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Abstract 

Joint modeling in longitudinal data is an interesting area of research since it predicts the 

outcome with covariates that are measured repeatedly over the time. However, there is no 

proper methodology available in literature to incorporate the joint modeling approach for 

count-count response data. In addition, there are several situations where longitudinal data 

might not be possible to collect the complete data and the Missingness may occur due to 

the absence of the subjects at the follow-up. In this paper, joint modelling for longitudinal 

count data is adopted using Bayesian Generalized Linear Mixed Model framework to 

understand the association between the variables. Further, an imputation method is used to 

handle the missing entries in the data and the efficiency of the methodology has been 

studied using Markov Chain Monte-Carlo (MCMC) technique. An application to the 

proposed methodology has been discussed and identified the suitable nutritional 

supplements in Bayesian perspective without eliminating the missing entries in the dataset. 
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1.   Introduction 

In longitudinal studies, the research interest often lies in understanding the relationship 

between the longitudinal process and its effect on the risk of an event. Classical models 

such as separate analysis were performed for these types of data. Consequently, the 

association between the two longitudinal count outcomes is neglected because the linear 

mixed model for repeated measurements for count data are conducted separately. Thus, 

for modeling both components at a time, a class of models named joint models has been 

developed for analyzing these kinds of data. While longitudinal data, studies the 

association between the different outcomes through separate analysis, joint modeling 

allows every outcome to have its own random effects and the association can be obtained 

from correlation between the random effects components.  

Literature is abundant in joint modeling for continuous-continuous, continuous-binary 

data by Thifiebaut et al. [1], Iddi and Molenberghs [2]. Joint modeling for different types 
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of longitudinal outcome has been studied by Efendi et al. [3], Horrocks and Van Den 

Heuvel [4], Li et al. [6] and a brief review for modelling longitudinal time to event data 

has been discussed by Tsiatis and Davidian [5]. In Psychometric studies, Palestro et al. [7] 

provided a systematic approach of fitting joint models (direct and covariance approach) 

for the longitudinal data and illustrated the same using the neural and behavioural measure 

of cognition data. However, there is no evident in literature that joint modeling strategy is 

applied to the count-count response variables. Thus, this study proposed a joint modeling 

strategy that can be applied to count-count outcome variables.  

The problem of missing data requires special attention as it refers to the case where 

not all data are obtained as planned in the study design. In longitudinal analysis, 

researchers often face the problem of setting the subjects for every follow-up visit and in 

several situations observations on the study subject may not be possible to obtain. Hence, 

there will be missing data in some of the study and poses a major challenge for the 

analysis of longitudinal data. Multiple imputation (MI) is widely used to handle missing 

values in longitudinal data. A handful of MI techniques have been proposed in literature 

to impute incomplete longitudinal studies and these MI approaches have been 

implemented in various software packages. The main advantage of MI technique is that it 

is not necessary to use the same model for imputation in data analysis and several 

software are available for this purpose.  

The process of multiple imputation method is explained through the following steps: 

STEP 1. Assume an imputation model and simulate “ m ” possible values for every 

missing value and it leads to the “ m ” complete datasets and “ m ” should be a 

positive integer usually greater than 1.  

STEP 2. For the “ m ” complete datasets, conduct the statistical analysis and it result 

in “ m ” analysis outputs.  

STEP 3. Combine those “ m ” statistical outputs into single output using an 

appropriate method.   

In step 1, from the assumed model, the missing values are generated and this is 

usually obtained as the predictive distribution given in the observed data. For example, in 

a regression model, we generate the missing covariates 
mis

x  from the predictive 

distribution ),|(
obsimis

xyxf . However, achieving the predictive distribution requires 

integrating the unknown parameters thus it lead to improper results in few cases. Step 2 is 

clear and easier to do in a straightforward way. In step 3, combining the “ m ” results can 

be achieved using some mathematical and statistical rule or through combine the test 

statistics obtained from “ m ” results [8-10]. This approach is a common strategy to 

implement multiple imputation in longitudinal backgrounds, where it can be used as the 

data generating step. A valuable contribution to the development of missing data problem 

has been reviewed for GLMM by Ibrahim and Molenberghs [11]. Further, Huque et al. 

[12] outlined a special case of multiple imputation with a suitable real time dataset.  

In addition, there has been an increasing amount of research is carried out in Bayesian 

inference for joint mean and variance models. Cepeda and Gamerman [13] discussed the 

variance model with the combination of Bayesian modeling and the usual regression 
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analysis. Lin and Wang [14] considered Bayesian joint model for longitudinal data by 

modeling the mean and covariance vector jointly. Further, Xu and Zhang [15] discussed 

the Bayesian semi-parametric joint model based on B-spline approximations. Pourahmadi 

[16,17] proposed the modified cholesky decomposition which decomposes the random 

effects covariance matrix into two sets of parameters: Generalized Autoregressive 

Parameters (GARPs) and the Innovation Variances (IVs). Furthermore, Daniels and Zhao 

[18] discussed the modified cholesky decomposition that reduces the number of 

parameters in the covariance matrix and is used for the estimation of the covariance 

matrix to analyze longitudinal Gaussian data. Lee et al. [19] proposed a GLMM with the 

heterogeneous random effects covariance matrix depending on covariates via the modified 

cholesky decomposition. However, Bayesian analysis for count data through the modified 

cholesky decomposition served as a motivation for this study. Joint modeling for mean 

and covariance vector is handled heuristically based on the general linear model by 

Pourahmadi [16,17]. Further, Zhang and Leng [20] proposed efficient maximum 

likelihood estimation for joint model based on the cholesky decomposition. On the other 

hand, with the fast development of Markov Chain Monte-Carlo (MCMC) methods, 

Bayesian inference for various statistical models has been receiving a lot of attention in 

recent years [15,21,22]. Therefore, in this paper, an extension of Bayesian joint model for 

longitudinal count data based on MCMC technique is considered as it gives reliable 

results even for the small sample size.  

Poisson regression modeling becomes a traditional method for analysing univariate 

count data [36]. However, there has been a competing research for bivariate count data as 

well. It is worth mentioning that many empirical studies like McHale and Scarf [24], 

Osiewalski and Marzec [23] apply negative binomial regression because of the nature of 

count data. Another approach is to model the joint distribution using copulas. Also, 

Berkhout and Plug [25] proposed relatively flexible dependence structures with an idea of 

the mixture of independent Poisson distributions on the conditional probabilities. Ghosh et 

al. [26] developed Bayesian Zero Inflated Poisson (ZIP) models for cross-sectional data, 

using MCMC with data augmentation to obtain posterior samples. Karlis and Tsiamyrtzis 

[27] illustrated Bayesian estimation approach for the parameters of the bivariate Poisson 

model and provided the posterior distributions in closed forms.  

In this paper, we have built a joint model for count-count response variables, that is 

General, G-factor as measured by Raven‟s Coloured Progressive Matrices (RCPM) test 

and other three Specific, S-factors assessing Verbal Meaning (VM), Arithmetic Score 

(AS) and Digit Span total (DS), with a view to study the association between cognitive 

function outcomes, and how it evolves over time using Bayesian strategy. There is also 

baseline covariate information on each subject, including Gender, Age, Time, Height and 

Weight and Socio-economic status. The study consists of comparing a suitable joint 

longitudinal model for general intelligence (G and S factors) with a set of above 

covariates under consideration. In this context, study on improvement of mental skills 

measured is correlated with the working ability and this association can only be studied if 

both outcomes are modeled jointly using a suitable GLMM. For ease of exposition, we 
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focus on Poisson models, but the methods can easily be extended to other count 

distributions, such as the negative binomial. Further, this study made a comparison of 

complete case using Bayesian mechanism with different priors.  

 

2. Bayesian Generalized Linear Mixed Models for Longitudinal Count Data 

 

Let itit
YY

21
    and  be the count bivariate response for subject ),...,1( , Nii   at time 

),...,1( , Tit   and let itit
xx

21
  and  be the corresponding vector of covariates. We assume 

that each itit
YY

21
   and  is conditionally independent given random effects itit

bb
21

   and  the 

responses for different subjects are independent, and the regression model is given by 
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  is the random effects covariance 

matrix and i
b  is a vector of random effects values for subject i .  

To solve the positive-definiteness constraint and the exponentially increasing number 

of parameters of i
 , we use the modified cholesky decomposition. We have 
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TTT  is a lower triangular matrix having ones on its diagonal and tji ,
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where )(
2,1 iii

DDD   is diagonal with )var(2

, itti
e as its diagonal entries.  

The generalized autoregressive parameters (GARP) are represented by 
2

,
 and,

ti


denotes the Innovation Variances (IV). For i
  to be positive definite the IV must be 

positive. The parameters, GARP and IV can be modeled using time and/or subject-

specific covariate vectors 
titji

hw
,,

  and  by setting 

,)log(    , 2

,

2

.,


tiit

T

tjitji
hw                                   (6) 

where   is 1 x a  vector of unknown dependence parameters,   is a 1 x b  vector of 

unknown variance parameters, respectively and titji
hw

,,
  and  are the design vectors and are 

used in generalized linear mixed models [18,22,28].  

 

2.1. Likelihood 

 

The main obstacle for Bayesian inference concerning the bivariate Poisson model is that 

the likelihood is too complicated. Following Karlis and Tsiamyrtzis [27], let 

niYY
ii

,...1,,
21

  is distributed as Poisson )(
21

 n and likelihood of
2211

// yy   is 
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2.2. Prior 
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In addition, we assume that the prior distributions are mutually independent: 
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2.3. Posterior 

 

Let ),....,(
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random effects can be written as 
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Hence, the posterior distribution of 
2211

// yy    is a gamma distribution with 

)(~
21

yyn    and )(
~

n  . Followed by the random effect component, since all 

full conditionals are intractable analytically also not easily generated from, we have to 

construct suitable proposals for a Metropolis Hastings (MH) step as discussed [30]. The 

natural (conjugate) choice would be to consider independent gamma distributions. A 

priori independence might be convenient but not optimal to use always. For example, it 

might be the case that some prior elicitation procedure provided some dependent structure 

regarding the .s  In such a case we would prefer to have a prior that will provide us the 

flexibility to incorporate the dependence structure among the parameters. At the same 

time, we would like to keep the computational complexity relative low by using some 

form of conjugate prior, which will allow us to have in closed form the posterior 

distribution. We have used various parameter settings and are as follows: 
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In practice, Gibbs sampling is implemented using WinBUGS. The MCMC algorithm 

simulates direct draws from the above full conditionals iteratively until convergence is 

achieved. 

 

2.4. Deviance information criterion 

 

The best fit of the models is usually accessed using the model selection criteria. In usual 

modeling practice there are different model criteria available namely, Akaike Information 

Criteria (AIC), Bayesian Information Criteria (BIC), small-sample corrected Akaike 

Information Criteria (AICC), etc. Similarly, for the Bayesian modeling, there are different 

model criteria available namely Bayes factor, Deviance Information Criteria (DIC), 

Predictive loss, etc. Following Spiegelhalter et al. [31], in this paper, we make use of the 

DIC for identifying the best fitted models and it is a combination of goodness of fit and a 

penalty term. The deviance of the model fit is given by 
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In practice, DIC can be expressed in different ways depending on how 
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yDevyDevE  and )}}|()}{|({{
21

yEyEDev  are estimated or 

approximated. The smaller DIC value Celeux [32] preferred to be the best model and the 

main advantage of this Criterion in the situation of Bayesian model selection is that the 

DIC can be easily calculated from the MCMC samples than calculating the AIC and BIC 

Criteria values from MCMC simulation. 

 

2.5. Multiple imputation for missing data 

 

Consider a regression model and let    be a 1p  vector of parameters of interest, and let 
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data, where  
1

h is a known function. Let ),,()ˆ(
2 misobs
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are the between-imputation variance and the within-imputation variance respectively. 

Therefore, in a MI method, the final overall estimate is simply the average of the m  
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individual estimates from the m  imputed “complete” datasets, and the overall variance is 

the sum of the between imputation variance B  and the within-imputation variance W . The 

between imputation variance B  reflects the missing data uncertainty.  

 

3. Data Analysis and Discussion 

 

A controlled Kenya school-children feeding intervention study of 546 individuals was 

designed to test a cognitive ability among their intake of nutritional supplements. The data 

were collected from Neumann et al. [33] and sample observations are presented in 

appendix table 7. Each nutrition group was comprised of 9 out of 12 schools with children 

aged 6-14. School lunch programs are introduced in order to improve the same as they 

may cause an impact in their health. School-aged children who suffer from severe 

malnutrition exhibit significantly compromised reasoning and poorer school grades, 

reduced attentiveness and unresponsive play behaviour, as compared to their adequately 

nourished peers. In addition, children suffering from mild-to-moderate malnutrition, show 

significant deficits in intellectual and behavioural functioning. Deficits include 

compromised development in multiple domains, including verbal and spatial reasoning 

[34]. 

The school lunch intervention began at time (round) t = 0 by adding the supplements: 

Meat, Milk, Control and oil added as Calories to determine the effects of human 

intelligence outcome measures. Here response as a G factor is collected on RCPM test 

used to measure general human intelligence. Data were collected at five different points of 

time and round 1 data is the baseline data collected before the onset of intervention (in 

other words, pre-intervention). Round 2 was taken as soon as the intervention started, 

while rounds 3, 4, and 5 were during the second, fourth, and sixth months after 

intervention started as indicating post intervention scores. Total of 546 children were in 

this intervention study, out of them 284 are boys and 262 are girls children. 146 children 

were given calorie supplement, 131 children were given meat supplement, 142 were given 

milk and 127 were considered as control group in this study. Table 1 gives the descriptive 

summaries of treatment and outcomes observed at 5 time points. At the end of study, it is 

found that there are few missing entries present in the data and only 374 individual school 

children had a full-sequence data resulting from the fact that 172 individuals are missing 

after the first, second and fifth rounds of school lunch intervention.  

The intervention data contains 2 % of missing entries in round 1, 6 % in round 2, 4% 

in round 3, 6 % in round 4, and 9 % in round 5 in all the response variables in this study. 

In addition, the treatment milk and meat contains 1 % missing entries in round 1, 2, and 3, 

2 % of observation is missing in round 4 and 5. Similarly, calories group contains 1 % 

missing in round 1, 2, 3, 4 and 3 % missing in round 5. The control group contains 1 % 

missing data in round 1, 2, 3, 4 and 2 % missing in round 5. Multiple imputation 

technique has been adopted to nullify the presence of Missingness in the data. 
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Table 1. Descriptive summary. 
 

    Minimum Maximum Mean Std. Deviation 

G factor 
Raven‟s coloured 

progressive matrices 
0 31 18.24 2.98 

S factor 

Arithmetic score 0 17 7.72 1.78 

Verbal meaning 0 40 30.03 5.28 

Digit span total 0 16 6.31 2.21 

Covariates 

Age 5 16 7.6 1.41 

Height 101.1 134.95 115.51 6.25 

Weight 14.3 50.15 20.15 2.99 

Head circumstance 45.4 56.6 50.58 1.4 

Socio economic status 28 211 84.06 24.88 

Read test 0 12 6.8 5.24 

Write test 0 11 5.12 4.95 

 

The study involves four longitudinal outcome variables based on human intelligence 

factors measured on five time points. To capture the relationship between the responses, 

various assumptions about the distribution of the random effects can be made. There is 

also baseline covariate information on each subject including Age, Gender, Height, 

Weight, Head circumstance, Socio economic status intake of food supplements such as 

Milk, Meat, Calories and Control duration of the follow-up study, measurement of G 

factor in analytical ability as assessed by RCPM test and S factors involving linguistic 

ability as assessed by VM, numerical ability as assessed by AS and immediate memory as 

assessed by DS total. Obviously, it is expected that improvement of children cognitive 

skills is correlated with the nutrition supplements and this association is studied using 

GLMM.  

Gokul et al. [35] proposed a classical joint model, for Kenya school lunch 

intervention study and suggested that the nutritional supplements show gradual 

improvement in cognitive behaviour among the students. However, classical estimation of 

analyzing longitudinal count data may result in influenced estimates. Thus, Bayesian 

modeling is adopted to understand the strength of association through DIC towards the 

model selection process and the results are obtained using statistical software SAS and R. 

Lee [22] proposed a Bayesian modeling of random effects covariance matrices for a 

generalized linear mixed model with modified cholesky decomposition approach and 

further we extended into Bayesian joint modeling into count data. In section 2, Bayesian 

GLMM for longitudinal count data clearly stated the prior and posterior distribution and 

here we illustrate this with Kenya school lunch intervention data. Upon fitting the joint 

mixed model, the results in studying the association between G factor in analytical ability 

as assessed by RCPM test and association with three S factors namely (numerical ability 

as assessed by AS, linguistic ability as assessed by VM, and immediate memory as 

assessed by DS total test) in Table 2, 3, 4, 5 and 6 with four different nutritional 

supplements. We applied the Bayesian approach with five different priors were adopted 

out of which, three of them were independent gamma priors i.e. Gamma ),(
ii

ba  for each 

parameter 3,2,1, i
i
  with hyper-parameters 10,1,1.0

ii
ba  respectively, for 3,2,1i

and other two are dependent priors. We denote those priors by 
54321

 and,,,   in Table 
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2. All of them correspond to unit prior mean and varying variance. The first choice 

provides diffused prior 
5

  while for the last one the prior is quite informative as the 

variance is small and observed from the results.  
 

Table 2. DIC for the cognitive data using the five different priors 

Prior 1
  

2
  

3
  

4
  

5
  

Nut. Sup Calories 

RCPM-AS 13528.05 13532.19 13534.66 13548.03 13523.87 

RCPM-VM 14944.74 14948.06 14952.04 14964.03 14939.92 

RCPM-DS 12552.49 12556.6 12558.77 12572.6 12548.28 

Nut. Sup Milk 

RCPM-AS 13527.39 13401.4 13403.61 13416.74 13393.87 

RCPM-VM 14813.24 14817.81 14819.37 14832.77 14809.92 

RCPM-DS 12421.41 12425.57 12427.51 12440.64 12418.28 

Nut. Sup Meat 

RCPM-AS 13176.03 13180.26 13182.15 13191.07 13172.9 

RCPM-VM 14674.76 14678.25 14680.56 14689.2 14670.78 

RCPM-DS 12283.82 12287.88 12289.88 12298.68 12280.67 

Nut. Sup Control 

RCPM-AS 13790.47 13794.37 13796.61 13811.94 13785.25 

RCPM-VM 15187.71 15191.38 15196.78 15209.3 15182.15 

RCPM-DS 12788.31 12792.02 12795.57 12809.55 12783.01 

 

Table 2 explains the DIC value for all the joint response variables with different 

priors and it is evident that the results are quite similar for all the priors in every 

nutritional supplement. In addition, it is clear that the meat supplement helps in 

developing the cognitive skills (RCPM, AS, VM and DS) than other nutritional 

supplement (milk, calories and control). Based on this result, the analysis is extended 

using Bayesian framework, which deeply studies about the fixed effect and random effect 

component. This approach allows a complex structure of covariance matrix and satisfies 

the positive-definiteness of random effects covariance matrix using MCMC algorithm. 

Based on cognitive function, G factor as RCPM test is a random effects Poisson 

regression with AR(1) structure of the random effects covariance matrix. S factor such as 

(AS, VM and DS) are the same model with AR(2) structure of the covariance matrix.  

Following Lee [22] compared posterior means, DIC values for nutritional supplements for 

complete data along with multiple imputation are provided in Tables 3 and 4. 

Additionally, 95 % credible intervals for nutritional supplements using complete data are 

provided in Tables 5 and 6. It must be noted that the above prior, having a finite mixture 

representation, can also be seen as a synthesis of more priors elicited by different experts 

like Karlis and Tsiamyrtzis [27] with different opinions on the parameters of interest. 
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Table 3.  DIC for G factor (RCPM) in association with S factor (AS). 
 

Joint model Raven‟s coloured progressive matrices 

Nut. Sup. Calories Meat Milk Control 

Methods Complete MI Complete MI Complete MI Complete MI 

Fixed 

parameters   
                

Intercept 0.7071 0.7555 0.5946 0.6236 0.6687 0.7074 0.7478 0.8059 

Gender 0.0516 0.0892 0.053 0.079 0.0528 0.0846 0.0516 0.095 

Age 0.0186 0.0582 0.0141 0.0371 0.0146 0.0459 0.0198 0.0677 

Height -0.0072 -0.0208 -0.0061 -0.0111 -0.0061 -0.0154 -0.0069 -0.0248 

Weight 0.0151 0.0531 0.0139 0.0309 0.0143 0.0418 0.0156 0.0641 

Head circ 0.0158 0.1004 0.0162 0.0362 0.0148 0.0671 0.0133 0.1302 

SES 0.0039 0.0383 0.0038 0.0148 0.0038 0.0265 0.0039 0.05 

Read test 0.0037 0.0153 0.0043 0.0123 0.0038 0.0136 0.0029 0.0163 

Write test 0.0085 0.0269 0.0088 0.0228 0.0084 0.0246 0.0078 0.0284 

GARP                 

))1((0 AR  0.6044 0.6125 0.5593 0.566 0.5831 0.5912 0.6069 0.615 

))2((1 AR                  

IV parameters                

0  2.1225 2.2056 1.9027 1.975 2.1972 2.2803 2.2728 2.3559 

Joint model Arithmetic score 

Nut. Sup. Calories Meat Milk Control 

Methods Complete MI Complete MI Complete MI Complete MI 

Fixed 

parameters   
                

Intercept -0.2531 -0.1659 -0.3049 -0.2371 -0.2596 -0.1821 -0.148 -0.0511 

Gender 0.0751 0.1359 0.0755 0.1247 0.0755 0.1305 0.0736 0.1402 

Age 0.0213 0.0941 0.0169 0.0731 0.0169 0.0814 0.0228 0.1039 

Height -0.0071 -0.0379 -0.006 -0.0282 -0.0057 -0.0322 -0.0066 -0.0417 

Weight 0.0165 0.0965 0.0156 0.0746 0.0157 0.0852 0.0172 0.1077 

Head circ 0.0362 0.25 0.0353 0.1845 0.0341 0.2156 0.0319 0.278 

SES 0.0021 0.0833 0.0021 0.0599 0.002 0.0715 0.002 0.0949 

Read test 0.0099 0.0287 0.0094 0.0246 0.0096 0.0266 0.0108 0.0314 

Write test 0.0068 0.034 0.0066 0.0294 0.0068 0.0318 0.0077 0.0371 

GARP                 

))1((0 AR  0.815 0.8328 0.7895 0.8026 0.7959 0.8184 0.8619 0.8891 

))2((1 AR  -0.0131 -0.005 -0.0243 -0.0162 -0.0318 -0.0237 -0.0062 0.0019 

IV parameters                 

0  2.6231 2.7062 2.5904 2.6735 2.896 2.9791 3.6656 3.7487 

RPCM-AS 

(DIC) 
13523.87 14313.9 13172.9 13627.8 13393.87 13986 13785.25 14640.5 
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Table 4. DIC for G factor (RCPM) in association with S factor (VM, DS). 
 

Joint model Verbal meaning 

Nut. Sup. Calories Meat Milk Control 

Methods Complete MI Complete MI Complete MI Complete MI 

Fixed 

parameters   
                

(Intercept) 0.6413 0.7673 0.531 0.6376 0.6048 0.7211 0.6233 0.759 
Sex -0.0138 0.0702 -0.013 0.0594 -0.0132 0.065 -0.0131 0.0767 

Age 0.0033 0.1093 -0.001 0.0884 -0.0002 0.0975 0.0032 0.1175 

Height 0.0021 -0.0459 0.0028 -0.0366 0.0031 -0.0406 0.0025 -0.0498 
Weight 0.0118 0.1338 0.0108 0.1118 0.0112 0.1227 0.0118 0.1443 

Head circ 0.0112 0.3542 0.0125 0.2909 0.0105 0.3212 0.0104 0.3857 

SES 0.0032 0.1312 0.0031 0.1077 0.0031 0.1194 0.0032 0.1429 
Read test 0.0023 0.0283 0.0018 0.0242 0.0022 0.0264 0.0025 0.0303 

Write test 0.0065 0.0425 0.0069 0.0385 0.0065 0.0403 0.0063 0.0445 

GARP                 

))1((0 AR  0.7249 0.7496 0.6694 0.6821 0.6787 0.6974 0.7407 0.7714 

))2((1 AR  -0.077 -0.0689 -0.1318 -0.1237 -0.0629 -0.0548 -0.0717 -0.0636 

IV parameters               

0  2.3942 2.4773 2.3395 2.4226 2.4746 2.5577 2.5401 2.6232 

RPCM-VM 
(DIC) 

14939.92 15821.6 14670.78 15201.3 14809.92 15432.4 15182.15 16103.7 

Joint model Digit span total 

Nut. Sup. Calories Meat Milk Control 

Methods Complete MI Complete MI Complete MI Complete MI 

Fixed 

parameters                   

(Intercept) -0.9793 -0.9697 -1.0107 -1.0205 -0.9103 -0.9203 -0.7537 -0.7344 

Sex 0.1945 0.2089 0.1949 0.1977 0.1918 0.2004 0.1918 0.212 
Age -0.0158 -0.0094 -0.0194 -0.0296 -0.0261 -0.028 -0.0078 0.0069 

Height -0.007 -0.0034 -0.0059 0.0063 -0.0042 0.0037 -0.0068 -0.0075 

Weight 0.0238 0.0198 0.0229 -0.0021 0.022 0.0075 0.0259 0.0324 
Head circ 0.0298 -0.0148 0.0283 -0.0809 0.0251 -0.0518 0.022 0.0097 

SES 0.0046 -0.0078 0.0046 -0.0312 0.0042 -0.0199 0.0044 0.0037 

Read test 0.0175 0.0219 0.017 0.0178 0.0176 0.0202 0.0201 0.0263 
Write test 0.0097 0.0193 0.0095 0.0147 0.0101 0.0175 0.0117 0.0235 

GARP                 

))1((0 AR  0.4888 0.4902 0.4349 0.4373 0.4622 0.4656 0.5203 0.5247 

))2((1 AR  0.0348 0.0387 0.0329 0.034 0.0309 0.0334 0.0404 0.0457 

IV parameters               

0  1.6504 1.7011 1.2178 1.2469 1.7418 1.7817 1.8184 1.8799 

RPCM-DS 
(DIC) 

12548.28 13153.9 12280.67 12583.1 12418.28 12951.3 12783.01 13506.2 

 
Table 5.  Credible intervals (95 %) for nutritional supplement based on RCPM and AS. 
 

  Calories Meat Milk Control 

  Raven coloured progressive matrix 

(Intercept) (-8.2506, 1.2869) (-9.1281, 0.9482) (-8.3304, 1.499) (-8.842, 0.8753) 

Sex (-0.1904, 0.3019) (-0.2053, 0.2835) (-0.1564, 0.3341) (-0.1543, 0.3513) 

Age (-0.1041, 0.1519) (-0.1375, 0.1246) (-0.1119, 0.1304) (-0.108, 0.1309) 

Height (-0.0314, 0.0406) (-0.0478, 0.028) (-0.0414, 0.0314) (-0.0379, 0.0345) 
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  Calories Meat Milk Control 

  Raven coloured progressive matrix 

Weight (-0.0277, 0.0663) (-0.0277, 0.0713) (-0.0201, 0.0701) (-0.0166, 0.0781) 

Head circ (-0.0197, 0.155) (-0.0086, 0.173) (-0.0237, 0.15) (-0.016, 0.1666) 

SES (0.0012, 0.0117) (0.0012, 0.0119) (0.0004, 0.0112) (0.0002, 0.01) 

Read test (-0.0318, 0.0415) (-0.0175, 0.0606) (-0.0223, 0.0534) (-0.0209, 0.0548) 

Write test (-0.0287, 0.0293) (-0.0326, 0.0262) (-0.0306, 0.0283) (-0.0319, 0.0241) 

 
Arithmetic Score 

(Intercept) (-3.3922, 2.1301) (-4.0365, 1.3746) (-3.8335, 1.917) (-4.167, 1.214) 

Sex (-0.0623, 0.1895) (-0.1142, 0.1581) (-0.0621, 0.2063) (-0.0568, 0.1878) 

Age (-0.0253, 0.0179) (-0.0235, 0.0196) (-0.0194, 0.0212) (-0.0249, 0.0157) 

Height (-0.024, 0.0065) (-0.0175, 0.0128) (-0.0161, 0.016) (-0.0136, 0.0171) 

Weight (0.0052, 0.0548) (-0.0067, 0.0456) (-0.0117, 0.0392) (-0.0049, 0.0457) 

Head circ (-0.0094, 0.0923) (-0.005, 0.089) (-0.0123, 0.0854) (-0.0123, 0.0828) 

SES (0.0004, 0.0065) (0.0005, 0.0064) (0.0003, 0.006) (0.0007, 0.0059) 

Read test (-0.046, 0.0844) (-0.0503, 0.0869) (-0.0527, 0.0805) (-0.0734, 0.0783) 

Write test (-0.0156, 0.0264) (-0.0143, 0.0272) (-0.0106, 0.029) (-0.0088, 0.0334) 

 

 

Table 6.  Credible intervals (95 %) for nutritional supplement based on VM and DS. 
 

  Calories Meat Milk Control 

  Verbal meaning 

(Intercept) (-5.974, 1.0928) (-6.3301, 0.74) (-6.0168, 1.7795) (-6.7161, 1.2257) 

Sex (-0.1863, 0.1815) (-0.1692, 0.1739) (-0.1903, 0.1625) (-0.2172, 0.1352) 

Age (-0.1007, 0.0802) (-0.1053, 0.0793) (-0.1198, 0.0866) (-0.101, 0.0779) 

Height (-0.0194, 0.0379) (-0.0151, 0.0425) (-0.0172, 0.0412) (-0.0199, 0.041) 

Weight (-0.0137, 0.0518) (-0.018, 0.0502) (-0.0138, 0.0547) (-0.0115, 0.0592) 

Head circ (-0.0175, 0.1169) (-0.0195, 0.1107) (-0.0352, 0.1019) (-0.0302, 0.1095) 

SES (0.0009, 0.009) (0.0003, 0.0082) (-0.0003, 0.0084) (0.0007, 0.009) 

Read test (-0.021, 0.0354) (-0.0219, 0.032) (-0.0207, 0.035) (-0.0203, 0.0389) 

Write test (-0.0131, 0.0291) (-0.0112, 0.0316) (-0.0063, 0.0383) (-0.0126, 0.0311) 

  Digit span total 

(Intercept) (-7.122, 2.571) (-6.7772, 1.8821) (-8.5246, 0.7398) (-7.1138, 1.9635) 

Sex (-0.0329, 0.4216) (0.0158, 0.4582) (0.0412, 0.4912) (-0.0074, 0.4834) 

Age (-0.1106, 0.1183) (-0.1352, 0.0971) (-0.1675, 0.0756) (-0.1135, 0.1298) 

Height (-0.034, 0.0227) (-0.032, 0.0199) (-0.0166, 0.0384) (-0.031, 0.0235) 

Weight (-0.0374, 0.0322) (-0.041, 0.0292) (-0.0452, 0.0266) (-0.0438, 0.0301) 

Head circ (-0.0351, 0.1361) (-0.027, 0.1325) (-0.0307, 0.131) (-0.0381, 0.1291) 

SES (0.0001, 0.0104) (0.0011, 0.0113) (0.0007, 0.0114) (0.0015, 0.0118) 

Read test (-0.0097, 0.0603) (-0.017, 0.05) (-0.0139, 0.0527) (-0.011, 0.0597) 

Write test (-0.0066, 0.0809) (-0.0184, 0.0677) (-0.0184, 0.0727) (-0.0042, 0.0871) 

 

The following are the observations in the study on human intelligence: 

(i). In the GARP, the coefficient 0  for AR(1) were positive and the credible 

interval was above zero which implies the significant positive relationship of 

random effects, the log model is used in equation (6). The coefficient for AR(2) 

was not significant. It indicates that the random effects covariance matrices had 

homogeneous AR(1) structures. In this fixed effects, the coefficients such as 
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gender, age, height, weight, head circumstance, socio economic status, read test, 

write test were significant because 95% credible intervals did not contain zero. 

This indicates that the estimated conditional probability of cognitive function 

was lower for males than females, was lower in SES group than in weight, head 

circumstance variable, and was higher in read test group than in write test group. 

The conditional probability of cognitive function increased as human intelligence 

level increased. Similarly, when comparing the analytical ability by RCPM test 

in relationship with linguistic ability by VM and immediate memory by DS total, 

the results revealed that Meat supplements produces smaller criteria values 

indicating that the supplement of meat helps in improving the intelligence on 

children. In additional, multiple imputation also reveals the same results as in 

complete data.  

(ii). Lastly, in studying DIC criteria on association between the G and S factors, 

RCPM and DS showed better association than compared to other G and S factors 

by considering that the outcomes are independent and assuming that the 

association between the outcome vectors are captured completely by the 

association between the random effects considered. 

On the whole, it is evident that there exists better association between the analytical 

ability as assessed by RCPM test and immediate memory as DS total test than other two 

joint outcomes. Further, the intervention study has shown that calories and control 

nutritional supplement is comparatively worse than the other two supplements based on 

Bayesian joint model analysis. It is observed that the result performs similar in complete 

and missing data mechanism. Moreover, calories and control nutritional supplement on 

food consumption might affect the mental state and cognitive behaviour deterioration in 

the condition of school children. 

 

4. Conclusion 

 

In many psychometric data, studying the human intelligence has been an interesting 

research as it is given least importance in univariate response. However, we illustrated a 

method to capture the association between bivariate responses that is count-count in 

nature among the covariates simultaneously through the most powerful tool named 

MCMC. Hence, this study focused on studying the association between the G and S 

factors of human intelligence from a school lunch intervention study from rural Kenya 

through Bayesian perspective. Usually, joint model may lead to poor estimation if the data 

involves a more number of parameters, whereas the Bayesian inference with different 

priors provides reliable and better results. In addition, missing entries in the data is often a 

common problem in the case of longitudinal data analysis. Thus, we adopted a missing 

imputation technique to handle the missing entries in the data. Further, a comparative 

study has been made with complete and missing cases and found that both the cases yield 

similar results that meat supplement turns out to be the suitable nutritional supplement in 

developing cognitive skills among school children.  
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Moreover, the Kenya intervention study suggests that understanding the nutritional 

basis of food effects on cognition will help us for the decision how best to control diet to 

improve neuron tolerance to insults and promote mental health. Digit Span is a reliable 

and valid measure of attention assessing „S‟ factor of human intelligence. Based on the 

DIC value of the bivariate analysis, the influence of „G‟ factor is quite likely to be felt 

more on attention (Digit Span) total immediate memory showed better association than 

the other two „S‟ factors deals with higher order cognitive functions involving reasoning 

abilities on linguistic and numerical domains. However, in practice, there are other factors 

such as stress, depression, anxiety, parental behaviour, etc., affects the improvement of 

intelligent factor among the school children. Thus, this analysis can be extended with 

more covariates related to the study and could be extended with a comparison of different 

missing data methods such as MAR, MCAR and MNAR techniques. 
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Appendix 

 

Table 7. Kenya school-children feeding intervention data 

id treatment rn rcpm as vm ds sex age height weight head_circ ses readtest writetest 

1 meat 1 15 5 25 6 girl 7.19 110.15 17.8 50.25 89 12 11 

1 meat 2 19 7 39 8 girl 7.19 110.15 17.8 50.25 89 12 11 

1 meat 3 21 7 33 7 girl 7.19 110.15 17.8 50.25 89 12 11 

1 meat 4 18 8 37 7 girl 7.19 110.15 17.8 50.25 89 12 11 

1 meat 5 21 10 37 8 girl 7.19 110.15 17.8 50.25 89 12 11 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

546 control 1 21 11 29 7 boy 7.67 120.15 21.7 49.9 86 12 11 

546 control 2 19 10 23 9 boy 7.67 120.15 21.7 49.9 86 12 11 

546 control 3 18 9 31 8 boy 7.67 120.15 21.7 49.9 86 12 11 

546 control 4 19 9 31 7 boy 7.67 120.15 21.7 49.9 86 12 11 

546 control 5 16 10 37 10 boy 7.67 120.15 21.7 49.9 86 12 11 
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