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Abstract 

In this article, A higher-dimensional string cosmological model with a zero-mass scalar field 

in Lyra’s geometry has been investigated by considering a five-dimensional spherically 

symmetric space-time. To obtain the deterministic solutions for field equations, some 

physically plausible conditions are taken into account. The relation between the metric 

coefficients was assumed to be 𝐵 = 𝑛𝐴, and due to the highly non-linear nature of the field 

equations, the case 𝜆 = 𝜌. was considered. Furthermore, calculations were performed for 

various physical and kinematical parameters, and their astrophysical implications were 

analyzed, revealing a strong resemblance to recent observational data. 

Keywords: Spherically Symmetric Space-time; Zero mass scalar field; Lyra geometry. 

© 2025 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.  

doi: https://dx.doi.org/10.3329/jsr.v17i2.75357                    J. Sci. Res. 17 (2), 407-415 (2025) 

 

 

1. Introduction  

As the universe evolves, the extra dimensions are not observable due to dynamical 

contraction and compactification with the passage of time and it ultimately reduces to four-

dimensional continuum [1]. There is an ample literature on higher dimensional 

cosmological models in general relativity [2-6]. Einstein [7] has geometrized gravitational 

field in his general theory of relativity. This has inspired several researchers to geometrize 

the other physical fields. Weyl [8] has formulated a unified theory to geometrize gravitation 

and electromagnetism. Lyra [9] proposed a modification of Riemannian geometry by 

introducing an additional gauge function into the structure less manifold as a result of which 

the cosmological constant arises naturally from the geometry. In this theory both the scalar 

and tensor fields have geometrical significance. Subsequently Sen [10] and Sen and Dunn 

[11] suggested a new scalar tensor theory of gravitation. Jeavons et al. [12] pointed out that 

the field equations proposed by Sen and Dunn are heuristically useful even though they are 

not derived from the usual variational principle. A brief note on Lyra’s geometry is given 
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by Singh et al. [13]. It has been shown by Halford [14] that the energy conservation law 

does not hold in the cosmological theory based on Lyra’s geometry. Halford [15] has also 

shown that the scalar tensor theory of gravitation in Lyra manifold gives same effects, 

within observational limits, as in the Einstein theory. Soleng [16] pointed out that the 

constant gauge vector 𝜑𝑖 in Lyra’s geometry together with a creation field becomes Hoyle’s 

[17] creation field cosmology or contains a special vacuum field, which together with the 

gauge vector may be considered as a cosmological term. Further, Soleng [18] showed that 

for matter with zero spin the field equations of his scalar tensor theory reduce to those of 

Brans-Dicke theory. Bali et. al. studied [19,20] Bianchi type-I cosmological model for 

perfect fluid distribution in Lyra geometry and string dust magnetized in Bianchi type I 

cosmological models in Lyra geometry. Bhamra [21], Kalyanshetty and Waghmode [22], 

Reddy and Innaiah [23], Beesham [24], Reddy and Venkateswarlu [25], and Singh and 

Desikan [26] are some of the authors who have investigated various aspects of the four-

dimensional cosmological models in Lyra’s manifold. Reddy et al. [27] have investigated 

Bianchi type-I cosmological model with extra dimensions in Lyra manifold while Mohanty 

et al. [28-29] showed the nonexistence of five-dimensional perfect fluid cosmological 

model in this manifold. and obtained the exact solutions of the field equations for empty 

universe. Also, Mohanty et al. [30] showed that in a five-dimensional space-time the 

general perfect fluid distribution does not survive but degenerates into stiff fluid distribution 

in this particular manifold. Kaluza-Klein FRW cosmological models have been constructed 

by Mohanty et al. [31] in Lyra geometry. Higher dimensional cosmological models, in this 

geometry, have also been discussed by Rahaman [32] and Rahaman et al. [33,34].  

Samanta and Dhal [35] found a new class of higher dimensional cosmological models 

of the early universe filled with perfect fluid source in the frame work of (R,T) gravity with 

the help of five dimensional spherically symmetric metric. Pawar et. al. [36] investigated 

Kaluza-Klein Cosmological Model with strange-quark-matter in Lyra Geometry. Recently 

Rao and Jayasudha [37,38] obtained five dimensional spherically symmetric perfect fluid 

models in Saez-Ballester [39] and Brans-Dicke [40] scalar-tensor theories of gravitation. 

Reddy [41] investigated Five-Dimensional Spherically Symmetric Perfect Fluid 

Cosmological Model in Lyra Manifold. Five-dimensional spherically symmetric 

cosmological models based on Lyra geometry are significant because they provide insights 

into the evolution of the universe during its early stages. Brahma et al. [42] have reviewed 

Bianchi type-V dark energy cosmological model with the electromagnetic field in Lyra 

based on f (R, T) gravity. 

The investigation of yet unsolved interacting fields in reference to modified gravitation 

theories assuming one of the fields is a massless scalar field is a basic attempt to study the 

unification of the quantum and gravitational theories. In recent years, there has been a lot 

of interest in the set of field equations that represent a zero-mass scalar field coupled with 

gravitational theories. Venkateswarlu et al. [43-45] studied various cosmological models 

with zero mass scalar field, Godani and Samanta [46] studied Wormhole modeling in f (R, 

T) gravity with minimally-coupled massless scalar field, Singh et al. [47] discussed Causal 

viscous universe coupled with zero-mass scalar field in higher derivative theory, Singh[48] 
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studied Rotational perturbations of radiating Universes coupled with zero-mass scalar field, 

Patra [49] studied spherically symmetric space-time with magnetic field and zero mass 

scalar field, Adhav et al. [50] examined Zero mass scalar field with bulk viscous 

cosmological solutions in Lyra geometry, Dixit et al. [51] discussed Transit cosmological 

models coupled with zero-mass scalar field with high redshift in higher derivative theory, 

Katore et al. [52] studied FRW Cosmological Solutions with Zero-Mass Scalar Field 

Attached to Bulk Viscous Fluid in Saez-Ballester Theory of Gravitation, Pawar et. al. [53] 

investigated Plane Symmetric String Cosmological Model with Zero Mass Scalar Field in 

f (R) Gravity, Mete et al. [54] studied a five-dimensional Bianchi type-III string 

cosmological model with a one-dimensional cosmic string in the presence of zero mass 

scalar field in the context of the Lyra manifold and Cadoni and Franzin [55], Pawar et al. 

[56,57] are some of the authors who have vigorously studied interacting fluid with one 

matter content as a zero mass scalar field. In recent years strings are widely receiving 

significant interest from researchers as they play an important role in explaining the early 

phase of cosmic evolution. In modern cosmology, the substantial theoretical development 

of string theory has been done using different types of gravitation theories. The primary 

objective of the study was to explore five-dimensional spherically symmetric cosmological 

models with zero-mass scalar fields in Lyra’s geometry. Studying spherically symmetric 

space time in Lyra geometry offers a rich area of research evolving physical aspects of 

gravitation and cosmology. According to literature [58-60], the extra dimension produces a 

vast amount of entropy, which may provide solutions to the flatness and horizon problems. 

Since humans inhabit a four-dimensional space-time, it has been suggested that the hidden 

extra dimension in five-dimensional space is likely connected to the elusive dark matter and 

dark energy. Singh et al. [61-64] studied higher dimensional spherically symmetric space 

times in various gravitational theories. 

This paper is organized as follows: In Section-2, The field equation has been provided 

in the normal gauge for Lyra geometry. In Section 3, the metric was introduced, the field 

equations were solved, and the spherically symmetric model was presented. Section-4 

contains some physical and kinematical properties. Section 5: Discussion and conclusions. 

 

2. Field Equation of Lyra Geometry 

 

The modified Einstein’s field equation in normal gauge for Lyra geometry proposed by Sen 

[10] and Sen and Dunn [11] are given by  

𝑅𝑗
𝑖 −

1

2
𝛿𝑗

𝑖𝑅 +
3

2
𝜑𝑗𝜑𝑖 −

3

4
𝜑𝑘𝜑𝑘𝛿𝑗

𝑖 = −𝑇𝑗
𝑖                    (1) 

 

Where i  is the time-dependent displacement field vector, defined by 

𝜑𝑖 = (0,0,0,0. 𝛽)
                                (2)

 

3. Metric and Field Equation 

 

The five dimensional spherically symmetric space-time in the form  
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  𝑑𝑠2 = 𝑑𝑡2 − 𝑒𝐴(𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜑2) − 𝑒𝐵𝑑𝜁2

                                          
(3)

 

Where A and B are functions of cosmic time t only. 

The energy-momentum tensor for one-dimensional cosmic string coupled with zero mass 

scalar fields is given by 

𝑇𝑗
𝑖 = 𝜌𝑢𝑖𝑢𝑗 − 𝜆𝑥𝑖𝑥𝑗 + (𝜓′𝑖𝜓,𝑗−

1

2
𝜕𝑗

𝑖𝜓′𝑖𝜓,𝑗 )                              (4) 

Where 𝜆 and 𝜌 are the tension density and rest energy density of cloud string fluid 

respectively. 𝑢𝑖 denotes the four time-like velocity vectors and 𝑥𝑖 denotes a unit space-like 

vector which represents the anisotropic direction of cloud string and satisfies the conditions 

 𝑢𝑖 = (1,0,0,0,0)
 
and s−𝑥𝑖 = (0,0,0,0,1).                                                          (5) 

The scalar field   satisfies the condition 

               
𝜓′𝑖

𝑖 = 0.                                                                                                              (6) 

Here the scalar field   indirectly coupled to matter. It indirectly interacts with matter 

through gravity. Equation (2) gives the components of energy momentum tensor as follows 

  

𝑇1
1 =

1

2
𝜓2

.

= 𝑇2
2 = 𝑇3

3 ,  𝑇4
4 = 𝜆 +

1

2
𝜓2

.

,  𝑇0
0 = 𝜌 +

1

2
𝜓2

.

                                              (7) 

From equations (3) and (7) the field equation for the metric (3) are obtained as follows. 

3
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𝐵
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+
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)                                                                                        (8) 
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                                                                       (9) 

3

2
𝐴
..

+
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2
𝐴2

.

+
3

4
𝛽2 = (𝜆 +

𝜓2
.

2
)                                                                                          (10) 

Where the overhead dot denotes the derivative with respect to cosmic time t. 

Here, three non-linear differential field equations with six unknowns A, B, 𝜆, 𝜌, 𝜓 and 𝛽 

were obtained.  

Here, the relation between the metric potentials assumed as, 

𝐵 = 𝑛𝐴                                                                                                                             (11) 

Because the field equations are non-linear.  

In order to obtain the exact solutions following case is considered,  

𝜆 = 𝜌.                                                                                                                                (12) 

From equations (8) to (10) and (11), (12) the exact solutions of the field equations are 

𝑒𝐴 = [
(𝑛+3)

2
(𝑐1𝑡 + 𝑐2)−1]

2

(𝑛+3)
                                                                            (13) 

𝑒𝐵 = [
(𝑛+3)

2
(𝑐1𝑡 + 𝑐2)−1]

2𝑛

(𝑛+3)
                                                                              (14) 

The metric in equation (3) becomes 

𝑑𝑠2 = 𝑑𝑡2 − [
(𝑛+3)

2
(𝑐1𝑡 + 𝑐2)−1]

2

(𝑛+3) (𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2 𝜃 𝑑𝜑2) − [
(𝑛+3)

2
(𝑐1𝑡 +

𝑐2)−1]

2𝑛

(𝑛+3)
𝑑𝜁2                                                                                                                  (15) 

The metric potentials obtained are constant for any value to t hence the model is singularity-

free. The Scalar Field  

𝜓 =
2

3
[

2𝑐1
2(𝑛+2)

(𝑛+3)
+

6𝑐1(𝑛+2)

(𝑛+3)2
(𝑐1𝑡 + 𝑐2)−2 +

3

4
𝛽2]

3

2
                                                             (16) 
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Fig. 1. Behavior of Scalar field vs. t for 

1 21.76,  1.80,  2,  0.80c c n = = = = . 

 

Energy density 

𝜌 =
1

(𝑛+3)
[

𝑐1
2(𝑛2+5𝑛+6)+3(𝑐1𝑡+𝑐2)−2

(𝑛+3)
]                                                                                  (17) 

 

 
Fig. 2. Behavior of energy density vs. t for

1 21.76,  1.80,  2c c n= = = . 

 

Recent investigations have confirmed that the universe's associated energy generally 

falls in tandem with the value of scalar field. From the expressions (16) as well as (17), the 

scalar field and energy density have been shown to be inverse functions of cosmic time t. 

This has also been confirmed by Figs. 1 and 2, where the graphs of both show a decline as 

cosmic time t increases.  

The string tension density 

𝜆 = 𝑐1
2 [1 −

3𝑛(𝑐1𝑡+𝑐2)−2

(𝑛+3)2 ]                                                                                                  (18) 
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Fig. 3. Behavior of energy density vs. t for 

1 21.76,  1.80,  2c c n= = = . 

 

From the Fig. 3, it is observed that as the cosmic time t increases the value of tension density 

also increases and tend to infinity with infinite time. In the given model, the positive value 

of   not only shows the presence of strings in the universe but also the string dominance 

over particles. This result has been verified with Cadoni and Franzin [55] and Pawar et al. 

[56]. 

 

4. The Physical and Kinematical Properties 

 

The directional Hubble factors Hi(i=1,2,3,4) in the directions x, y, z and m obtained as 

𝐻 =
1

4
∑ 𝐻𝑖

4

𝑖=1

=
1

4
(𝐻1 + 𝐻2 + 𝐻3 + 𝐻4)

 

                                                                                                                            (19)

 

 

 

 

The expansion scalar 
 

is given by 

                                                                            

                                                                                                                          

                                                                           (20) 

 

 

The anisotropy parameter 
mA  
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𝐴𝑚 = 1                                                                                                                                                              (21) 

The Spatial Volume 

 

𝑉 = 𝑎4 = (𝑒
3𝐴+𝐵

2 𝑟2 𝑠𝑖𝑛2 𝜃)

1

4

                                                                                           (22)
 Shear Scalar 

𝜎2 =
3

2
𝐴𝑚𝐻2 =

3𝑐1(𝑐1𝑡+𝑐2)−2

4 𝑙𝑜𝑔[(
𝑛+3

2
)(𝑐1𝑡+𝑐2)−1]

                                                                                (23)

 

Deceleration Parameter 

𝑞 = −
𝑎𝑎

..

𝑎2
.  

𝑞 = −1                                                                                                                              (24)  

 

5. Conclusion 

 

The five-dimensional spherically symmetric string cosmological model with zero-mass 

scalar fields was constructed in the context of Lyra geometry. To obtain the deterministic 

solutions to the highly non-linear differential field equations, the relation between the metric 

coefficients as 𝐵 = 𝑛𝐴 is assumed and considered the case 𝜆 = 𝜌. The constructed model 

is observed to be singularity-free.  Furthermore, the scalar field and energy density have 

been shown to be inverse functions of cosmic time t. This has also been confirmed by 

behaviour of scalar field and energy density where, the graphs of both show a decline as 

cosmic time t increases. The recent observations validate the comparative behaviour of the 

scalar field and energy density. Additionally, in the given model, the positive value of 

not only shows the presence of strings in the universe but also string dominance over 

particles. Also, it is observed that the ratio of the square of shear scalar and expansion scalar 

is a nonzero constant and the deceleration parameter 𝑞 =  −1 shows that the expansion of 

the universe is accelerated which shows the present state of the universe as per the 

observational data. Thus, the constructed cosmological model is the standard model of the 

universe.  
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