

Available Online

JOURNAL OF SCIENTIFIC RESEARCH

J. Sci. Res. 6 (2), 233-241 (2014)

www.banglajol.info/index.php/JSR

Principal n-Ideals which Form Generalized Stone Nearlattices

Shiuly Akhter^{1*} and A. S. A. Noor²

¹Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh

²Department of Electronics and Communication Engineering, East-West University, 45 Mohakhali, Dhaka-1212, Bangladesh

Received 1 June 2013, accepted in final revised form 9 January 2014

Abstract

In this paper, we give several characterizations of those $P_n(S)$ which are generalized Stone nearlattices in terms of n-ideals. We show that when *n* is a central element of a nearlattice *S* and $P_n(S)$ is a sectionally pseudocomplemented distributive nearlattice, then $P_n(S)$ is generalized Stone if and only if for any $x \in S$, $\langle x \rangle_n^+ \lor \langle x \rangle_n^{++} = S$. Moreover, when $P_n(S)$ is sectionally pseudocomplemented distributive nearlattice, then we prove that $P_n(S)$ is generalized Stone if and only if each prime n-ideal contains a unique minimal prime n-ideal.

Keywords: Principal *n*-ideal; Minimal prime *n*-ideal; Central element; Generalized Stone nearlattice.

© 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: <u>http://dx.doi.org/10.3329/jsr.v6i2.10818</u> J. Sci. Res. **6** (2), 233-241 (2014)

1. Introduction

Generalized Stone lattices have been studied by many authors including [1], [2], [3], [4] and [5]. On the other hand, minimal prime ideals and generalized Stone nearlattices have been studied by [6]. In this paper, we generalize several important results on generalized Stone nearlattices in terms of n-ideals.

A nearlattice *S* is a meet semilattice with the property that any two elements possessing a common upper bound, have a supremum. Nearlattice *S* is distributive if for all $x, y, z \in S$, $x \land (y \lor z) = (x \land y) \lor (x \land z)$ provided $y \lor z$ exists. An element *n* of a nearlattice *S* is called *medial* if $m(x,n,y) = (x \land y) \lor (x \land n) \lor (y \land n)$ exists in *S* for all $x, y \in S$. A nearlattice *S* is called a *medial nearlattice* if m(x,y,z) exists for all $x, y, z \in S$. An element *s* of a nearlattice *S* is called *standard* if for all $t, x, y \in S$,

 $t \wedge [(x \wedge y) \lor (x \wedge s)] = (t \wedge x \wedge y) \lor (t \wedge x \wedge s).$

^{*} Corresponding author: shiuly_math_ru@yahoo.com

The element s is called neutral if

(i) *s* is standard and

(ii) for all $x, y, z \in S$, $s \wedge [(x \wedge y) \vee (x \wedge z)] = (s \wedge x \wedge y) \vee (s \wedge x \wedge z)$.

In a distributive nearlattice every element is neutral and hence standard. An element *n* in a nearlattice *S* is called *sesquimedial* if for all $x, y, z \in S$, $(x \land n) \lor (y \land n) \land [(y \land n) \lor (z \land n)] \searrow (x \land y) \lor (y \land z)$ exists in *S*. An element *n* of a nearlattice *S* is called an *upper element* if $x \lor n$ exists for all $x \in S$. Every upper element is of course a sesquimedial element. An element *n* is called a *central element* of *S* if it is neutral, upper and complemented in each interval containing it.

For a fixed element *n* of a nearlattice *S*, a convex subnearlattice of *S* containing *n* is called an *n*-ideal of *S*. For a medial element *n* of a nearlattice *S*, an *n*-ideal *P* of *S* is called *prime* if $P \neq S$ and $m(x,n,y) \in P(x, y \in S)$ implies either $x \in P$ or $y \in P$.

A prime *n*-ideal *P* is said to be a *minimal prime n-ideal* belonging to *n*-ideal *I* if (i) $I \subseteq P$ and (ii) There exists no prime *n*-ideal *Q* such that $Q \neq P$ and $I \subseteq Q \subseteq P$. A prime *n*-ideal *P* of a nearlattice *S* is called a *minimal prime n-ideal* if there exists no prime *n*-ideal *Q* such that $Q \neq P$ and $Q \subseteq P$.

Let *L* be a lattice with 0 and $a \in L$. Then a^* of *L* is called a pseudocomplement of *a* if $a \wedge a^* = 0$ and if $a \wedge x = 0$ for any $x \in L$ then $x \leq a^*$. A lattice *L* is called pseudocomplemented if every element of *L* has a pseudocomplement.

A nearlattice *S* with 0 is called *sectionally pseudocomplemented* if the interval [0, x] for each $x \in S$, is pseudocomplemented. Of course, every finite distributive nearlattice is sectionally pseudocomplemented. A nearlattice *S* is called *relatively pseudocomplemented* if the interval [a,b] for each $a,b \in S$, a < b is pseudocomplemented.

A distributive nearlattice *S* with 0 is called a *generalized Stone nearlattice* if $(x]^* \vee (x]^{**} = S$ for each $x \in S$. A distributive nearlattice *S* with 0 is a generalized Stone nearlattice if and only if each interval [0, x], $0 < x \in S$ is a Stone lattice.

For any n-ideal J of a nearlattice S,

 $J^+ = \{x \in S : m(x, n, j) = n \text{ for all } j \in J\}.$

An *n*-ideal generated by a single element *a* is called *principal n-ideal*, denoted by $\langle a \rangle_n$. The set of principal *n*-ideal is denoted by $P_n(S)$. When *S* is a distributive nearlattice then for any $a \in S$ we define

 $\langle a \rangle_n = \{ y \in S : a \land n \le y = (y \land a) \lor (y \land n) \}$ $= \{ y \in S : y = (y \land a) \lor (y \land n) \lor (a \land n) \}$

When *n* is an upper element, then $\langle a \rangle_n$ is the closed interval $[a \land n, a \lor n]$.

We know that for a distributive nearlattice *S* with an upper element *n*, $P_n(S)$ is a distributive nearlattice with the smallest element $\{n\}$. Let $\langle a \rangle_n \in P_n(S)$. By the interval $[\{n\}, \langle a \rangle_n]$ in $P_n(S)$, we mean the set of all principal n-ideals contained in $\langle a \rangle_n \in P_n(S)$ is called sectionally pseudocomplemented if for each $\langle a \rangle_n \in P_n(S)$, the interval $[\{n\}, \langle a \rangle_n]$ in $P_n(S)$ is pseudocomplemented. That is, each principal n-ideal contained

in $\langle a \rangle_n$ has a relative pseudocomplement in $[\{n\}, \langle a \rangle_n]$ which is also a member of $P_n(S)$. We shall denote the relative pseudocomplement of $\langle b \rangle_n$ in any interval by $\langle b \rangle_n^0$, while $\langle b \rangle_n^+$ denotes the pseudocomplement of $\langle b \rangle_n$ in $I_n(S)$.

If $P_n(S)$ is a distributive sectionally pseudocomplemented nearlattice, then $P_n(S)$ is a generalized Stone nearlattice if for each $\langle a \rangle_n \in P_n(S)$, the interval $[\{n\}, \langle a \rangle_n]$ in $P_n(S)$ is a Stone lattice.

For $b \le a \le n$, if [b,n] is dual pseudocomplemented then a^{0d} denotes the relative dual pseudocomplement of *a* in [b,n]. If [n,d] is pseudocomplemented then for $c \in [n,d]$, c^0 denotes the relative pseudocomplement of *c* in [n,d]. Two prime n-ideals *P* and *Q* of a nearlattice *S* are called comaximal if $P \lor Q = S$.

In this paper, we have given several characterizations of those $P_n(S)$ which are generalized Stone nearlattices in terms of n-ideals. we have also discussed on O(P) and n(P) and given some properties of n(P). Moreover, when $P_n(S)$ is sectionally pseudocomplemented distributive nearlattice, then we have proved that $P_n(S)$ is generalized Stone if and only if each prime n-ideal contains a unique minimal prime n-ideal.

Following result is due to [7] which will be needed for the development of this paper.

Theorem 1.1. For an element *n* of a nearlattice *S*, the following conditions are equivalent :

- (i) n is central in S
- (ii) n is upper and the map $\Phi: P_n(S) \to (n]^d \times [n]$ defined by

 $\Phi \langle a \rangle_n = (a \land n, a \lor n)$ is an isomorphism, where $(n]^d$ represents the dual of the lattice (n]. \Box

When *n* is a central element of *S* (then of course, *n* is upper, and so sesquimedial), then by Theorem 1.1, $P_n(S) \cong (n)^d \times [n]$. Thus we have the following result.

Theorem 1.2. Let *S* be a nearlattice and $n \in S$ be a central element. Then $P_n(S)$ is sectionally pseudocomplemented if and only if (n] is sectionally dual pseudocomplemented and [n] is sectionally pseudocomplemented. \Box

Corollary 1.3. Let *n* be a central element and $P_n(S)$ be a sectionally pseudocomplemented distributive nearlattice. Then for $\{n\} \subseteq \langle a \rangle_n \subseteq \langle b \rangle_n$, $\langle a \rangle_n^0 = [a \land n, a \lor n]^0 = [(a \land n)^{0d}, (a \lor n)^0].$

Proof. Since $P_n(S)$ is sectionally pseudocomplemented, so by

Theorem 1.2, (*n*] is sectionally dual pseudocomplemented and [*n*) is sectionally pseudocomplemented. Here $b \land n \le a \land n \le n \le a \lor n \le b \lor n$.

Since $(a \wedge n)^{0d}$ is the relative dual pseudocomplement of $a \wedge n$ in $[b \wedge n, n]$ and $(a \vee n)^0$ is the relative pseudocomplement of $a \vee n$ in $[n, b \vee n]$, so,

 $[a \wedge n, a \vee n] \cap [(a \wedge n)^{0d}, (a \vee n)^0] = [(a \wedge n) \vee (a \wedge n)^{0d}, (a \vee n) \wedge (a \vee n)^0]$ $= [n, n] = \{n\}.$ Now let $t \in \langle a \rangle_n^0$. Then $[t \wedge n, t \vee n] \subseteq \langle a \rangle_n^0$.

Thus, $\{n\} = [t \land n, t \lor n] \cap [a \land n, a \lor n]$ = $[(t \land n) \lor (a \land n), (t \lor n) \land (a \lor n)]$

and so $(t \wedge n) \vee (a \wedge n) = n = (t \vee n) \wedge (a \vee n)$.

This implies $(t \wedge n) \ge (a \wedge n)^{0d}$ and $(t \vee n) \le (a \vee n)^0$.

Hence, $[t \wedge n, t \vee n] \subseteq [(a \wedge n)^{0d}, (a \vee n)^0]$ and so $\langle a \rangle_n^0 \subseteq [(a \wedge n)^{0d}, (a \vee n)^0]$. Therefore $\langle a \rangle_n^0 = [(a \wedge n)^{0d}, (a \vee n)^0]$. \Box

If *S* is a distributive lattice with 0 and 1, then for a central element $n \in S$, $P_n(S) = F_n(S)$. Then $P_n(S)$ is pseudocomplemented if and only if (*n*] is dual pseudocomplemented and [*n*) is pseudocomplemented, as $F_n(S) \cong (n)^d \times [n]$. For any $n \le b \le 1$, b^+ denotes the pseudocomplement of *b* in [*n*,1], while for $0 \le a \le n$, a^{+d} denotes the dual pseudocomplement of *a* in [0,*n*].

Corollary 1.4. Let *n* be a central element of a lattice *S* with 0, 1 and $P_n(S)$ is a pseudocomplemented distributive lattice. Then for any $a \in S$,

 $<a>_{n}^{+}=[(a \wedge n)^{+d},(a \vee n)^{+}].$

A distributive nearlattice *S* with 0 is *generalized Stone nearlattice* if for each $x \in S$, $(x]^* \vee (x]^{**} = S$. By [6], a distributive nearlattice *S* with 0 is a generalized Stone nearlattice if and only if each interval [0, x], $0 < x \in S$ is a Stone lattice.

To prove Theorem 1.7 we need the following lemmas. Lemma 1.5 is trivial by Theorem 1.2

Lemma 1.5. Suppose *n* is a central element of a distributive nearlattice *S*, and $P_n(S)$ is sectionally pseudocomplemented. Then $P_n(S)$ is generalized Stone if and only if (*n*] is dual generalized Stone and [*n*) is generalized Stone. \Box

Lemma 1.6. Suppose $P_n(S)$ is a sectionally pseudocomplemented distributive nearlattice. Let $x, y \in S$ with $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$. Then the following conditions are equivalent :

- (i) $\langle x \rangle_n^+ \lor \langle y \rangle_n^+ = S$;
- (ii) For any $t \in S$, $\langle m(x,n,t) \rangle_n^0 \lor \langle m(y,n,t) \rangle_n^0 = \langle t \rangle_n$ where $\langle m(x,n,t) \rangle_n^0$ denotes the relative pseudocomplement of $\langle m(x,n,t) \rangle_n$ in $[\{n\}, \langle t \rangle_n]$.

Proof. (i) \Rightarrow (ii). Suppose (i) holds. Then for any $t \in S$, $< m(x,n,t) >_n^0 \lor < m(y,n,t) >_n^0$ $= (< x >_n \cap < t >_n)^0 \lor (< y >_n \cap < t >_n)^0$ $= ((< x >_n \cap < t >_n)^+ \cap < t >_n) \lor ((< y >_n \cap < t >_n)^+ \cap < t >_n)$ by [8, Lemma 1.4] $= (< x >_n^+ \cap < t >_n) \lor (< y >_n^+ \cap < t >_n)$ by [8, Lemma 1.3] $= (< x >_n^+ \lor < y >_n^+) \cap < t >_n$ $= S \cap < t >_n$ $= < t >_n$. Hence (ii) holds. (ii) \Rightarrow (i). Suppose (ii) holds and $t \in S$. By (ii), $< m(x,n,t) >_n^0 \lor < m(y,n,t) >_n^0 = < t >_n$. Then using [8, Lemmas 1.3 and 1.4] and the calculation of (i) \Rightarrow (ii) above we get $(< x >_n^+ \lor < y >_n^+) \cap < t >_n = < t >_n$.

This implies $\langle t \rangle_n \subseteq \langle x \rangle_n^+ \lor \langle y \rangle_n^+$ and so $t \in \langle x \rangle_n^+ \lor \langle y \rangle_n^+$.

Therefore, $\langle x \rangle_n^+ \lor \langle y \rangle_n^+ = S$. \Box

Theorem 1.7. Let *n* be a central element of *S*, and $P_n(S)$ be a sectionally pseudocomplemented distributive nearlattice. Then the following conditions are equivalent :

- (i) $P_n(S)$ is generalized Stone ;
- (ii) For any $x \in S$, $\langle x \rangle_n^+ \lor \langle x \rangle_n^{++} = S$;
- (iii) For all $x, y \in S$, $(\langle x \rangle_n \cap \langle y \rangle_n)^+ = \langle x \rangle_n^+ \lor \langle y \rangle_n^+$;
- (iv) For all $x, y \in S$, $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$ implies that $\langle x \rangle_n^+ \lor \langle y \rangle_n^+ = S$.

```
Proof. (i) \Rightarrow (ii). Suppose (i) holds and, the t \in S n for any x \in S,

m(x,n,t) \in \langle t \rangle_n and so \langle m(t,n,x) \rangle_n \in [\{n\}, \langle t \rangle_n].

Since P_n(S) is generalized Stone, so \langle m(t,n,x) \rangle_n^0 \lor \langle m(t,n,x) \rangle_n^{00} = \langle t \rangle_n.

Then by [8, Lemma 1.4],

\langle t \rangle_n = (\langle m(t,n,x) \rangle_n^+ \cap \langle t \rangle_n) \lor (\langle m(t,n,x) \rangle_n^{++} \cap \langle t \rangle_n)

= ((\langle x \rangle_n \cap \langle t \rangle_n)^+ \cap \langle t \rangle_n) \lor ((\langle x \rangle_n \cap \langle t \rangle_n)^{++} \cap \langle t \rangle_n)

Thus by [8, Lemma 1.3],

\langle t \rangle_n = (\langle x \rangle_n^+ \cap \langle t \rangle_n) \lor (\langle x \rangle_n^{++} \cap \langle t \rangle_n).

Thus \langle t \rangle_n = (\langle x \rangle_n^+ \lor \langle x \rangle_n^{++}) \cap \langle t \rangle_n.

This implies \langle t \rangle_n \subseteq \langle x \rangle_n^+ \lor \langle x \rangle_n^{++} and so t \in \langle x \rangle_n^+ \lor \langle x \rangle_n^{++}.

Therefore \langle x \rangle_n^+ \lor \langle x \rangle_n^{++} = S.

(ii)\Rightarrow(iii). Suppose (ii) holds.
```

For any $x, y \in S$ $(\langle x \rangle_{n} \cap \langle y \rangle_{n}) \cap (\langle x \rangle_{n}^{+} \vee \langle y \rangle_{n}^{+})$ $= (<x>_{n} \cap <y>_{n} \cap <x>_{n}^{+}) \lor (<x>_{n} \cap <y>_{n} \cap <y>_{n}^{+})$ $= \{n\} \lor \{n\} = \{n\}$ Now let $\langle x \rangle_n \cap \langle y \rangle_n \cap I = \{n\}$ for some n-ideal I. Then $\langle y \rangle_n \cap I \subseteq \langle x \rangle_n^+$. Meeting $\langle x \rangle_n^{++}$ with both sides, we have $\langle y \rangle_n \cap I \cap \langle x \rangle_n^{++} = \{n\}$. This implies $I \cap \langle x \rangle_n^{++} \subseteq \langle y \rangle_n^+$. Hence $I = I \cap S$ $= I \cap (\langle x \rangle_{n}^{+} \lor \langle x \rangle_{n}^{++})$ $=(I \cap \langle x \rangle_{n}^{+}) \vee (I \cap \langle x \rangle_{n}^{++})$ $\subset \langle x \rangle_{u}^{+} \lor \langle y \rangle_{u}^{+}$ Therefore, $\langle x \rangle_n^+ \lor \langle y \rangle_n^+ = (\langle x \rangle_n \cap \langle y \rangle_n)^+$. (iii) \Rightarrow (iv). Let $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$ for some $x, y \in S$. Then by (iii), $S = \{n\}^+ = (\langle x \rangle_n \cap \langle y \rangle_n)^+$ $= \langle x \rangle_{n}^{+} \lor \langle y \rangle_{n}^{+}$.

Thus (iv) holds.

To complete the proof we shall show that $(iv) \Rightarrow (i)$.

Suppose (iv) holds. Since $P_n(S)$ is sectionally pseudocomplemented, so by Theorem 1.2, (*n*] is sectionally dual pseudocomplemented and [*n*) is sectionally pseudocomplemented. Suppose $n \le b \le d$. Let b^0 be the relative pseudocomplement of *b* in [n,d].

Now $b^0 \wedge b^{00} = n$.

Thus $\langle b^0 \rangle_n \cap \langle b^{00} \rangle_n = [n, b^0 \wedge b^{00}] = [n, n] = \{n\}.$

Also $\langle b^0 \rangle_n \langle b^{00} \rangle_n \subseteq \langle d \rangle_n$. Then by equivalent conditions of (iv) given in Lemma 1.6, we have $\langle m(b^0, n, d) \rangle_n^0 \lor \langle m(b^{00}, n, d) \rangle_n^0 = \langle d \rangle_n$.

But $m(b^0, n, d) = b^0$ and $m(b^{00}, n, d) = b^{00}$ as $n \le b^0$, $b^{00} \le d$. Since by Corollary 1.4, $< b^0 >_n^0 = < b^{00} >_n$ and $< b^{00} >_n^0 = < b^{000} >_n = < b^0 >_n$. Therefore, $< d >_n = < b^{00} >_n \lor < b^0 >_n$

$$= < b^0 \lor b^{00} >$$

which gives $b^0 \lor b^{00} = d$. This implies [n,d] is a Stone lattice. That is, [n) is generalized Stone.

A dual proof of above shows that (iv) also implies that (*n*] is a dual generalized Stone lattice. Therefore, by Lemma 1.5, $P_n(S)$ is generalized Stone. \Box Following corollary is an immediate consequence of above result.

Corollary 1.8. Let n be a central element of a distributive lattice L with 0 and 1 and

let $P_n(L)$ *be a pseudocomplemented distributive lattice. Then the following conditions are equivalent :*

- (i) $P_n(L)$ is Stone;
- (ii) For all $x \in L$, $\langle x \rangle_n^+ \lor \langle x \rangle_n^{++} = L$;
- (iii) For all $x, y \in L$, $(\langle x \rangle_n \cap \langle y \rangle_n)^+ = \langle x \rangle_n^+ \lor \langle y \rangle_n^+$;
- (iv) For all $x, y \in L$, $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$ implies that $\langle x \rangle_n^+ \lor \langle y \rangle_n^+ = L$. \Box

For a prime ideal P of a distributive nearlattice S with 0, we define

 $0(P) = \{x \in S : x \land y = 0 \quad for \ some \ y \in S - P\}$

Clearly $_{0(P)}$ is an ideal and $_{0(P)} \subseteq P$. Note that $_{0(P)}$ is the intersection of all the minimal prime ideals of S which are contained in *P*.

For a prime n-ideal P of a distributive nearlattice S, we write

 $n(P) = \{ y \in S : m(y, n, x) = n \text{ for some } x \in S - P \}.$

Clearly, n(P) is an n-ideal and $n(P) \subseteq P$.

Lemma 1.9. Let *S* be a distributive nearlattice with a medial element *n* and *P* be a prime *n*-ideal in *S*. Then each minimal prime *n*-ideal belonging to n(P) is contained in *P*.

Proof. Let *Q* be a minimal prime n-ideal belonging to n(P). If $Q \not\subseteq P$, then choose $y \in Q - P$. Since *Q* is a prime n-ideal, so by [9,Theorem 1.5], we know that *Q* is either an ideal or a filter. Without loss of generality suppose *Q* is an ideal. Now let

 $T = \left\{ t \in S : m(y, n, t) \in n(P) \right\}.$

We shall show that $T \not\subseteq Q$. If not, let $D = (S - Q) \lor [y)$.

Then $n(P) \cap D = \Phi$.

For otherwise, $y \wedge r \in n(P)$ for some $r \in S - Q$. Then by convexity,

 $y \wedge r \leq m(y,n,r) \leq (y \wedge r) \vee n$ implies $m(y,n,r) \in n(P)$. Hence $r \in T \subseteq Q$, which is a contradiction.

Thus by [9,Theorem 1.9], there exists a prime n-ideal R containing n(P) disjoint to D. Then $R \subseteq Q$.

Moreover, $R \neq Q$ as $y \notin R$, this shows that Q is not a minimal prime n-ideal belonging to n(P), which is a contradiction.

Therefore $T \not\subseteq Q$. Hence there exists $z \notin Q$ such that $m(y,n,z) \in n(P)$. Thus

m(m(y,n,z),n,x) = n for some $x \in S - P$. It is easy to see that

 $m(m(y,n,z),n,x) = m(m(y,n,x),n,z) \, .$

Hence m(m(y,n,x),n,z) = n. Since P is prime and $y, x \notin P$ so $m(y,n,x) \notin P$.

Therefore, $z \in n(P) \subseteq Q$, which is a contradiction.

Hence $Q \subseteq P$.

Proposition 1.10. For a medial element n if P is a prime n- ideal in a distributive nearlattice S, then n(P) is the intersection of all minimal prime n- ideals contained in P.

Proof. Clearly n(P) is contained in any prime n-ideal which is contained in *P*. Hence n(P) is contained in the intersection of all minimal prime n-ideals contained in *P*.

Since S is distributive, so by [7, Corollary 2.1.10], n(P) is the intersection of all minimal prime n-ideals belonging to it.

By [8, Lemma 1.2], as each prime n-ideal contains a minimal prime n-ideal, above remarks and Lemma 1.9 establish the proposition. □

Following result has been proved by [5] for lattices. We generalize that result for nearlattices with the help of [10,Theorem 1.7].

Theorem 1.11. Let $P_n(S)$ be a sectionally pseudocomplemented distributive nearlattice and n be central element in S. Then the following conditions are equivalent :

- (i) For any $x \in S$, $\langle x \rangle_n^+ \lor \langle x \rangle_n^{++} = S$, equivalently, $P_n(S)$ is generalized Stone;
- (ii) For any two minimal prime n- ideals P and Q, $P \lor Q = S$;
- (iii) Every prime n- ideal contains a unique minimal prime n- ideal;
- (iv) For each prime n- ideal P, n(P) is a prime n- ideal.

Proof. (i) \Rightarrow (ii). Suppose (i) holds.

Let $x \in P - Q$. Then $\langle x \rangle_n \subseteq P - Q$. Now, $\langle x \rangle_n \cap \langle x \rangle_n^+ = \{n\} \subseteq Q$.

So $\langle x \rangle_{\mu}^{+} \subseteq Q$ as Q is prime.

Again, $x \in P$ implies $\langle x \rangle_n^{++} \subseteq P$ by [8, Theorem 1.6].

Hence by (i), $S = \langle x \rangle_n^+ \lor \langle x \rangle_n^{++} \subseteq Q \lor P$. Therefore, $P \lor Q = S$.

- (ii) \Leftrightarrow (iii) is trivial.
- $(iii) \Rightarrow (iv)$ is direct consequence of Proposition 1.10.
- $(iv) \Rightarrow (i)$. Suppose (iv) holds.

First we shall show that for all $x, y \in S$ with $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$ implies $\langle x \rangle_n^+ \vee \langle y \rangle_n^+ = S$. If it does not hold, then there exist

 $x, y \in S$ with $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$ such that $\langle x \rangle_n^+ \lor \langle y \rangle_n^+ \neq S$.

As *S* is distributive, so by [9, Theorem 1.9], there is a prime n-ideal *P* such that

 $\langle x \rangle_n^+ \lor \langle y \rangle_n^+ \subseteq P$. Then $\langle x \rangle_n^+ \subseteq P$ and $\langle y \rangle_n^+ \subseteq P$ imply $x \notin n(P)$ and $y \notin n(P)$.

By (iv), n(P) is prime n-ideal and so $m(x,n,y) = n \in n(P)$ is contradictory.

Thus for all $x, y \in S$ with $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$

implies that $\langle x \rangle_n^+ \lor \langle y \rangle_n^+ = S$.

Hence by equivalent conditions of Theorem 1.7, (i) holds. □

References

- R. Balbes and A. Horn, Duke Math. J. 38, 537 (1971). <u>http://dx.doi.org/10.1215/S0012-7094-71-03843-9</u>
- 2. W. H. Cornish, Austral. Math. Soc. **14**, 200 (1972). http://dx.doi.org/10.1017/S1446788700010041
- 3. T. Katrinak, (Russian) Math. Fyz. Casopis 16, 128 (1966).
- 4. T. Katrinak, (Russian) Math. Casopis Sloven. Akad. Vied. 17, 20 (1967).
- 5. A. S. A. Noor and M. A. Ali, The Rajshahi University Studies, Part-B 26, 83(1998).
- 6. A. S. A. Noor and A. K. M. S. Islam, J. Sci. Jahangirnagar University 33 (1), 105 (2010).
- S. Akhter, A Study of Principal n-Ideals of a Nearlattice, Ph.D. Thesis, Rajshahi University, Rajshahi (2003).
- 8. S. Akhter and M. A. Latif, J. Sci. 35, 217 (2007).
- 9. S. Akhter and A. S. A. Noor, Ganit J. Bangladesh Math. Soc. 24, 35 (2005).
- 10. S. Akhter and A. S. A. Noor, J. Sci. Res. **4** (3), 589 (2012). http://dx.doi.org/10.3329/jsr.v4i3.10103