential equations [11-18]. Since  solutions  of ordinary  
and partial differential equations which are not enough smooth, when approximated by 

cubic, quadratic and linear polynomials results in poor convergence or no convergence in 

results and in such cases, an approximation of zero degree polynomials like Haar wavelets 

(continuous functions with finite jumps) are more suitable and successful. The main 

advantages of the Haar wavelet method is its simplicity and small computation costs: it is 

due to the sparcity of the transform matrices and to the small number of significant 

wavelet coefficients. In this research paper, we are presenting two classical numerical 

techniques to find the solutions of oscillatory problems arising in science and engineering 

and discussed different cases that have arised during oscillatory process. 

 

2. Adomian Decomposition Method 

 

Consider differential equation 

Ly + Ry + Ny = g(x)                                                                                                         (1) 

Where 𝑁 is a non-linear operator, L is the highest order derivative which is assumed to be 

invertible and R is a linear differential operator of order less than 𝐿. Making 𝐿𝑦 subject to 

formula, we obtain 

Ly = g x − Ry− Ny                                                                                                         (2) 

By solving (2) for Ly, since L is invertible, we can write 

L−1Ly = L−1g x − L−1Ry− L−1Ny                                                                                  (3) 

For initial value problems we define 𝐿−1 for 𝐿 =
𝑑𝑛

𝑑𝑥 𝑛
 as the definite integration from 0 to 

x. If 𝐿 is second-order operator, 𝐿−1 is integral and by solving (3) for y, we obtain 

y = A + Bx + L−1g x − L−1Ry− L−1Ny                                                                         (4) 

where A and B are constants of integration and can be found from the initial or boundary 

conditions. The Adomian method consists of approximating the solution of (1) as an 

infinite series. 

y x =  yn(∞
n=0 x)                                                                                                             (5) 

and decomposing the non-linear operator N as  

𝑁 𝑦 =  𝐴𝑛
∞
𝑛=0                                                                                                                 (6) 

where 𝐴𝑛  are Adomian polynomials [19,20] of 𝑦0 , 𝑦1 , 𝑦2, … , 𝑦𝑛  given by  
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An =
1

n!

dn

dλn
 N( λ iyi)

∞

i=0

 

λ=0

  , n = 0,1,2,… 

Substituting (5) and (6) into (4) we get 
 yn
∞
n=0 = A + Bx + L−1g x − L−1R  yn

∞
n=0  − L−1( An

∞
n=0 ). 

The recursive relationship is found to be 

y = g(x) 

𝑦𝑛+1 = −𝐿−1𝑅𝑦𝑛 − 𝐿−1𝐴𝑛  

Using the above recursive relationship, we can make solution of 𝑦 as 

𝑦 = lim𝑛→∞ Φ𝑛  𝑦 ,                                                                                                           (7) 

where 

Φn y =  yi
n
i=0                                                                                                                  (8) 

 

3. Convergence Analysis of ADM 

 

Consider the equations 𝑦′′  𝑡 = 𝑓 𝑡, 𝑦   with 𝑦 0 = 𝑦0 , 𝑦′  0 = 𝑦1. This equation can be 

written as: 

y′′ = Ly + N y , t > 0,   𝑦 0 = f, y′ 0 = f ′  

where 𝐿: 𝑇 → 𝑋 is a linear operator of form a Banach space T to a Banach space 𝑋 𝑇 ⊆

𝑋 ,𝑁 𝑦 :𝑇 → 𝑇 is a nonlinear function on the Banach space 𝑇 and 𝑓, 𝑓−1 ∈ 𝑇 are initial 

data. Consider the abstract functional equation defined by 

y = y0 + y1 t + f y , y ∈ T 

where T is a Banach space and 𝑓 𝑦 :𝑇 → 𝑇 is analytic near the initial conditions 𝑦0 and 𝑦1. 

 

Yn = y0 + y1 t + yk

n

k=2

f Yn =  Ak

n

k=0

(y0 , y1 ,… , yk
 
 
 

 
 

 

The ADM is equivalent to determining a sequence {𝑌𝑛 }𝑛∈𝑁  from 

 
Y0 = y0 + y1 t 

Yn+1 = y0 + y1 t + fn (Y)n , n ≥ 0
  

If the limits  

 
Y = lim

n→∞
Yn

f = lim
n→∞

fn

  

exist in Banach space 𝑇, then 𝑌 solves the fixed point equation 𝑌 = 𝑦0 + 𝑦1 𝑡 + 𝑓(𝑦) in 𝑇. 

It is also assumed that the following condition holds 

 
 f y  T ≤ 1, ∀ y ∈ T

and
 fn Yn − f(y) r → 0 as n → ∞

  

 

These two conditions are rather restrictive. The first condition implies a constraint on the 

nonlinear function 𝑓(𝑦) and the second condition implies convergence of the series of 

Adomian polynomial to the locally analytic function 𝑓(𝑦).  
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4. Haar Wavelet Method 

 

Haar Wavelet family for 𝑡 ∈ [0,1] is defined as follows. 

  hi t =

 
 

 1,       for   t ∈  
k

m
,  

k+0.5

m
 

−1,     for     t ∈  
k+0.5

m
,  

k+1

m
 

0, elsewhere                     

                                                                               (9) 

Integer 𝑚 = 2𝑗  ((𝑗 = 0,1,2…… . ) indicates the level of the wavelet, 𝑘 = 0,1,2,…𝑚− 1 

is the translation parameter. Maximal level of resolution is 𝑗. The index 𝑖 is calculated 

according to the formula 𝑖 = 𝑚 + 𝑘 + 1; in the case of minimal value. 𝑚 = 1 , 𝑘 = 0 we 

have 𝑖 = 2 , the maximal value of 𝑖 is 𝑖 = 2𝑀 = 2𝑗+1. It is assumed that the value of 𝑖 = 1 

corresponds to the scaling function for which ℎ1 = 1 in [0,1]. Let us define the 

collocation points 𝑡1 = (𝑙 − 0.5)/2𝑀, (𝑙 = 1,2,……2𝑀) and discretize the Haar function 

ℎ1 𝑡 ; in this way we get the coefficient matrix 𝐻 𝑖, 𝑙 = (ℎ𝑖 𝑡1 ), which has dimensions 

2𝑀 × 2𝑀. The operational matrix of integration 𝑃, which is a 2𝑀 square matrix, is 
defined by the equation . 

(PH)a =  hi
t1

0
 t dt                                                                                                         (10) 

(QH)a =  dt  h1
t

0

t1

0
 t dt                                                                                                (11)  

The elements of matrix H, P and Q can be evaluated according to (9), (10) and (11). 

H1 =  1 1
1 −1

   

 P2 =
1

4
 2 −1
1 0

  

H4 =  

1
1
1
0

1
1
−1
0

1
−1
0
1

1
−1
0
−1

  

P4 =
1

16
 

8
4
1
1

−4
0
1
−1

−2 −2
−2 2
  0 0
  0 0

  

P4 =  
1

64

 
 
 
 
 
 
 
 
32
16
4
4
1
1
1
1

−16
0
4
4
1
1
−1
−1

−8
−8
0
0
2
−2
0
0

−8
8
0
0
0
0
2
−2

−4
−4
−4
−4
0
0
0
0

−4
−4
4
4
0
0
0
0

−4
4
0
0
0
0
0
0

−4
4
0
0
0
0
0
0  
 
 
 
 
 
 
 

 

Chen and Hsiao [10] showed the following matrix equation for calculating the matrix 𝑃 of 

the order 𝑚 holds. 

P(m) =
1

2m
 

2mP(m 2 ) −H(m 2 )

H−1
(m 2 ) O

  

where O is a null matrix of order 
𝑚

2
×

𝑚

2
  

HmXm ≜ [hm   t0  hm   t1 ……………hm tm−1 ]                                                           (12) 

and  
i

 m
 ≤ t < 𝑖 +

1

m
  and   Hmxm

−1 =
1

m
Hmxm

T diag r .  
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It should be noted that calculations for 𝑃(𝑚) and 𝐻(𝑚) must be carried out only once. After 

that they will be applicable for solving whatever differential equations. Since 𝐻 and 𝐻−1 

contains many zeros, this phenomenon makes the Haar transform must faster than the 

Fourier transform, and it is even faster than walsh transform. This is one of the reason for 

rapid convergence of the Haar wavelet series.  

 

5. Function Approximation  

 

Any function 𝑦(𝑥) ∈ 𝐿2 0,1)  can be decomposed as 

y x =  cn
∞
n=0 hn x                                                                                                                (13) 

 where the coefficients 𝑐𝑛  are determined by 

cn = 2j  y x hn
1

0
 x dx                                                                                                   (14)                                                         

where n = 2j + k , j ≥ 0 ,0 ≤ k < 2j .  specially c0 =  y(x)
1

0
dx.  

The series expansion of 𝑦(𝑥) contains an infinite terms. If 𝑦(𝑥) is piecewise constant by 

itself, or may be approximated as piecewise constant during each subinterval, then 𝑦(𝑥) 

will be terminated as finite terms, that is: 

                                                                                                                                                                                                                   

y x =  cn
m−1
n=0 hn x = ct

 m h m  x                                                                             (15) 

where the coefficients 𝑐𝑇(𝑚) and the Haar function vector ℎ 𝑚 (𝑥) are defined as follow: 

cT
(m) =  c0, c1 ,………… . . , cm−1  

and ℎ 𝑚  𝑥 =  ℎ 0  𝑥 ,  ℎ0 𝑥 , ℎ1 𝑥 ,……… . . , ℎ𝑚−1 𝑥   
𝑇

, where T means transpose and 

𝑚 = 2𝑗 . 

 

6. Numerical Observations 

 

In this section, we have used Adomian decomposition method and Haar wavelet method 

for solving some oscillatory problems. A comparison study has been done in this section 

to illustrate the accuracy and efficiency of both the methods. First of all, we are discussing 

different cases of oscillatory problems. 

 

(a) Damped Oscillations: 

 

Suppose a mass 𝑚 is suspended from the end 𝐴 of a light spring, the other end of which is 

fixed at O (as in Fig. 1). Let 𝑒(=AB) be the elongation produced by the mass 𝑚 hanging in 

equilibrium. If 𝑘 be the restoring force per unit stretch of the spring due to elasticity, then 

for the equilibrium at 𝐵,  

mg = T1 = ke 
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Fig. 1. Damped Forced Oscillation. 

 

where 𝑇1 is the tension in the elastic string. If the motion of the mass m be subject to 
additional force of resistance, the oscillation are said to be damped. The damping force 

may be constant or proportional to velocity. The latter type of damping is important and is 

usually called viscous damping. Now if the damping force be proportional to velocity 

(= 𝑟 
𝑑𝑥

𝑑𝑡
), then the equation of motion becomes 

m
d2x

dt2
= mg− k e + x − r

dx

dt
 

= −kx − r
dx

dt
 

Letting 𝑟/𝑚 = 2𝜆  and 𝑘/𝑚 = 𝜇2, it becomes 
d2x

dt 2 + 2λ
dx

dt
+ μ2x = 0                                                                                                      (16) 

Therefore, its auxiliary equation is 

 𝐷2 + 2𝜆𝐷 + 𝜇2 = 0 

This implies   𝐷 = −𝜆 ±  𝜆2 − 𝜇2 

To examine the physical significance of the solution of the above equation, three cases 

that arises: 

 

Case Ӏ. When 𝜆 > 𝜇, the roots of the auxiliary equation are real and distinct say (𝛾1 , 𝛾2 ). 

Therefore, the solution of (16) is of the form 

𝑥 = 𝑐1𝑒
𝛾

1𝑡 + 𝑐2𝑒
𝛾

2𝑡                                                                                                          (17) 

To determine constants, 𝑐1 , 𝑐2 , let the spring be stretched to a length 𝑥 = 𝑙 and then 

released so that 

𝑥 = 𝑙 and 𝑑𝑥 𝑑𝑡 = 0  at 𝑡 = 0. 

From (17),  

𝑙 = 𝑐1 + 𝑐2                                                                                                                        (18) 

Also,   
dx

dt
= c1γ1eγ1t + c2γ2eγ2t  

After using the conditions, we obtain                  

c1γ1 + c2γ2 = 0                                                                                                               (19) 

From (18) and (19), we obtain 
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c1 =
−lγ2

γ1 − γ2
,    c2 =

lγ1

γ1 − γ2
 

Therefore, the solution of (16) is 

x =
l

γ1−γ2
(γ1eγ2t − γ2eγ1t )                                                                 

which show that 𝑥 is always positive and decreases to zero as 𝑡 → ∞. The restoring force 

in this case, is so great that the motion is non-oscillatory and is therefore, referred to as 

over-damped or dead-beat motion. 

Numerically, when 𝜆 = 2, 𝜇 =  3,  from (16), we obtain 

 𝑥′′ + 4𝑥′ + 3𝑥 = 0                                                                                                          (20) 

with initial conditions  𝑥 0 = 2 , 𝑥′  0 = 0. The exact solution is  

x t = 3e−t − e−3t  

 

Adomian Decomposition Method: 

 

We define a linear operator 𝐿 =
𝑑2

𝑑𝑡 2 and inverse operator 𝐿−1 =   .  𝑑𝑡𝑑𝑡
𝑡

0
. We obtain 

x0 = 2 ,     x1 = −3t2   x2 = −4t3 +
3

4
t4 ,     x3 = −4t4 −

6

5
t5 −

3

40
t6 , 

x4 =
16

5
t5 +

6

5
t6 +

9

70
t7 +

9

2240
t8 +⋯… 

Therefore, 

x t = x0 + x1 + x2 + x3 + x4 + ⋯ 

x t = 2 − 3t2 + 4t3 −
13

4
t4 + 2t5 −⋯ 

 

Haar Wavelet Method: 

 

Consider the approximation  

x′′  t =  aihi(t)

n

i=1

 

Integrating with respect to 𝑡, we obtain 

x′  t = x′  0 +  aiP1,i(t)

n

i=1

 

Again, integrating with respect to 𝑡, we obtain 

x t = x 0 + x′ 0 t +  aiP2,i(t)n
i=1                                                                              (21) 

From (20), we obtain 

 ai hi t + 4P1,i t + 3P2,i(t) 

n

i=1

= −4x′  0 − 3x 0 − 3tx′(0) 

From here, wavelet coefficients are obtained. The numerical solution is obtained by 

substituting the value of wavelet coefficients into (21). 

Fig. 2 shows the absolute errors for Example 1 using Haar wavelet method. Fig. 3 

shows the comparison of exact and Haar wavelet solutions for Example 1 for J=3. 
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Fig. 2. Absolute errors for Example 1 using Haar wavelet method. 

 

 
Fig. 3. Comparison of exact and Haar wavelet solutions for Example 1. 

 

Case ӀӀ. When 𝜆 = 𝜇, the roots of auxiliary equation are real and equal, (each being=
−𝜆). 
The general solution of (16) is 

x = (c1 + c2t)e−λt  

when 𝑥 = 𝑙 and 𝑑𝑥 𝑑𝑡 = 0 at 𝑡 = 0, we obtain 

 c1 = l,    c2 = λl 
Therefore, the solution of (16) is  

x = l (1 + λt)e−λt  

which shows that 𝑥 is positive and decreases to zero as 𝑡 → ∞. The nature of motion is 

similar to that of case I and is called the critically damped motion. 

Numerically, letting  𝜆 = 𝜇 = 1.  Consider the second order LDE 

x′′ + 2x′ + x = 0                                                                                                             (22) 

with initial conditions  𝑥 0 = 2,  𝑥′ 0 = 0. The exact solution is 

x(t) = 2(1 + t)e−t  
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Adomian Decomposition Method: 

 

We define linear operator 𝐿 =
𝑑2

𝑑𝑥 2 and inverse operator is 𝐿−1 =  (. )
𝑡

0
𝑑𝑡𝑑𝑡. We obtain 

x0 = t,     x1 = −t2 −
t3

6
,     x2 =

2

3
t3 +

t4

6
+

t5

120
 ,  x3 = −

t4

3
−

t5

10
−

t6

120
−

t7

5040
 

 x4 =
2

15
t5 +

2

45
t6 +

t7

210
+

t9

362800
 ,…………… 

Therefore,  

x t = x0 + x1 + x2 + x3 + ⋯ 

x t = t − t2 +
t3

2
−

t4

6
+

t5

24
−

t6

120
+ ⋯ 

 

Haar Wavelet Method:  From (22), we obtain 

 

 ai hi t + 2P1,i t + P2,i(t) 

n

i=1

= −2x′  0 − x 0 − x′  0 . t 

From here, wavelet coefficients are obtained. The numerical solution is obtained by 

substituting the wavelet coefficients into (21). 

 

 

Fig. 4. Absolute errors for Example 2 using Haar wavelet method. 

 

 
Fig. 5. Comparison of exact and Haar wavelet solutions for Example 2. 
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Fig. 4 shows the absolute errors for Example 2 using Haar wavelet method. Fig. 5 

shows the comparison of exact and Haar wavelet solutions for Example 2 for J=3. 

 

Case ӀӀӀ. When 𝜆 < 𝜇, the roots of the auxiliary equation are imaginary, that is 𝐷 = −𝜆 ±

𝑖𝛼, where 𝛼2 = 𝜇2 − 𝜆2 

Therefore the solution of (16) is  

x = e−λt(c1cosαt + c2sinαt) 

when 𝑥 = 𝑙 and  𝑑𝑥 𝑑𝑡 = 0  at 𝑡 = 0, we obtain 

c1 = l, c2 = λl α  

Thus the solution of (16) is  

x = le−λt  cosαt +
λ

α
sinαt . 

Numerically, letting 𝜆 =
1

2
, 𝜇 = 1.  Consider the oscillatory equation 

x′′ + x′ + x = 0                                                                                                               (23) 

with initial conditions,  𝑥 0 = 2, 𝑥′(0) = 0. The exact solution is 

x(t) = 2. e−t/2  cos
 3

2
t +

1

 3
sin

 3

2
t  

 

Adomian Decomposition Method: 

We define a linear operator 𝐿 =
𝑑2

𝑑𝑡 2 and inverse operator 𝐿−1 =   .  𝑑𝑡𝑑𝑡
𝑡

0
. We obtain 

x0 = 2 ,     x1 = −t2   x2 =
t3

3
+

t4

12
  ,     x3 = −

t4

12
−

t5

30
−

t6

360
, 

x4 =
t5

60
+

t6

120
+

t7

840
+

t8

20160
, +⋯ 

Therefore, 

x t = 2 − t2 +
t3

3
−

t5

60
+

t6

180
− ⋯ 

 

Haar Wavelet Method:  

 

From (23), we obtain 

 ai hi t + P1,i(t) + P2,i(t) 

n

i=1

= −x 0 − x′  0 − x′  0 . t 

From here, wavelet coefficients are obtained. The numerical solution is obtained by 

substituting the wavelet coefficients into (21). 
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Fig. 6. Absolute errors for Example 3 using Haar wavelet method. 

 

 
Fig. 7. Comparison of exact and Haar wavelet solutions for Example 3. 

 

Fig. 6 shows the absolute errors for Example 3 using Haar wavelet method. Fig. 7 shows 

the comparison of exact and Haar wavelet solutions for Example 3 for J=3. 

 

b) Free Oscillations: Suppose a mass 𝑚 is suspended from the end A of a light spring, the 

other end of which is fixed at O (as in Fig. 1). Let 𝑒(= 𝐴𝐵) be the elongation produced by 

the mass 𝑚 hanging in equilibrium. If 𝑘 be the restoring force per unit stretch of the 

spring due to elasticity, then for the equilibrium at 𝐵, 

mg = T1 = ke 

At any time 𝑡, after the motion ensues, let the mass be at 𝑃, where 𝐵𝑃 = 𝑥. Then the 

equation of motion of 𝑚 is 

m
d2x

dt2
= mg − k e + x = −kx 

On writing 𝑘 𝑚 = 𝜇2 , it becomes 
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d2x

dt2
+ μ2x = 0 

This equation represents the free vibrations of the spring which are of the simple 

harmonic form having center of oscillation at 𝐵 its equilibrium position and the period of 

oscillation is 

T =
2π

μ
= 2π  

e

g
  , 

where  
1

μ
=   

m

k
 =   

e

g
  . 

Numerically, letting 𝜇 = 1. Consider the oscillatory equation 

𝑥′′ + 𝑥 = 0                                                                                                                       (24) 

with initial conditions,  𝑥 0 = 0,𝑥′ (0) = 3. The exact solution is  𝑥(𝑡) = 3𝑠𝑖𝑛𝑡. 

 

Adomian Decomposition Method: 

We define an operator of  𝐿 =
𝑑2

𝑑𝑥 2 and inverse operator 𝐿−1 =   .  𝑑𝑡𝑑𝑡
𝑡

0
. We obtain 

x0 = 3t,  x1 = −
t3

2
, x2 =

t5

40
 ,  x3 = −

t7

1680
 , x4 =

t9

120960
 ,………. 

Therefore, 

x t = x0 + x1 + x2 + x3 + x4 + x5 + ⋯ 

x t = 3t −
t3

2
+

t5

40
−

t7

1680
+

t9

120960
−

t11

13305600
+⋯…….. 

 

Haar wavelet method:   From (23), we obtain 

 ai hi t + P2,i(t) 

n

i=1

= −x 0 − x′  0 . t 

From here, wavelet coefficients are obtained. The numerical solution is obtained by 

substituting the wavelet coefficients into (21). 

 
Fig. 8. Absolute errors for Example 4 using Haar wavelet method. 
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Fig. 9. Comparison of exact and Haar wavelet solutions for Example 4. 

 

Fig. 8 shows the absolute errors for Example 4 using Haar wavelet method. Fig. 9 

shows the comparison of exact and Haar wavelet solutions for Example 4 for J=3. 

6. Conclusion 

 

The goal to obtain the numerical solutions for oscillatory problems using Adomian 

decomposition method and Haar wavelet method has been achieved. Adomian 

decomposition method plays a significant role for solving such type of problems and give 

solutions in term of infinite series. On the other hand, the theoretical elegance of the Haar 

wavelet approach can be appreciated from the simple mathematical relations and their 

compact derivations and proofs. It has been well demonstrated that while applying the 

nice properties of Haar wavelets, the ordinary differential equations arising in oscillatory 

problems can be solved conveniently and accurately by using Haar wavelet method 

systematically. In the present paper only linear equations are considered, but these 

methods are also applicable for nonlinear systems. An authentic conclusion can be drawn 

from the numerical results that the Haar wavelet method provides more accurate 

numerical solutions than Adomian decomposition method. In our opinion the Haar 

wavelet method is wholly competitive in comparison with the classical methods. Future 

work will involve the extension of the scheme to two and three dimensional problems.  
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