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Abstract 

 
We derive some shrinkage test-estimators and the Bayes estimators for the shape parameter 
of a Pareto distribution under the general entropy loss (GEL) function. The properties have 
been studied in terms of relative efficiency. The choices of shrinkage factor are also 
suggested.  
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1. Introduction 
 
The Pareto distribution and its close relatives provide very flexible family of fat-tailed 
distributions which may be used as a model for income distribution of higher income 
group. Davis and Feldstein [1] have viewed the Pareto distribution as a potential model for 
the life testing problems. This distribution has established its important role in variety of 
other problems such as size of cities and firms [2], business mortality [3], service time in 
queuing system [4].  

The Pareto distribution has played a major role in the investigations of previous 
phenomena providing a satisfactory model at the extremities. It plays an important role in 
socio-economic studies. It is often used as a model for analysis area including city 
population distribution, stock price fluctuations and oil field locations. Also, it has 
application in military areas and suitable for approximating the right tails of distribution 
with positive skewness. The Pareto law applied to study the distributions of nuclear 
particles [5].  Harris [6] used this distribution in determining times of maintenance service 
while Dyer [7] found that the two-parameter Pareto distribution transformation is 
equivalent to the two-parameter exponential distribution. The probability density function 
of the classical Pareto distribution is given as  

 
( ) .0 , ; ) ,;( 1 >≥= +− θσσθθσ θθ xxxf               (1) 
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Here,   be the shape parameter andθ σ  is a scale parameter. Let   be a 
random sample of size  drawn from the distribution (Eq. 1). The maximum likelihood 
estimators (MLE) and the unbiased estimators for the parameters  and

n,...,x,x x 21
n

 θ σ  are given as  
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Here, suffix u stands for unbiased estimator. Also, is distributed as a 

chi-square distribution with 

1 
 0  )2( 2 −− un θθ

)1(2 −n  degrees of freedom 
It is recognized that a shrinkage estimator performs better if a guess value of the 

parameter is in the vicinity of the true value and the sample size is small. Following 
Thompson [8], a shrinkage estimator of  is   θ

 

,) 1 (ˆ
0θθ kkT u −+=                                (2) 

where 0θ  is a guess value of the parameter . The shrinkage factor  lies between 0 and 
1 and is specified by the experimenter according to his belief in the guess value

 θ  k
0θ . The 

shrinkage procedure has been applied in a number of problems such as mean survival time 
in epidemiological studies [9], forecasting of the money supply [10], estimating mortality 
rates [11] and improved estimation in sample surveys [12]. The performances of the 
shrinkage estimators utilizing a point guess value has been studied in Refs. [13-18] and 
others in different contexts. 

We know that in many real life situations, the overestimation or underestimation are 
not of equal consequences. For such situations a useful asymmetric loss function was 
introduced by Varian [19], called as the LINEX loss function. This function rises 
approximately exponentially on one side of zero and approximately linearly on the other 
side. A suitable alternative to the LINEX loss is the general entropy loss (GEL) proposed 
by Calabria and Pulcini [20] and is given for the parameter  as   θ

. 
ˆ

,0  ;  1)( log)(
θ
θup ppL =Δ≠−Δ−Δ=Δ                                      (3) 

The shape parameter  allows different shapes of this loss function. For  a 
positive error  causes more serious consequences than a negative one and vice 
versa. Also, the minimum occurs at . 

p ,0 >p

 θ

θθu >ˆ

θθ u =ˆ

In this paper, we propose some shrinkage estimators for the shape parameter  when 
initial estimate of  is available in the form of the guess value  with different choices 
of the shrinkage factor and study their properties in terms of relative efficiency under GEL 
function. The Bayes estimators of the parameter  are also derived when the scale 
parameter

 θ 0  θ

 θ
σ  is known and unknown. 
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2.  A Proposed Class of Estimators for the Shape Parameter  
 
The proposed class of estimators for the shape parameter is given as  

.    ; ˆ +∈= RCCY uθ                           (4)  
The risk of the estimatorY  under GEL (Eq. 3) is obtained as  
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Hence, the improved estimator among the class (Eq. 4) is  

 ˆ 1 1 uCY θ=   
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3.  The Proposed Shrinkage Estimator and its Properties 
 
The risk of the estimator  given in Eq. (2) under the GEL is given as  T
 

( ) ,, ,  G TR Δ ′′∞= 0)(                 (8) 

where ,1)( log )( −′′−′′=Δ ′′ fpf p
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The relative efficiency of the shrinkage estimator T  with respect to improved 
estimator  is defined as  1  Y

 

)  ( ) () , ( 1 1 TRYRYTRE = . 

The relative efficiency  is the function of n, ) , ( 1 YTRE δ , p and k. For the selected 
values of ;15 . 250, , , n 100806= ;. . 751)250(=δ 00001.  p 2., ±=  and ,., . k 500250= ; 0.75

251.≤

  
the relative efficiencies have been calculated but not presented here. The proposed 
estimator  is more efficient than improved estimator  in the intervalT 1  Y 750. ≤ δ  
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for all parametric values and the effective interval decreases as  increases. Further, the 
efficiency reaches maximum at the point 

n
1.00=δ  and decreases as  increases (except n

1.00=δ ). Also, the efficiency first increases for 1.00<δ  and then decreases in the interval 
  as  increases. It is also seen that for the moderate values of  the gain in 

efficiency is larger in the vicinity of the true value of the parameter, i.e. (
1.00δ > p k

75 ≤ 25.1.0 ≤δ ). 
The value of the shrinkage factor k  (say), which minimizes  is obtained 

numerically by solving the given equality 
) T ( R1k=
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Based on  the improve shrinkage estimator for  is given as   θ

0 1 1  ) 1 (ˆ θθ kT u −+                  (10) 

with the risk under the GEL is  
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The relative efficiency of  with respect to  is given as  1  T
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The relative efficiency  is the function of  and . For the similar set 
of values as considered earlier, the relative efficiencies have been calculated but not 
presented here. The improved shrinkage estimator is more efficient than  in the 
interval

) , ( 1 1 YTRE n,  δ p

1  T 1  Y
1.5075.0 ≤ δ ≤  for all parametric space and the effective interval decreases as

increases. Other properties are similar to the shrinkage estimator T.  
n  

 
4.  The Proposed Shrinkage Test-Estimator and its Properties 
 
From the above conclusion, we conclude that the shrinkage estimator performs well when 
guess value is approximately near to the parameter and for the moderate values of sample 
size as well as the shrinkage factor. This suggests that one may employ a test under the 
hypothesis  against . A test statistic is 
available for testing the hypothesis  against . Therefore, the proposed shrinkage 
test-estimator is 
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The relative bias of the shrinkage test-estimator  is obtained as   u SHθ ˆ

( ) ( ) ( ) ;  1     , ,   1  
ˆ  ˆ  1 0 2 1 
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The risk under the GEL for the proposed shrinkage test-estimator  is obtained as   u SHθ ˆ
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The relative efficiency of the shrinkage test-estimator  with respect to  is  u SHθ ˆ
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The relative bias and the relative efficiency are functions of  and  (level of 
significance). For selected values of 

n,
, 1008
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, 15
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, n 06=  ;.) . 75125250 . ( 0 =δ  

2.00; ,00.1±=p 750500250 ., ., .k =  and  the relative biases and the relative 
efficiencies have been calculated but not presented here.  

; 0.05 0.01, =α

The relative bias lies between –0.178 and 0.097 and has a tendency of being positive 
for 00.1≥δ and negative otherwise. The relative biases decrease as  increases for the all 
considered values of . Similar trend has been seen in the interval 

n
0δ 75.175. ≤≤ δ  when 

α  increases. Further, the relative bias decreases when  increases forp 00.1≥δ .  
The shrinkage test-estimator  has smaller risk than the minimum risk 

estimator  provided  is small,  is small and in the interval
 u SHθ ˆ

k1  Y n 50.150.0 ≤≤ δ  and the 
effective interval decreases with  as well as  increases. The relative efficiency is 
higher at the point 

k n
1.00=δ  and it decreases for  as well asn α  increases when .25.1≤δ  

In addition, the efficiency first increases for 1.00 <δ  and then decreases in the 
interval 1.00> δ  as  increases. It is also noted that for the moderate values of  the gain 
in efficiency is larger in the vicinity of the true value and guess value. 

p k

 
5.  Choices of the Shrinkage Factor 
 
The shrinkage test-estimator based on the shrinkage factor  (Eq. 9) that minimizes 
R(T), is given as  

1 k
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Again, the value of the shrinkage factor  (say), which minimizes the risk of the 

shrinkage estimator  given in Eq. (13), is obtained numerically by solving the given 
equality 

2 kk =

 u SHθ ˆ
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Based on  the proposed shrinkage test-estimator is  2 k
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The relative bias for the shrinkage test-estimator  is obtained as  2 ,1;ˆ   i  θ  u SH i =
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The risk for the proposed shrinkage test-estimator  under the GEL is 
given as  
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The relative efficiency for the shrinkage test–estimator  with respect to 
 is 
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The expressions of ( ) u SH iθ  RB ˆ  and ( ) 2,1; ,ˆ

1    i  Yθ  RE   u SH i =  are the function of  
 and . For the similar set of selected values as considered earlier the relative biases 

(not presented here) and the relative efficiencies have been calculated (Tables 1 and 2). 

n, 
δ, p α 

The values of the relative biases are smaller and have a tendency of being positive 
for 1.00 ≥δ  and negative otherwise. The relative biases decrease as  increases for the all 
considered values of

n
δ . Similar trend has been seen in the interv .75al  10.75 ≤≤ δ  when 

α  increases. Further, the relative bias decreases when p  increa 1.00 ≥ses for δ . The 
relative biases lie be

 

tween 
 

(1)  and  for the test–estimator  238.0− 125.0 1
ˆ
 u SH θ

(2)  and  for the test–estimator  202.0− 0.082 2
ˆ
 u SH θ

 
From Table 1, we conclude that the shrinkage test–estimator  is more efficient 

than  in the interval 
1

ˆ
 u SH θ

1  Y 1.750.50 ≤≤ δ  and the efficiency is maximum at the point 
1.00=δ . The relative efficiency decreases in 1.25≤δ  when sample size  as well as level 

of significance
n

α  increases. Further, the efficiency first increases in the interval 0.75≤δ  
and then decreases for 1.25≥ δ  when  increases. p
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The test-estimator  is more efficient than  for the all considered values of 
parametric space and attains maximum efficiency at point

2
ˆ
 u SH θ 1  Y

1.00 =δ  (Table 2). The 
efficiency decreases in 1.25 ≤δ  whenα  increases. Similar trend has been seen when  
increases in the interval

p
1.25 ≥δ . 

 
Table 1. Relative efficiency between shrinkage test-estimator  and . 1

ˆ
 u SH θ 1 Y

 
 

 δ  

n  α  p  0.25 0.50 0.75 1.00 1.25 1.50 1.75 

-1.00 0.2459 1.9168 4.3238 7.8084 3.6982 1.8775 1.3782 

1.00 0.5184 2.4774 5.8585 9.7923 3.4937 1.7502 1.1669 0.01 

2.00 0.7075 2.8312 6.5902 10.786 3.3005 1.7418 1.0976 

-1.00 0.2455 1.8806 3.0648 4.2562 2.8659 2.0683 1.7011 

1.00 0.4971 2.3505 3.6909 4.1449 2.5461 1.7355 1.3701 

6 

0.05 

2.00 0.6611 2.5945 3.8385 4.0858 2.4672 1.6263 1.2382 

-1.00 0.1762 1.6501 3.0553 5.6100 2.6474 1.6183 1.2787 

1.00 0.3535 2.0093 3.9689 6.3451 2.5695 1.4105 1.0340 0.01 

2.00 0.4732 2.2360 4.5107 6.9067 2.5366 1.3415 1.0031 

-1.00 0.1751 1.6339 2.3438 3.6902 2.6332 1.9699 1.6693 

1.00 0.3463 1.9608 2.7837 3.3988 2.2500 1.6483 1.3887 

8 

0.05 

2.00 0.4555 2.1485 3.0103 3.3602 2.1298 1.5116 1.2429 

-1.00 0.1379 1.5035 2.3623 4.5180 2.5484 1.5465 1.2960 

1.00 0.2678 1.7646 2.9736 4.7424 2.2742 1.3123 1.0477 0.01 

2.00 0.3545 1.9258 3.3383 4.9857 2.1957 1.2184 1.0023 

-1.00 0.1362 1.4950 1.9276 3.4317 2.3234 1.9347 1.6586 

1.00 0.2654 1.7406 2.2343 3.0317 2.1365 1.6806 1.4708 

10 

0.05 

2.00 0.3467 1.8847 2.4111 2.9327 2.0263 1.5442 1.3440 

-1.00 0.0962 1.3219 1.5260 3.4449 2.4545 1.6042 1.4354 

1.00 0.1687 1.4754 1.8305 3.2390 2.1900 1.4057 1.2760 0.01 

2.00 0.2175 1.5668 2.0062 3.2072 2.1751 1.2995 1.1727 

-1.00 0.0878 1.3203 1.4181 3.2406 2.3169 1.7853 1.5575 

1.00 0.1678 1.4692 1.5754 2.7851 2.0952 1.7447 1.5485 

15 

0.05 

2.00 0.2173 1.5564 1.6649 2.6090 2.0121 1.6947 1.5239 
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Table 2. Relative efficiency between shrinkage test-estimator  and . 2
ˆ
 u SH θ 1 Y

 
 

 δ  

n  α  p  0.25 0.50 0.75 1.00 1.25 1.50 1.75 

-1.00 1.0944 1.2635 1.7020 4.7150 2.6626 1.9626 1.9796 

1.00 1.5524 2.1211 6.4073 8.3159 2.6537 1.8558 1.4505 0.01 

2.00 1.1846 1.6529 4.0796 9.0526 2.4357 1.2327 1.2222 

-1.00 1.0823 1.1943 1.6273 3.3398 2.3865 2.0596 1.9754 

1.00 1.4274 2.0689 1.4303 3.9871 2.1844 1.7678 1.4225 

6 

0.05 

2.00 1.1509 1.5952 3.7983 3.8496 2.1108 1.6514 1.2850 

-1.00 1.0886 1.9325 3.5734 5.1377 3.3584 1.9404 1.8371 

1.00 1.4149 2.0266 2.6147 4.6479 2.5613 1.5072 1.1231 0.01 

2.00 1.5576 1.7689 4.3863 6.2233 1.5344 1.4363 1.0200 

-1.00 1.0827 1.2994 2.7123 3.5141 2.2024 1.8867 1.6966 

1.00 1.2456 1.8653 2.3273 3.2490 2.1908 1.6526 1.4130 

8 

0.05 

2.00 1.5233 1.6801 1.9040 2.0697 1.5182 1.5127 1.2648 

-1.00 1.0273 1.7375 2.8714 4.2383 2.2207 1.8223 1.7273 

1.00 1.2628 1.7876 3.6031 4.4373 2.1873 1.3808 1.1162 0.01 

2.00 1.5594 1.8432 2.3664 4.6511 2.1113 1.2839 1.0985 

-1.00 1.0224 1.7196 2.3208 3.2945 2.2147 1.7529 1.6603 

1.00 1.0693 1.6040 2.6512 2.9231 2.0955 1.6593 1.4710 

10 

0.05 

2.00 1.4938 1.8304 2.2487 2.3258 1.9509 1.5217 1.3431 

-1.00 1.1482 1.4834 1.9528 3.3120 2.3257 1.6218 1.4945 

1.00 1.3947 1.4991 2.4596 3.1202 1.8708 1.4227 1.3000 0.01 

2.00 1.4725 1.8038 2.4433 2.6834 1.7652 1.3156 1.1978 

-1.00 1.1477 1.4799 1.8223 3.1335 2.2516 1.7463 1.5433 

1.00 1.3872 1.4636 2.0391 2.7170 1.7787 1.6940 1.5265 

15 

0.05 

2.00 1.4233 1.4224 2.3319 2.5904 1.6678 1.6381 1.4967 

 
6.  The Bayes Estimator and its Properties 
 
Case 1:  Whenσ  is known 
 

The conjugate prior for the parameter θ  can be taken as two parameters Gamma 
distribution, having probability density function 
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The posterior density is again a two parameter Gamma density with parameters 
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In particular for ,1  p −=  the Bayes estimator under GEL is equal to the posterior mean 

and is given by 
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The relative efficiency for the Bayes estimator  with respect to  is BEθ̂ BSθ̂
 

( ) ( ) ( ) .ˆˆˆ, ˆ  θ  R θ R θ θ RE BEBSBSBE =   
 

 
 

The relative efficiency ( )BSBE θ θ RE ˆ, ˆ  involved  andpban  , , , θ . For 08, 06,  =n 10,15;  
 15; 1.00, 0.50, 10, 8.00, 4.00, 2.00, 1.00,=a 2.00; =b   2.00 1.00, =p and 50.0 ,25.0=θ (0.50)

0.50=
 

 the relative efficiencies have been calculated and presented in Table 3 for b  
and  only. 
3.00

2.00=p
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Table 3. Relative efficiency between shrinkage estimator  and . BEθ̂ BSθ̂
 

00.2=p 50.0=b  a  

n  θ  1.00 2.00 4.00 8.00 10.00 15.00 

0.25 1.8680 1.8967 1.6389 1.3508 1.2828 1.1896 

0.50 1.8213 1.9113 1.6604 1.3583 1.2877 1.1918 

1.00 1.6831 1.9199 1.7035 1.3737 1.2976 1.1960 

1.50 1.4971 1.8933 1.7471 1.3897 1.3078 1.2003 

2.00 1.2876 1.8228 1.7902 1.4065 1.3184 1.2046 

2.50 1.1082 1.7045 1.8313 1.4243 1.3296 1.2092 

06 

3.00 1.0016 1.5436 1.8676 1.4431 1.3413 1.2138 

0.25 1.6359 1.7253 1.5831 1.3406 1.2768 1.1873 

0.50 1.5977 1.7255 1.5975 1.3470 1.2811 1.1893 

1.00 1.4998 1.7126 1.6259 1.3603 1.2900 1.1933 

1.50 1.3781 1.6781 1.6534 1.3742 1.2993 1.1974 

2.00 1.2419 1.6187 1.6790 1.3887 1.3089 1.2016 

2.50 1.1029 1.5335 1.7012 1.4040 1.3190 1.2059 

08 

3.00 1.0011 1.4250 1.7180 1.4201 1.3296 1.2104 

0.25 1.5029 1.6107 1.5378 1.3322 1.2722 1.1904 

0.50 1.4708 1.6052 1.5477 1.3378 1.2761 1.1924 

1.00 1.3941 1.5845 1.5669 1.3495 1.2842 1.1963 

1.50 1.3033 1.5490 1.5845 1.3617 1.2927 1.2003 

2.00 1.2033 1.4975 1.5996 1.3744 1.3015 1.2045 

2.50 1.1002 1.4297 1.6109 1.3877 1.3107 1.2088 

10 

3.00 1.0006 1.3474 1.6171 1.4016 1.3203 1.2132 

0.25 1.3310 1.4390 1.4511 1.3147 1.2705 1.3344 

0.50 1.3083 1.4296 1.4551 1.3191 1.2738 1.3377 

1.00 1.2580 1.4056 1.4619 1.3280 1.2808 1.3446 

1.50 1.2021 1.3742 1.4666 1.3371 1.2880 1.3518 

2.00 1.1422 1.3355 1.4687 1.3466 1.2954 1.3591 

2.50 1.0805 1.2897 1.4674 1.3563 1.3031 1.3668 

15 

3.00 1.0003 1.2377 1.4621 1.3663 1.3111 1.3747 

 
The Bayes estimator  performs uniformly well with respect to  for the all 

considered values of the parametric space and the efficiency increases as  increases. 
Opposite trend is seen when  increases (for larger values of ). The efficiency 
also decreases when sample size  increases for

BEθ ˆ

'

BSθ ˆ

p
'a 4.00 ≥a

n .0001 ≤a . 
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Case 2:  When σ  is unknown 
 
When both parameters are unknown, the joint sufficient statistic forθ  andσ  are 

 

∑
=

=
n

i
 i x  V

1
log   and ( )n   ,... ,x, x x x 21)1( min=  . 

The joint prior for θ  andσ  as the product of their respective prior and defined as  

( )      ε b aθ  e θ
a Γ

 b  ε    θσf  
  b θ  a 

a
 ε

 
  

0
1

0
1 ,0,,,  ;

)(
),( σσσσ ε <>⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −−−−          (20) 

and the joint posterior density will be 

( ) . xρ    θ  e θ    θ,  f )(
 θ Vb    a  n   ε n θ

 1
)(11

1 ,min,0;)  ( <>∝ +−−+−+ σσσ          (21) 

Now, the marginal posterior density of θ  is 

( ) ,0;
),,(

1)( 31 11
2

321
2    θ  eθs θ   

 s ssJ 
  θ f  θ  s  s  

 
   

 
  >+= −−−            (22) 

where    and 

 

( )  dSes S S   s ss J  Ss 
 

  s
   

  ,  ),,(
0

 1
2

1
321

11∫
∞

−−− +=

V+ logn −

,1 an s += ε / n  s =2

 bs =3 ( )( ))1( min ρ, x .  
 

Hence the Bayes estimator of θ   under GEL is obtained as  
 / p 

   

   
BE  s ssJ 

 s spsJ   θ
1

321

321
1 ),,(

),,(ˆ
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=                  (23) 

and for particular p = -1 the Bayes estimator under GEL is the posterior mean and is given 
by 

 .
 s ssJ 

 s s sJ   θ
   

   
BE ),,(

),,1(ˆ
321

321
1

+
=   

 
 

7.  Conclusion 
 
The shrinkage test-estimator  performs well with respect to the minimum risk 
estimator  for small  and  in the interval

 u SHθ ˆ

, k1  Y n 50.150.0 ≤≤ δ . Similarly, the shrinkage 
test-estimator  is more efficient than  in the interval 1 

ˆ
 u SHθ 1  Y , 1.750.50 ≤≤ δ  whereas the 

test-estimator  performs uniformly well for all considered values of parametric 
space. Therefore the shrinkage test-estimator θ is preferable over others. 

2
ˆ
 u SH θ

2 u SH 
ˆ
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