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Abstract 

Cloud droplet evolution is influenced by microphysical processes such as nucleation, 

condensation, evaporation, and coalescence, all of which impact precipitation. Models 

simulating droplet growth help improve rainfall predictions by providing insight into these 

processes. In this study, we investigate the coalescence time of droplets, using ground truth 

data from Disdrometer Observations with a size range of 156.5 to 2800.25 µm, applying the 

Python Super Droplet Model (PySDM) to simulate the evolution of droplet size over time. 

Focusing on the coalescence process, we analyzed the time-dependent progression of droplet 

formation. Our results revealed a relationship between coalescence time (CT) and drop size 

distribution (DSD). Larger droplets were found to coalesce rapidly upon impact, quickly 

reaching a precipitation-ready state, while smaller droplets experienced more frequent 

bouncing, requiring more time for coalescence. The mean coalescence time was estimated to 

be approximately 12,550 sec. 

Keywords: Super droplet method; Disdrometer; Cloud microphysics; Monte-Carlo 
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1. Introduction 

 
Rainfall results from intricate interactions between microphysical and dynamical processes 

in the earth-atmosphere system, with factors such as raindrop size distribution (DSD), 

atmospheric pollutants, and long-term climatic trends playing critical roles. DSD is integral 

to understanding rainfall mechanisms, impacting agriculture, ecosystems, and public health. 

For instance, pollutants like PM2.5, PM10, and black carbon (BC) in Bengaluru alter cloud 

microphysics, affecting droplet formation and precipitation [1]. Similarly, atmospheric 

conditions influenced by geomorphic features affect groundwater recharge, with pediplains 
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offering higher yields [2]. The Atmospheric Boundary Layer (ABL) height, which 

influences pollutant dispersion through the Ventilation Coefficient (VC), is significantly 

affected by fog, as observed in Delhi [3]. Long-term climatic trends further complicate this 

picture. An increasing trend in rainfall has been observed in Ranchi, with a negative 

correlation between rainfall and temperature in several months [4]. This is supported by the 

use of ARIMA models to forecast rising rainfall trends in Chattogram, Bangladesh, 

particularly during the monsoon season [5]. DSD's impact on rainfall is further explored 

through studies on soil erosion and radar hydrology. DSD affects soil erosion and rainfall 

kinetic power [6], while radar reflectivity and rain rate relationships through DSD have 

been examined [7]. The negative exponential distribution of DSD given by equation 1 is 

crucial for understanding these dynamics [8]. 

𝑁(𝐷) = 𝑁0𝑒𝑥𝑝(𝛬𝐷) (0 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥)                                                                                  (1) 

where 𝑁0(𝑚−3𝑐𝑚−1) and 𝛬 (𝑐𝑚−1) are the distribution parameters, 𝐷𝑚𝑎𝑥 is the 

maximum diameter of the raindrops [9]. The evolution of cloud droplets, influenced by 

processes such as nucleation, condensation, and coalescence, is essential for accurate 

rainfall predictions. Smoluchowski’s coagulation equation (SCE) in 2, described by Norris 

[10] and evaluated by Hocking and Jonas [11], balances cloud particle populations
𝜕𝑛(𝑥,𝑡)

𝜕𝑡
=

1

2
∫ 𝐾(𝑥 − 𝑦, 𝑦) 𝑛(𝑥 − 𝑦, 𝑡) 𝑛(𝑦, 𝑡)𝑑𝑦

𝑥

0
− ∫ 𝐾(𝑥, 𝑦) 𝑛(𝑥, 𝑡) 𝑛(𝑦, 𝑡)𝑑𝑦

∞

0
                            (2) 

where 𝑛 (𝑥, 𝑡) is the number density of particles as they coagulate to size x at time t and 

𝐾(𝑥, 𝑦) is the coagulation kernel. Moore [12] linked droplet size with atmospheric 

pollutants, and Liou [13] examined the relationship between liquid water content and 

precipitation. Telford [14] introduced the stochastic coalescence model (SCM), further 

analyzed by Gillespie [15], while Gebauer [16] explored how DSD influences coalescence. 

The Python-based super droplet model (PySDM), leveraging super droplet methods and 

Monte-Carlo algorithms, provides valuable insights into aerosol-cloud interactions and 

cloud microphysics [17,18]. This study focuses on the impact of coalescence on the 

temporal evolution of cloud droplets, utilizing PySDM and RD-80 Disdrometer data. 

 

2. Data Used (RD-80 Disdrometer) 

 

This study leverages RD-80 Disdrometer data to investigate rainfall microphysics by 

integrating it with the PySDM model, which is designed to elucidate cloud microphysical 

processes. Using the high-accuracy data from the Disdrometer, we analyze coalescence 

dynamics and their impact on rainfall. The Disdrometer provides precise measurements 

of various rainfall parameters, including droplet number density within radius bins (156.5 

to 2800.25 μm) shown in Table 1, rainfall intensity, rate, radar reflectivity, and kinetic 

energy, all recorded every 30 seconds. These measurements are based on the electrical 

impulses generated by raindrops impacting the sensor, which are inversely related to drop 

diameter, as detailed by Bartholomew [19]. 
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Table 1. Radius bins for RD-80 Disdrometer [19]. 
 

Classes Radius bins (μm)  Classes Radius bins (μm) 

Class 1 156.5-202.5 Class 11 874.0-1038.5 

Class 2 202.5-252.5 Class 12 1038.5-1205.0 

Class 3 252.5-298.0 Class 13 1220.5-1363.5 

Class 4 298.0-357.5 Class 14 1363.5-1505.5 

Class 5 357.5-413.5 Class 15 1505.5-1692.5 

Class 6 413.5-499.5 Class 16 1692.5-1852.0 

Class 7 499.5-616.0 Class 17 1852.0-2063.5 

Class 8 616.0-714.5 Class 18 2063.5-2286.5 

Class 9 714.5-791.0 Class 19 2286.5-2572.5 

Class 10 791.0-874.0 Class 20 2572.5-2800.25 

3. Methodology 

This study focuses on the 'Coalescence' phenomenon using the Super Droplet Model 

(PySDM), with RD-80 Disdrometer data serving as ground truth. We compare observed 

raindrop number density from the Disdrometer with the PySDM mass density by 

converting observed number density into mass density using the formula:  

Mass density ( 3/kg m ) = 
( 𝑁𝑢𝑚𝑏𝑒𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑀𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝐻2𝑂)

𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
,  

Where, Molar mass of H2O is 18.015 g/mol, and Avogadro constant is 6.022×1023 

particles/mol. We measured the onset and end of coalescence by running the model for up 

to 20,000 seconds, noting changes in mass density to determine coalescence start (Starting 

CT), end (Ending CT), and total duration (Total CT). An empirical rule is applied to predict 

coalescence duration for Disdrometer radius bins. This integration of PySDM and 

Disdrometer data bridges atmospheric dynamics with surface observations. The Super 

Droplet Model (SDM) differs from traditional methods by working with clusters of 

droplets, or 'super droplets,' each representing multiple droplets with identical properties.  

4. Super Droplet Method (SDM) 

The Super Droplet Model (SDM) uses clusters of droplets, or 'super droplets,' unlike 

traditional methods that focus on individual droplets. Each super droplet contains multiple 

droplets with the same attributes and evolves dynamically due to coalescence phenomena. 

The pattern of the coalescence of super droplets described below 

In the coalescence of (𝑖, 𝑗) pair of super droplets with the multiplicity 𝜉𝑖 and 𝜉𝑗 

respectively the below cases show the updated variables ' ' '( , , )i i ix R M  after the collision 

under SDM [17,18], where ( , , )i i ix R M  are the position, equivalent radius of water, and 

solute mass of the super droplet. 

1) When the number of droplets within the super droplets undergoing coalescence differs 

i.e. 𝜉𝑖 ≠ 𝜉𝑗  , assume 𝜉𝑖 > 𝜉𝑗  then the updated variables are:  

𝜉𝑖
′ = 𝜉𝑖 − 𝜉𝑗   , 𝜉𝑗

′ = 𝜉𝑗; 𝑅𝑖
′ = 𝑅𝑖

𝑜𝑟𝑔
   , 𝑅𝑗

′ = (𝑅𝑖
3 +  𝑅𝑗

3)1/3; 𝑀𝑖
′ = 𝑀𝑖

𝑜𝑟𝑔
 , 𝑀𝑗

′ = (𝑀𝑖
𝑜𝑟𝑔

+

𝑀𝑗
𝑜𝑟𝑔

); 𝑥𝑖
′ = 𝑥𝑖

𝑜𝑟𝑔
    , 𝑥𝑗

′ = 𝑥𝑗
𝑜𝑟𝑔
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2) When the number of droplets within the super droplets undergoing coalescence is same 

i.e.   𝜉𝑖 = 𝜉𝑗  then, updated variables are: 

      𝜉𝑖
′ = [𝜉𝑖/2], 𝜉𝑗

′ = 𝜉𝑖 − [𝜉𝑖 /2],  𝑅𝑖
′ = 𝑅𝑗

′ = (𝑅𝑖
3 + 𝑅𝑗

3)1/3,  𝑀𝑖
′ =  𝑀𝑗

′ = (𝑀𝑖
𝑜𝑟𝑔

+

𝑀𝑗
𝑜𝑟𝑔

),   𝑥𝑖
′ = 𝑥𝑖

𝑜𝑟𝑔
    , 𝑥𝑗

′ = 𝑥𝑗
𝑜𝑟𝑔

 

As time progresses, the variables evolve as a result of the coalescence of super droplets. 

Using these updated variables, we derive the distribution of mass density of droplets 

through an equation.  

2 2

1

1 1
(ln ) (ln ln ), ( ) exp( / 2 )

2

sN

i i i

i

g R mW R R W Y Y
V

  
=

= − = −



.                                              (3) 

Where V = 6 310 m  is the volume of coalescence cell, 
1

5
0 sN 

−

=  ( 0 = 0.62 ) and 
sN

=
152  is the number of super droplet. 

 

5. Empirical Rule on Standard Deviation 

 

The empirical rule in equation 4 provides approximations for the proportion of data that 

falls within certain intervals around the mean in a normal distribution [20].

21 1
( ) exp( ( ) )

22

b

a

x
P a X b dx





−
  = −

                                                                               (4) 

One standard deviation is ( ) 0.68P X   −   +  , where  is the mean and  is the 

standard deviation, Second Standard Deviation is ( 2 2 ) 0.95P X   −   +   and Third 

Standard Deviation is ( 3 3 ) 0.99P X   −   +  , by which we can say that the 68 % 

of data lie between the first deviation about the mean, 95 % of data lies between the second 

standard deviation about a mean. And the third standard deviation about the mean covers 

99 % of the data [21,22]. 

 

6. Results and Discussion 

 

The evolution of droplets according to the super droplet theory, as previously discussed, 

is illustrated in Figs. 1(a) and 1(b). 
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Fig. 1. Mass density distribution of super droplet at different time (a) for radius range between (10 

μm-5000 μm) PySDM original radius bin done by Shima et.al. [11], (b) radius range between (156.5 

μm -2800.25 μm) Disdrometer radius bin. 

 

At the initial moment (t = 0) seconds, there is an absence of observed mass density 

within the Disdrometer radius bin shown in Fig. 1b. Conversely, in Fig. 1a, where the 

radius bins are of smaller scale compared to the Disdrometer radius bin, the presence of 

mass density is observed.  

 

 
 

Fig. 2. The coalescence time of the super droplet determined by PySDM model for Disdrometer 

radius bin. 

 

This suggests that the commencement of coalescence happens promptly for smaller 

droplets, while there's a delay in coalescence initiation for larger droplets which is also 

validated by [23-25]. This observation is further supported by the recorded time for droplet 

coalescence from the Disdrometer radius bin, as illustrated in Fig. 2 and analyzed using 

PySDM. Notably, the total coalescence time diminishes as droplet size increases. 

In Fig. 2, it's evident that the duration of coalescence is influenced by both the onset and 

cessation times of coalescence for the droplets. The analysis determined a negative 

correlation between the total coalescence time for droplets and the time at which 

coalescence begins. This negative correlation is quantified by a correlation coefficient of -

0.8702, as depicted in Fig. 3a. 
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(a) 

 
(b) 

 

Fig. 3. (a) Correlation coefficient of total CT with the starting and ending time. (b) Mass density of 

droplets derived from the observed number density of rain droplets within each radius bin of the 

Disdrometer. 

 

In Fig. 1a (plot by Shima), the mass density distribution is depicted following a normal 

distribution pattern. This characteristic is similarly observed in the mass density distribution 

within the Disdrometer radius bin analyzed through PySDM. To further affirm this 

observation, Cross-validation was performed using the actual ground truth data obtained 

from the Disdrometer, specifically examining the observed drop size distribution in terms 

of mass density at the 1200-sec mark (20 min), as illustrated in Fig. 3b. This confirms that 

super droplet theory is followed by the radius bins of Disdrometer data. Since the 

coalescence time for the droplets follows a normal distribution, the third standard deviation 

rule (Empirical rule) was applied to the total time of droplet coalescence to predict the 

duration of coalescence dynamics in any given environment., as illustrated in Fig. 4. 

 

 
 

Fig. 4. Probability plot for Third standard deviation about mean. 
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Approximately 68 % of the total droplets complete the coalescence process within one 

standard deviation of the mean. this corresponds to a range of 10800 sec (180 min or 3 h) 

to 14300 sec (238 min or approximately 4 h), 95 % of the droplets in any environment 

complete the coalescence process within two standard deviations of the mean. This 

translates to a range of 9210 sec (153 min or 2.5 h) to 16100 sec (268 min or 4.5 h). And 

around 99 % of the data falls within three standard deviations of the mean. this means the 

coalescence process occurs between 7280 sec (121 min or 2 h) and 17800 sec (296 min or 

5 h). These ranges provide estimates of the duration of the coalescence process for different 

percentages of droplets, giving insight into the variability and spread of the data. 

 

7. Conclusion 

 

The study concludes that the coalescence dynamics analyzed by PySDM and the observed 

number density of droplets provide consistent density distribution patterns. This suggests 

that PySDM effectively captures the behavior of droplet coalescence, aligning well with the 

observed data from the Disdrometer. Notably, the starting coalescence time is directly 

proportional to the droplet size distribution (DSD), implying that larger droplets take longer 

to initiate coalescence. Furthermore, it is discovered that the CT is normally distributed (a 

symmetric bell-shaped curve). By the sigma rule it can be inferred that 68 %, 95 %, and 

99.7 % of the data have CT of 3-4 h, 2.5-4.5 h, and 2-5 h respectively. This will further help 

to improve precipitation modeling and forecasting, especially in tropical regions. 
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